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A few more applications of Bayesian methods, on the verge 
of epistemology.  
 
•  Bayesian blocks 
•  Solar flare statistics and prediction 
•  Bayes factors and Bell’s inequalities 
•  Bayes classifiers 
•  The nature of learning in Bayesian and MaxEnt methods 
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Bayesian blocks (Scargle 1998) 
 
Detection of bursts from piecewise change of (Poisson) event rate 

constant rate 
 
 
higher rate in 
second half 

time	


Example of variable rate in solar flare 
events. Peak flux of 1–8 Å GOES events 
(crosses) above threshold versus time 
for one year prior to 4 November 2003. 
(from M. S. Wheatland, Space Weather 3 
(2005) S07003) 
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When the (digital) system clock runs fast enough, for a given 
event rate, there is at most one event per clock tick.  
 
When the event rate is     (events/tick)                      and the 
time interval is N ticks, we find on average 
 
 
 
events in the time interval. The average number of events in 
a clock tick is – obviously –     again, and this is also the 
probability of  finding an event in the time interval.  
 
Therefore the probability model is binomial, with probability  

�

n = �N

�

(� ⌧ 1)

p = �
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This means that the likelihood of finding n events in the total 
time interval is the usual binomial expression 
 
 
 
 
 
 
 
Notice that here the rate is given in clock ticks. If we use 
standard time units, we have (with clock tick duration        ) 
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mb 

When the rate is not constant, we can set a breakpoint at tick 
mb, and the total likelihood becomes 
 
 
 
 
 
The calculation then proceeds either with the full likelihood or 
with a marginalized likelihood  
(see, e.g., J. Scargle, ApJ 504 (1998) 405 for many more details)   

N1 ticks N2 ticks 
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•  Solar flares are magnetic explosions in the ionized 
outer atmosphere of the Sun, the solar corona.  

•  Flares occur in and around sunspots, where intense 
magnetic fields penetrate the visible surface of the 
Sun.  

 
•  During a flare some of the energy stored in the 

magnetic field is released and appears in 
accelerated particles, radiation, heating, and bulk 
motion. 

•  Large flares strongly influence our local “space 
weather.” They can lead to enhanced populations of 
energetic particles in the Earth’s magnetosphere and 
these particles can damage satellite electronics, and 
pose radiation risks to astronauts and to passengers 
on polar aircraft flights.  

•  It is of great practical importance to construct 
predictive models of the occurrence of large 
solar flares. 
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The sun erupted with a massive solar at 0027 April 25 GMT, and ranked as an X1.3-class solar 
storm, one of the strongest types of flares the sun can experience, according to a report from the 
U.S. Space Weather Prediction Center. NASA's Solar Dynamics Observatory captured video of 
the intense solar flare in several different wavelengths. 
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Flare statistics  
(from M. S. Wheatland: “A Bayesian approach to solar flare prediction”, ApJ 609 
(2004) 1134) 
 
 
Flare frequency-size distribution (N number of events per unit time) 
 
 
 
 
where the power-law index is   
 
Moreover the statistics in time is Poissonian. 
 
The total event rate for events larger than S1 is 
 
 
 
 

N(S) = AS��

� ⇡ 1.5� 2
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S1
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From  
 
 
and 
 
 
 
 
we find 
 
 
 
and likewise   

N(S) = AS��

�1 =

Z 1

S1

N(S)dS = A(� � 1)�1S��+1
1

N(S) = �1(� � 1)S��1
1 S��

�2 = �1

✓
S1

S2

◆��1
if S1 is the size of small events, 
this is an estimate of the rate of 
events larger than S2 
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Using the Poisson model, the probability of finding at least 
one event larger than S2 in the time interval ΔT is 
 
 
 
 
Thus we can estimate this useful probability from the rate of 
small events and from the spectral index (that we assume 
known).  
 
In the work of Wheatland, the rate of small events is 
estimated using the Bayesian blocks method.   
 
 

✏ = 1� exp(��2�T )
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Bayes factors and Bell’s theorem 
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Obituary of J. S. Bell by 
Shimony, Telegdi and 
Veltman in Phys. Today 

... 

... 

... 



Edoardo Milotti - Bayesian Methods - MiBi June 2014 17 

... 

... 
... 
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Einstein’s dissatisfaction with quantum mechanics 
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•  locality: information cannot propagate faster than light 
•  realism: physical objects possess properties independently of 

measurements 
 
 
 
Could quantum mechanics be just the phenomenology of a deeper 
classical theory with variables that we are unable to observe, i.e., with 
hidden variables?  
 
 
If so, the hidden variables theory would satisfy both locality and 
realism.  
 
 
John Bell displayed inequalities that are valid for any local, 
realistic theory, but are violated by quantum mechanics. 
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A simplified proof of Bell’s theorem 
(L. Maccone, arXiv:1212.5214 [quant-ph]) 
 
Take three objects with two-valued properties (values 0 and 1) A, B and C and let  
 
Psame(A,B) = prob. that property A of the first object has the same value as 

 property B of the second object; 
Pdiff(A,B) =    prob. that property A of the first object differs from property B 

 of the second object; 
 

⌦

red area:  Psame(A,B) 
yellow area:  Psame(A,C) 
orange area:  probability that A=B=C 
blue area:  Psame(B,C) 
 
 Psame(A,B) + Psame(A,C) + Psame(B,C) � 1
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The inequality is violated by quantum mechanics.  
 
Indeed, consider two two-level systems in the entangled state 
 
 
 
 
 
 
and the properties A, B and C obtained by projecting the state on 
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⇢
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It is also easy to verify that 
 
 
 
 
 
 
This means that when we carry out a measurement of any property A we 
find that the subsystems always share the same property (whichever it 
is):  
 
 
 

|�+i = |a0a0i+ |a1a1ip
2

=
|b0b0i+ |b1b1ip

2
=

|c0c0i+ |c1c1ip
2

Psame(A,A) = Psame(B,B) = Psame(C,C) = 1
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Now notice that 
 
 
 
 
 
and therefore   
 
 
 
 
 
so that  
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|b0i+

p
3|b1i
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p
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Psame(A,B) = 1/4
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The same can be done for the other properties, and one finds 
 
 
 
 
and finally 
 
 
 
 
 
therefore QM violates the inequality and it cannot be both realistic 
and local.  
 
  

Psame(A,B) = Psame(A,C) = Psame(B,C) = 1/4

Psame(A,B) + Psame(A,C) + Psame(B,C) = 3/4 < 1
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Many other versions of this result have been devised after Bell ... 
 
For instance, Clauser, Horne, Shimony, and Holt (CHSH), found that when 
two observers have a choice of several yes-no tests Ak (observer a) and Bk 
(observer b), then local realism implies  
 
 
 
(Braunstein and Caves version of CHSH inequality, 2k-1 terms on the lhs) 
 
 Now take the measurements of 

the spins of two particles along 
the directions shown here as the 
measured “properties”.  
 
Consecutive directions are 
separated by the angle  

P (A1B2) + P (B2A3) + · · ·+ p(A2k�1B2k) � p(A1B2k)

✓ = ⇡/2k
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Quantum mechanics predicts that each probability of the lhs is 
 
 
 
 
while the probability on the rhs of the inequality is just 
 
 
 
 
and this violates the inequality.  
 
The closest a local realistic theory could get to quantum mechanics is by 
leading to an equality. If we further assume rotational symmetry, we can 
state that all probabilities have to be the same, and therefore     

q = (1� cos ✓)/2

(1� q)

(2k � 1)r = 1� r ) r = 1/2k = ✓/⇡
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Now we have two predictions  
 
QM: probability q that two observers obtain the same result 
LR: probability r that two observers obtain the same result 
 
we compare the hypotheses using equal prior probabilities and the 
Bayes factor.  
 
Since the underlying model is binomial (we find the same result or not in 
the two measurements), the likelihoods have the same functional form 
with different probabilities, i.e., the Bayes factor is  

Bayes factor =

qn(1� q)N�n

rn(1� r)N�n
=

⇣q
r

⌘n
✓
1� q

1� r

◆N�n
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Assuming QM to be correct, we find that the number of positive tests is, 
on average 
 
 
 
 
and therefore 
 
 
 
 
 
 
 
For example, if we wish a Bayes factor 104,  and k=2, we must carry out 
at least N ≈ 287 trials.  
 
(further details in A. Peres, arXiv:quant-ph/9905084) 
 

Bayes factor =

"⇣q
r

⌘q
✓
1� q

1� r

◆1�q
#N

n = qN



P C X( ) = P X C( )
P X( ) P C( )

Bayesian classification 
 

data X, classes C this likelihood is defined by 
training data 

Ck = argmax
Ck

P X Ck( )
P X( ) P Ck( ) = argmax

Ck
P X Ck( )P Ck( )

we can use the prior learning to assign a class to new data 

the prior is also defined by 
training data 
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Consider a vector of N attributes given as Boolean variables  
x = {xi} and classify the data vectors with a single Boolean 
variable.  
 
The learning procedure must yield:  
 

  it is easy to obtain it as an empirical distribution from 
  an histogram of training class data: y is Boolean, the   
  histogram has just two bins, and a hundred examples  
  suffice to determine the empirical distribution to better  
  than 10%.  

 
  there is a bigger problem here: the arguments have 2N+1  
  different values, and we must estimate 2(2N-1)  
  parameters ... for instance, with N = 30 there are more  
  than 2 billion parameters! 

P y( )

P x y( )
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How can we reduce the huge complexity of learning?  
 
 

 we assume the conditional independence of the xn’s: 
 naive Bayesian learning 

  
for instance, with just two attributes 
 
 
 
 
 
 
with more than 2 attributes 
 

P x1, x2 y( ) = P x1 x2 , y( )P x2 y( ) = P x1 y( )P x2 y( )
conditional independence assumption 

P x y( ) ≈ P xk y( )
k=1

N

∏
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P yk x( ) = P x yk( )
P x( ) P yk( ) = P x yk( )

P x yj( )P yj( )
j
∑

P yk( )

≈
P xn yk( )

n=1

N

∏

P yj( ) P xn yj( )
n=1

N

∏
j
∑

P yk( )

Therefore: 

and we assign the class according to the rule (MAP) 

y = argmax
yk

P xn yk( )
n=1

N

∏

P yj( ) P xn yj( )
n=1

N

∏
j
∑

P yk( )
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More general discrete inputs 

 

If any of the N x variables has J different values, e if there are 

K classes, then we must estimate in all NK(J-1) free 

parameters with the Naive Bayes Classifier (this includes 

normalization) (compare this with the K(JN-1) parameters 

needed by a complete classifier) 
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Continuous inputs and discrete classes – the Gaussian case 

 

 

 

here we must estimate 2NK parameters + the shape of the 

distribution P(y) (this adds up to another K-1 parameters) 

P xn yk( ) = 1
2πσ nk

2
exp −

xn − µnk( )2
2σ nk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Gaussian special case with class-independent variance and 
Boolean classification (two classes only): 
 
 
 
 
 

P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

P xn y = 0( ) = 1
2πσ n

2
exp −

xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P xn y = 1( ) = 1
2πσ n

2
exp −

xn − µn1( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

=
1

1+
P x y = 1( )P y = 1( )
P x y = 0( )P y = 0( )

=
1

1+ P y = 1( )
P y = 0( ) exp −

xn − µn1( )2
2σ n

2 +
xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

N

∏

=
1

1+ exp ln P y = 1( )
P y = 0( )

⎛
⎝⎜

⎞
⎠⎟
+

µn1 − µn0( )xn
σ n
2 + µn0

2 − µn1
2

2σ n
2
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⎢

⎤

⎦
⎥
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⎧
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w0 = ln
P y = 1( )
P y = 0( )

⎛
⎝⎜

⎞
⎠⎟
+

µn0
2 − µn1

2

2σ n
2

⎡

⎣
⎢

⎤

⎦
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n=1

N

∑

wn =
µn1 − µn0( )

σ n
2

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x( ) = 1− P y = 0 x( ) =
exp w0 + wnxn
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N

∑⎛
⎝⎜

⎞
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1+ exp w0 + wnxn
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N
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⎝⎜

⎞
⎠⎟

logistic shape 
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Finally an input vector belongs to class y = 0 if  

P y = 0 x( )
P y = 1 x( ) > 1

exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟
< 1

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

w0 + wnxn
n=1

N

∑ < 0
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Naive Bayesian learning is an example of supervised 

learning, however there are also unsupervised Bayesian 

learning methods, such as the AUTOCLASS program and 

similar such projects.  
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On the nature of learning in Bayesian and MaxEnt Inference  
(from Cheeseman & Stutz, 2004) 
 
 
here we consider these three problems:  
 
1.  find the probabilities     of getting face i in a throw of a possibly biased 

die, given the frequencies ni of each face in a total of N throws;  
 

2.  find the probabilities when only the mean                    ,  
 
and the total number of throws N, are given; 
 

3.  analyze the kangaroo problem with a more complex contingency 
table 

θi

M = ini
i=1

6

∑
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1. Find the probabilities     of getting face i in a throw of a 
possibly biased die, given the frequencies ni of each face in a 
total of N throws;  
 
 
 
 
 
 
likelihood is given by the multinomial probability 
 
 
 
 

θi

0 ≤θi ≤1; θi
i=1

6

∑ = 1; 0 ≤ ni ≤ N; ni
i=1

6

∑ = N

L n1,…,n6{ } θ,N, I( ) = N!

nj !
j=1

6

∏
θi
ni

i=1

6

∏
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if, initially, we take a uniform prior, the posterior distribution 
from Bayes’ theorem is 
 
 
 
 
 
 
 
 
 
 
 
 
and we obtain a Dirichlet distribution (conjugate posterior of 
the multinomial distribution, just as the Beta distribution is the 
conjugate posterior of the binomial distribution). 

p θ n1,…,n6{ },N, I( ) =
θi
ni

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

θi
niδ θ j

j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθi

i=1

6

∏
0

1

∫

=
Γ N + 6( )
Γ nj +1( )

j=1

6

∏
θi
ni

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
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B m,n( ) = tm−1 1− t( )n−1 dt
0

1

∫ =
Γ m( )Γ n( )
Γ m + n( )

θ1
n1θ2

n2θ3
n3δ θ1 +θ2 +θ3 −1( )dθ1 dθ2 dθ3

0≤θi≤1
∫ = θ1

n1 dθ1 pn2
0

1−θ1

∫ 1−θ1( )− p⎡⎣ ⎤⎦
n3 dp

0≤θi≤1
∫

= θ1
n1 dθ1 1−θ1( )n2+n3+1 xn2

0

1

∫ 1− x( )n3 dx
0≤θi≤1
∫

= B n2 +1,n3 +1( ) θ1
n1 1−θ1( )n2+n3+1 dθ1

0

1

∫ = B n2 +1,n3 +1( )B n1 +1,n2 + n3 + 2( )

=
Γ n2 +1( )Γ n3 +1( )
Γ n2 + n3 + 2( ) ·

Γ n1 +1( )Γ n2 + n3 + 2( )
Γ n1 + n2 + n3 + 3( ) =

Γ n2 +1( )Γ n3 +1( )Γ n1 +1( )
Γ n1 + n2 + n3 + 3( )

θi
ni

i=1

M

∏ dθiδ θ j
j=1

M

∑ −1
⎛

⎝⎜
⎞

⎠⎟0≤θi≤1
∫ =

Γ ni +1( )
i=1

M

∏
Γ N +M( )

Mathema'cal	  note	  on	  the	  normaliza'on	  of	  the	  Dirichlet	  distribu'on:	  

relationship between Beta and 
Gamma function 

normalization factor 
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thus, if we assume some prior information, we can start with 
a Dirichlet prior 
 
 
 
 
 
and obtain the posterior distribution 

p θ w, I( ) = Γ W( )
Γ wj( )

j=1

6

∏
θi
wj−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
with W = wj

j=1

6

∑

p θ n,w,N, I( ) =
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

θi
ni+wi−1δ θ j

j=1

6
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⎛

⎝⎜
⎞

⎠⎟
dθi

i=1

6

∏
0

1

∫
=

Γ N +W( )
Γ nj +wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

= N!

nj !
j=1

6

∏
· Γ W( )

Γ wj( )
j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞
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The inferred distribution can be used to compute averages, 
and also for prediction.  
 
Indeed, the probability of observing ri occurrences of the i-th 
face in the future is  

P r n,N,R,w, I( ) = P r θ,N,R, I( ) p θ n,N,w, I( )dθ
θ
∫ =

= R!

rj !
j=1

6

∏
θi
ri

i=1

6

∏ Γ N +W( )
Γ nj +wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθ

θ
∫

= R!

rj !
j=1

6

∏
· Γ N +W( )

Γ nj +wj( )
j=1

6

∏
·

Γ nj + rj +wj( )
j=1

6

∏
Γ N + R +W( )
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so that we find, e.g.,  

P r1 =1 n,N,R =1,w, I( ) = Γ N +W( )
Γ nj +wj( )

j=1

6

∏
·

Γ nj +wj +δ1 j( )
j=1

6

∏
Γ N +W +1( )

= n1 +w1
N +W
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2. Find the probabilities when only the total                    , and 
the total of throws N, are given 
 
 
Let             be the set of vectors that satisfy the conditions,  
 
 
 
 
then the likelihood is 
 
 

M = ini
i=1

6

∑

n NM

N = ni
i=1

6

∑ ; M = ini
i=1

6

∑

P M θ,N, I( ) = P n θ,N, I( )
n NM

∑ = N!

nj !
j=1

6

∏
θi
ni

i=1

6

∏
n NM

∑
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now notice that 

P θ M,N,w, I( ) = P M θ,N, I( )P θ N,w, I( )
P M N, I( )

=
P n θ,N, I( )

n NM

∑ P θ N,w, I( )
P n θ,N, I( )P θ N,w, I( )dθ

θ
∫

n NM

∑

P n θ,N, I( )
n NM

∑ P θ N,w, I( ) = N!

nj !
j=1

6

∏
Γ W( )
Γ wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏
n NM

∑

P n θ,N, I( )P θ N,w, I( )dθ
θ
∫

n NM

∑ = N!

nj !
j=1

6

∏
Γ W( )
Γ wj( )

j=1

6

∏

Γ ni +wi( )
i=1

6

∏
Γ N +W( )n NM

∑

from these formulas we can calculate all marginals and any 
expectation, although it is quite difficult to manipulate 

Edoardo Milotti - Bayesian Methods - MiBi June 2014 48 



Edoardo Milotti - Bayesian Methods - MiBi June 2014 49 



The figure, from C&S, shows that the probability mass is concentrated close to the 
subspace defined by constraints, and becomes increasingly so as N increases. 
Bayesian inference tells us nothing on the distribution inside the subspace.The only 
information inside the subspace comes from priors. 
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3. The kangaroo problem with an extended contingency table 
 

attributes (number of values): 
 
•  handedness (2) 
•  beer-drinking (2) 
•  state-of-origin (7) 
•  color (3) 

 

4-dimensional contingency table 
with 2x2x7x3 = 84 entries 

The size of the contingency table increases exponentially 
as the number of attributes grows 
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If we are given the number of occurrencies ni,j,k,l for each 
position in the contingency table, we fall back to the first 
example of dice throw 

0 ≤θi, j,k,l ≤1; θi, j,k,l
l=1

3

∑
k=1

7

∑
j=1

2

∑
i=1

2

∑ =1

0 ≤ ni, j,k,l ≤ N; ni, j,k,l
l=1

3

∑
k=1

7

∑
j=1

2

∑
i=1

2

∑ = N

L n θ,N, I( ) = N!
ni, j,k,l

i, j,k,l
∏

θi, j,k,l
ni, j ,k ,l

i, j,k,l
∏

with the likelihood 
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The ni,j,k,l‘s are sufficient statistics and we can estimate all the 
corresponding probabilities as in the first example. 
 
However if we are only given a set of marginals, i.e., of constraints, we are 
in the same situation as example 2, the marginals define a subspace of the 
whole parameter space, and in this subspace the distribution is eventually 
determined by the prior information only. 
 
With enough attributes, the contingency table becomes VERY large, and it 
becomes impossible to collect sufficient statistics, we are mostly limited to 
marginals. 
 
The situation is very different if we assume independence: then the 
marginals are sufficient statistics. E.g., if probabilities factorize, then 
kangaroos have only (2+2+7+3)-(1+1+1+1) = 10 independent values (using 
normalization) instead of 84. 
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Maximum entropy approach to the kangaroo problem, given 
marginals 

ni, j,k,l
j,k,l
∑ = ni; ni = N

i
∑

θi, j,k,l
i, j,k,l
∑ =1; θi, j,k,l

j,k,l
∑ = ni

N

Example with two marginals: we maximize the constrained 
entropy 

S = − θi, j,k,l logθi, j,k,l
i, j,k,l
∑ + λ0 θi, j,k,l

i, j,k,l
∑ −1

⎛

⎝⎜
⎞

⎠⎟
+ λ1 θ1, j,k,l

j,k,l
∑ − n1

N
⎛

⎝⎜
⎞

⎠⎟
+ λ2 θ2, j,k,l

i,k,l
∑ − n2

N
⎛
⎝⎜

⎞
⎠⎟
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in the original kangaroo problem 

SV = pbl log
1
pbl

+ pbl log
1
pbl

+ pbl log
1
pbl

+ pbl log
1
pbl

⎛

⎝⎜
⎞

⎠⎟

+λ1 pbl + pbl + pbl + pbl −1( ) + λ2 pbl + pbl −1 3( ) + λ3 pbl + pbl −1 3( )

∂SV
∂pbl

= − log pbl −1+ λ1 + λ2 + λ3 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 + λ3 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 + λ2 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 = 0
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pbl = pbl exp λ3( )
pbl = pbl exp λ2( )
pbl = pbl exp λ2 + λ3( )

⎧

⎨
⎪

⎩
⎪

⇒ pbl pbl = pbl pbl

pbl + pbl + pbl + pbl = 1
pbl + pbl = 1 3
pbl + pbl = 1 3
pbl pbl = pbl pbl

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒

pbl = pbl = 1 3− pbl
pbl = 1 3+ pbl

1 3− pbl( )2 = pbl 3+ pbl
2

1 9 − 2pbl 3+ pbl
2 = pbl 3+ pbl

2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒ pbl =
1
9
; pbl = pbl =

2
9
; pbl =

4
9

this solution coincides 
with the independence 
hypothesis 
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∂S
∂θm, j,k,l

= − logθm, j,k,l +1( )+ λ0 + λm = 0

θ1, j,k,l = exp λ0 + λ1 −1( )
θ2, j,k,l = exp λ0 + λ2 −1( )

thus we obtain again a multiplicative structure.  
 
Whatever the choice of marginals, probabilities factorize, and the 
MaxEnt solution corresponds to a set of independent probabilities.  
 
Thus independence is built-in the MaxEnt method, which is 
a sort of “generalized independence method”. 

In the extended kangaroo problem we find 
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The starting point of AUTOCLASS is a mixture model 

dP x( ) = pkdPk x θ( )
k
∑ ; pk

k
∑ = 1
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dP x( ) = pkdPk x θ( )
k
∑

there is a variable number of classes 

the probabilities of belonging to a 
given class are drawn from a 
multinomial distribution 

the component distributions are 
taken from a set of predefined 
distributions 

the parameters define the 
shape of the component 
distribution Edoardo Milotti - Bayesian Methods - MiBi June 2014 60 



AUTOCLASS chooses a distribution and a parameter set for 
each class. Every data set determines a likelihood, and 
therefore a posterior distribution. 
 
The class is selected by maximizing the posterior probability 
(MAP class estimate). 
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