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A few more applications of Bayesian methods, on the verge
of epistemology.

« Bayesian blocks

« Solar flare statistics and prediction

« Bayes factors and Bell's inequalities

» Bayes classifiers

* The nature of learning in Bayesian and MaxEnt methods
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Bayesian blocks (Scargle 1998)

Detection of bursts from piecewise change of (Poisson) event rate
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When the (digital) system clock runs fast enough, for a given
event rate, there is at most one event per clock tick.

When the event rate is \ (events/tick) ()\ < 1) and the
time interval is N ticks, we find on average

n = AN
events in the time interval. The average number of events in
a clock tick is — obviously — )\ again, and this is also the

probability of finding an event in the time interval.

Therefore the probability model is binomial, with probability

p=A
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This means that the likelihood of finding n events in the total
time interval is the usual binomial expression

(2 )ora=p = () -

n T

Notice that here the rate is given in clock ticks. If we use
standard time units, we have (with clock tick duration ot )

(N> (A6H)™ (1 — Aot)V ™

n
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N, ticks N, ticks

A - |1||||||||||I|||||||| 1R

my,

When the rate is not constant, we can set a breakpoint at tick
m,, and the total likelihood becomes

(e R R

The calculation then proceeds either with the full likelihood or
with a marginalized likelihood
(see, e.g., J. Scargle, ApJd 504 (1998) 405 for many more details)
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Solar flares

« Solar flares are magnetic explosions in the ionized
outer atmosphere of the Sun, the solar corona.

» Flares occur in and around sunspots, where intense
magnetic fields penetrate the visible surface of the
Sun.

» During a flare some of the energy stored in the
magnetic field is released and appears in
accelerated particles, radiation, heating, and bulk
motion.

» Large flares strongly influence our local “space
weather.” They can lead to enhanced populations of
energetic particles in the Earth’s magnetosphere and
these particles can damage satellite electronics, and
pose radiation risks to astronauts and to passengers
on polar aircraft flights.

» It is of great practical importance to construct
predictive models of the occurrence of large
solar flares.
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Solar Flare Classification

NOAA's solar flare rating system is based on five lettered
classes, each of which is 10 times more powerful than the
one before. Within each class are numbered divisions, so a
flare could be called "X5 class,” for example.

Greater than
0.0001 watts per
square meter

Graph shows X-ray flux near Earth,
measured in watts per square meter

Less than
0.0000001 watts
per square meter

Graphics from space.com

A



The sun erupted with a massive solar at 0027 April 25 GMT, and ranked as an X1.3-class solar
storm, one of the strongest types of flares the sun can experience, according to a report from the

U.S. Space Weather Prediction Center. NASA's Solar Dynamics Observatory captured video of
the intense solar flare in several different wavelengths.
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Flare statistics
(from M. S. Wheatland: “A Bayesian approach to solar flare prediction”, ApJ 609

(2004) 1134)

Flare frequency-size distribution (N number of events per unit time)

N(S) = AS™

where the power-law index is v ~ 1.0 — 2
Moreover the statistics in time is Poissonian.

The total event rate for events larger than S, is

M= [ N(S)S=A(y—1)"ts; "
S1
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From

N(S) = AS™
and
M= [ N(S)dS=Ar—-1)"ts; 7!
S1
we find
N(S)=M(y—1)S77'87
and likewise

v—1
Sl if S, is the size of small events,
>\2 — )\1 this is an estimate of the rate of

SQ events larger than S,
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Using the Poisson model, the probability of finding at least
one event larger than S, in the time interval AT is

e =1—exp(—AAT)

Thus we can estimate this useful probability from the rate of
small events and from the spectral index (that we assume
known).

In the work of Wheatland, the rate of small events is
estimated using the Bayesian blocks method.
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(b)

Fig. 1.4. Schematic illustration of Bayesian blocks determination of current rate. Panel
(a): data, comnsisting of point events in time line during an observation interval T'. The
prediction interval Tp is also shown. Panel (b): Bayesian blocks decomposition of the
rate A, and identification of the most recent interval T’ when the rate is approximately
constant.
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Bayes factors and Bell's theorem
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Obituary of J. S. Bell by
Shimony, Telegdi and
Veltman in Phys. Today

John S. Bell

John Stewart Bell died suddenly of
cerebral hemorrhage on 1 October
1990, at the age of 62. The loss to
physics, and to natural philosophy in
general, is irreparable, for Bell not
only made the most profound contri-
bution of his generation to the founda-
tions of quantum mechanics but had
continued to explore new ideas on the
subject.
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In a sense John Bell had two
careers. He contributed directly to
the main mission of CERN by his
research in nuclear physics, field
theory, elementary-particle theory
and accelerator design. But he also
studied the foundations of quantum
mechanics with great intensity, even
though he jokingly referred to this
work as his “hobby.” His delightful
exposition “Bertlman’s Socks and the
Nature of Reality” resulted from his
attempt to explain his hobby to one of
his collaborators in field theory. That
article, together with other related
papers by Bell, was reprinted in
Speakable and Unspeakable in Quan-
tum Mechanics (Cambridge Universi-
ty Press, 1987).
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Edoardo Milotti -

As an undergraduate Bell was al-
ready dissatisfied with textbook pre-
sentations of quantum mechanics,
and was particularly disturbed by
Niels Bohr’s thesis that a measuring
apparatus must be described classi-
cally and not treated quantum me-
chanically. Bell felt that there should
be a unified description of the phys-
ical world applying to both microscop-
ic and macroscopic systems. While at
Birmingham, Bell was intrigued by
two papers written by David Bohm in
1952, proposing a hidden-variables
interpretation of quantum mechan-
ics, which seemed a promising way to
achieve the desired unification. Ac-
cording to Bohm’s construction, some-
thing was amiss in John von Neu-
mann’s oft-cited demonstration of the
impossibility of a hidden-variables
interpretation. Bell seriously turned
his attention to this matter after
attending Josef Jauch’s seminar in
1963 at the University of Geneva on
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the foundations of quantum mechan-
ics. In his paper entitled “On the
Problem of Hidden Variables in
Quantum Mechanics,” Bell proved
the impossibility of simple hidden-
variables theories, without relying on
a dubious premise that von Neumann
had used. In the same paper Bell also
pointed to a more complex family of
hidden-variables theories (later called
“contextual”) that are not excluded
by his own theorem.

The fact that Bohm’s construction
required a kind of “action at a dis-
tance” between spatially separated
partlcles led Bell to pose a penetrat-
ing and fruitful question: Is it possi-
ble for a hidden-variables theory to
recover all the statistical predictions
of quantum mechanics without postu-
lating action at a distance? His nega-
tive answer to this question was
published in 1964 in a paper called
“On the Einstein-Podolsky-Rosen
Paradox.” The remarkable result
contained therein is now commonly
called Bell’s theorem.
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MAY 15, 1935

PHYSICAL REVIEW

Einstein’s dissatisfaction with qguantum mechanics

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINsTEIN, B. PopoLsky AND N. RoOSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1933)

In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in
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quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.



« locality: information cannot propagate faster than light
« realism: physical objects possess properties independently of
measurements

Could quantum mechanics be just the phenomenology of a deeper
classical theory with variables that we are unable to observe, i.e., with
hidden variables?

If so, the hidden variables theory would satisfy both locality and
realism.

John Bell displayed inequalities that are valid for any local,
realistic theory, but are violated by quantum mechanics.
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A simplified proof of Bell's theorem
(L. Maccone, arXiv:1212.5214 [quant-ph])

Take three objects with two-valued properties (values 0 and 1) A, B and C and let

P..me(A,B) = prob. that property A of the first object has the same value as
property B of the second object;

P.«(A,B) = prob. that property A of the first object differs from property B
of the second object;

red area: Pame(A,B)
yellow area: Peame(A,C)
orange area: probability that A=B=C
blue area: Peame(B,C)

Q Psame(AaB)+Psame<A70)+Psame<Bac) 2 1
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The inequality is violated by quantum mechanics.

Indeed, consider two two-level systems in the entangled state

’(I)+> _ ‘OO>\_/|_§‘11>

and the properties A, B and C obtained by projecting the state on

B 1)
A:{ ao) = |0)
ar) = |1) n
5. { lbo)=10)+ )
| [b1) = £210) — 3]1)
( 1 V3 1-10)
c.{ =20 =% b
\ Cl>:§|0>+%1>
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It is also easy to verify that

W ‘CLOCL()> -+ ‘CL16L1> _ ‘bobo> -+ ‘blb1> B ‘C()Co> + ‘6161>

27) N N A

This means that when we carry out a measurement of any property A we
find that the subsystems always share the same property (whichever it

IS):

Psame(AaA) — Psame(BaB) — Psame(ca C) =1
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Now notice that

_ V/3bg) — |b1)
a1) = >

ap)

A ‘b0> + \/§‘b1>
2

and therefore

_ lao)(lbo) + v/3[b1)) + |a1) (V3[bo) — [b1))

) 22

so that

1
aobo|®T) = (a1b <I>+:—»PsameA,B:14
<OO’><11‘>2\@ (A,B) =1/
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The same can be done for the other properties, and one finds

Psame(A7 B) — Psame(Aa C) — Psa,me(Bac) . 1/4

and finally
Psame(Aa B) _I_ Psame(Aa C) _|_ Psame(B7 C) — 3/4 < 1

therefore QM violates the inequality and it cannot be both realistic
and local.
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Many other versions of this result have been devised after Bell ...

For instance, Clauser, Horne, Shimony, and Holt (CHSH), found that when
two observers have a choice of several yes-no tests A, (observer a) and B,
(observer b), then local realism implies

P(A1Bs3) + P(BsA3z) + -+ + p(Agk_1Bor) > p(A1Bag)

(Braunstein and Caves version of CHSH inequality, 2k-1 terms on the |Ihs)

Now take the measurements of
the spins of two particles along
the directions shown here as the
measured “properties”.

Consecutive directions are
separated by the angle

0 =m/2k
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Quantum mechanics predicts that each probability of the |hs is
qg=(1—-cost)/2
while the probability on the rhs of the inequality is just

(1—-q)

and this violates the inequality.

The closest a local realistic theory could get to quantum mechanics is by
leading to an equality. If we further assume rotational symmetry, we can
state that all probabilities have to be the same, and therefore

2k—1)r=1—-r = r=1/2k=0/x
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Now we have two predictions

QM: probability g that two observers obtain the same result
LR: probability r that two observers obtain the same result

we compare the hypotheses using equal prior probabilities and the
Bayes factor.

Since the underlying model is binomial (we find the same result or not in
the two measurements), the likelihoods have the same functional form
with different probabilities, i.e., the Bayes factor is

nl — N—n n /1 — N—n
Bayes factor = o (1 ) = (g) ( q>
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Assuming QM to be correct, we find that the number of positive tests is,
on average

n = qN
and therefore

- - N

1—q
q (] —
Bayes factor = (g) < q)
r 1 —1r

For example, if we wish a Bayes factor 104, and k=2, we must carry out
at least N = 287 trials.

(further details in A. Peres, arXiv:quant-ph/9905084)
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Bayesian classification

this likelihood is defined by

data X, classes C training data
( T/ )
Pl X|C

P(C|X)= P(x) P(C)

the prior is also defined by
training data

we can use the prior learning to assign a class to new data

Pl X|C
Ck:arggnax I(D(‘X)k)P(Ck)zarggnaXP(X\Ck)P(Ck)
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Consider a vector of N attributes given as Boolean variables
X = {x;} and classify the data vectors with a single Boolean

variable.
The learning procedure must yield:

it is easy to obtain it as an empirical distribution from

p(y) an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N*1
different values, and we must estimate 2(2N-1)

P(X‘ )7) parameters ... for instance, with N = 30 there are more
than 2 billion parameters!
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How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,’s:
naive Bayesian learning

for instance, with just two attributes

P(x,.3,]y) = P(x]x%,.3) P(x,|y) = P(x]y) P(x,] y)

conditional independence assumption

with more than 2 attributes

P(X\y)zﬁp(xk\ﬁ
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Therefore:

y = arg max

G L

Edoardo Milotti - Bayesian Methods - MiBi June 2014
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More general discrete inputs

If any of the N x variables has J different values, e if there are
K classes, then we must estimate in all NK(J-1) free
parameters with the Naive Bayes Classifier (this includes
normalization) (compare this with the K(JN-1) parameters

needed by a complete classifier)
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Continuous inputs and discrete classes — the Gaussian case

2
1 X, = i,
P('xn yk): 2%62 eXp _( 262kk)
nk | n .

here we must estimate 2NK parameters + the shape of the

distribution P(y) (this adds up to another K-1 parameters)
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Gaussian special case with class-independent variance and
Boolean classification (two classes only):

P(X|y = O)P(y = O)
X|y = O)P(y = O)+P(X|y = I)P(y = 1)

P(y=0|X): P(

1 ('xn o aLLnO )2
P(x|y=0)= -
(il =0) = ey Lol
1 _ ('xn _ ILLnl )2 —
P(x,|y=1)= -
('xn y ) 271_62 eXp i 262 ]
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logistic shape

N
W, + anxnj

ex
P(y=1x)=1-P(y=0|x)= =
1+ exp(wo + anxnj
n=1
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Finally an input vector belongs to class y = 0 if

P(y=0|x)
P(y=1[x)

1
N
1+ exp(wO + Zannj

n=1

N
exp (WO + anxn j

> 1

P(y: O|X):

N
» exp(wo + Ewnxn] <1
n=1

n=1

N
1+ exp(wo + anxn)

P(y: 1|X):

n=1

N
» wo+ Y wx <0
n=1
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Naive Bayesian learning is an example of supervised
learning, however there are also unsupervised Bayesian

learning methods, such as the AUTOCLASS program and

similar such projects.
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On the nature of learning in Bayesian and MaxEnt Inference
(from Cheeseman & Stutz, 2004)

here we consider these three problems:

1. find the probabilities 0, of getting face i in a throw of a possibly biased
die, given the frequencies n; of each face in a total of N throws;

6
2. find the probabilities when only the mean M = Zini,
i=1

and the total number of throws N, are given,;

3. analyze the kangaroo problem with a more complex contingency
table
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1. Find the probabilities 6, of getting face i in a throw of a
possibly biased die, given the frequencies n; of each face in a

total of N throws;

likelihood is given by the multinomial probability

0,N,I)= N f[el.”f

L({nl,...,n6}
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If, initially, we take a uniform prior, the posterior distribution
from Bayes’ theorem is

ﬁegl(s[iej_lj

i=1 j=1

Hinl5(i 0, - 1}191.

p(9|{nl,...,né},N,I)=1 6=

'(’: i=1

_ 61“(N+6) ﬁ@m[iﬁ’j—l)
[Ir(n,+1) = =

J=1

J=1

and we obtain a Dirichlet distribution (conjugate posterior of
the multinomial distribution, just as the Beta distribution is the
conjugate posterior of the binomial distribution).

Edoardo Milotti - Bayesian Methods - MiBi June 2014 42



Mathematical note on the normalization of the Dirichlet distribution:

['(m)T'(n) relationship between Beta and

1
. m=1(1 n-1 _
B(m’”)—it (1-2)" di= I'(m+n) Gamma function

1-6,

j 6,"0::0:5(6,+6,+6,—1)d6,d6,do, = | 6/ de, j p"[(1-6,)-p] dp
0<6;<1 0<6;<1 0

1
01 do,(1-6,)""" [x" (1-x)" dx
0<6.<1 0
1

= B(n,+Ln,+1) 6/ (1-6,

0

_ F(n2 +1)1"(n3 +1).1“(n1 +1)l"(n2 +n, +2) B F(n2 +1)1“(n3 +1)1"(n1 +1)

do, = B(n2 +1,n, +1)B(n1 +1,n, +n, +2)

T(n,+n,+2)  T(m+n,+n,+3)  T(n+n,+n,+3)
M
H n, +1
<< 1:[9” d05(29 _1] 1(N+M) normalization factor
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thus, if we assume some prior information, we can start with
a Dirichlet prior

p(

w,I)= 6F(W Hew 15(29 —1) with W:iwj
[Ir(s) "~

and obtain the posterior distribution

T(N+W) ﬁgmw({z )
i=1

I
Z

3

=
E@

o 15(29 —1]
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The inferred distribution can be used to compute averages,
and also for prediction.

Indeed, the probability of observing r; occurrences of the i-th
face in the future is

P(r

G,N,R,I)p(e

n.N.Rw.I)=[P(r n,N,w,I)d6 =
0

6
- I1¢ 6F(N 1) f[e,.”i+wi15[29.—1]de
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so that we find, e.g.,

6
Hr(nj+w.+51-)
F(N+W) L - .
P(r=1ln,N,R=1w.I)=— A 'HF(N+W+1)
HF(”1+WJ)
ph
_nt+w
CN+W

Edoardo Milotti - Bayesian Methods - MiBi June 2014
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6
2. Find the probabilities when only the total M = Zini, and

the total of throws N, are given ]

Let <n> vy e the set of vectors that satisfy the conditions,

then the likelihood is

o.N.7)= Y P(ajo.n.)= Y M e

(), (n),, H nj y i=1

P(M

J=1

Edoardo Milotti - Bayesian Methods - MiBi June 2014
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now notice that

M|0,N,I1)P(O|N,w.I)
P(M|N.I)

>wwW0

P(6|M,N,w,I)= il

2P
ZIP

NMe

B\N w I)de

Y P(n|6,N,I)P(6|N,w.I)= > 6N ’ 6F(W) ﬁgi"ﬁwi—l
. ST Ir(e) ™
j=1

6
HF(nl.+wl.)
> [P(n]o,N.1)P(6N.w.1)d8 = Z vt W)
: - C(N+W)
)y 0 NMHnj!HF(wj)
j=l j=l

from these formulas we can calculate all marginals and any
expectation, although it is quite difficult to manipulate
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outcome 2

p(1,2,3) \

FIGURE 2. The posterior density for the 3-faces die example with a mean spot count of 2.5, N = 60,

and prior weights of (1.1,1). Because of the normalization constraint, the third variable (not shown) is
givenby 63 =1—0; —0,.

outcome 1

The figure, from C&S, shows that the probability mass is concentrated close to the
subspace defined by constraints, and becomes increasingly so as N increases.

Bayesian inference tells us nothing on the distribution inside the subspace.The only
information inside the subspace comes from priors.
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3. The kangaroo problem with an extended contingency table
attributes (number of values):

* handedness (2)
* beer-drinking (2)
 state-of-origin (7)
e color (3)

4-dimensional contingency table
with 2x2x7x3 = 84 entries

The size of the contingency table increases exponentially
as the number of attributes grows

® Fdoardo Milotti - Bayesian Methods - MiBi June 2014 o5]



If we are given the number of occurrencies n;; ,, for each
position in the contingency table, we fall back to the first
example of dice throw

with the likelihood

N1
( ‘GNI) H” He,ljjkkll

NRARNN R

i,j.k,l
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The n;;, /s are sufficient statistics and we can estimate all the

I,

corresponding probabilities as in the first example.

However if we are only given a set of marginals, i.e., of constraints, we are
in the same situation as example 2, the marginals define a subspace of the
whole parameter space, and in this subspace the distribution is eventually

determined by the prior information only.

With enough attributes, the contingency table becomes VERY large, and it
becomes impossible to collect sufficient statistics, we are mostly limited to
marginals.

The situation is very different if we assume independence: then the
marginals are sufficient statistics. E.qg., if probabilities factorize, then
kangaroos have only (2+2+7+3)-(1+1+1+1) = 10 independent values (using
normalization) instead of 84.
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Maximum entropy approach to the kangaroo problem, given
marginals

DM =m; 2 m=N

Jok.l i
n
—1- —_ l
z ei,j,k,l — 1’ zei,j,k,l N
i,j k.l k.l

Example with two marginals: we maximize the constrained
entropy

n n
B — 2 gi,j,k,l log Hi,j,k,l + /10 [ Z Hi,j,k,l - 1} + /11 [Zel,j,k,l - Nl] + /12 (292,j,k,l i Fz

i,j,k,l i,j.k,l Jok,l ik,
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In the original kangaroo problem

1 1 1 1
Sy = [sz log—+ Ps log—_+ P, log—+ Dir log—}

Pui Py Py Prr

+4, (pbl TPy YDt Pyr — 1) + 4, (pbl TPy~ 1/3) + 4, (pbl TPy~ 1/3)

95 _ _logp, —1+ 4+ A, + A, =0
apy,

5y =—logp, -1+ 4 +1,=0

apEz

05y =—logp, —1+4 +4,=0
apbl_

Sy =—logp, —1+4,=0

op;
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-

Py = Py exp(4,)
\ Py = Pi7 exp(lz) = Dy Py7 = PuPir
\Por = Ppr eXP(;Lz T 2“3)

Pyt Pyt Dyt Dy =1 Py = Py =1/3—py
pbl+pbl_:1/3 pb_l_l/3+pbl
9 = 3 ) ]
pbl+p131:1/3 (1/3_pbl) :pbl/3+pbl
PPyt = PuiPpr \1/9_2sz/3+191§1 :pbl/3+plfl
1 2 4 this solution coincides
— = — =0 = _— = — with the independence
Pu 9 Po P 9 P 9 hypothesis
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In the extended kangaroo problem we find

aS
00

m,j,k,l

O ks = exp(/l0 +A, - 1)
6, ., =exp(4,+4,-1)

= —(logH

m,j,k,l

+1)+ 2, + A4, =0

thus we obtain again a multiplicative structure.

Whatever the choice of marginals, probabilities factorize, and the
MaxEnt solution corresponds to a set of independent probabilities.

Thus independence is built-in the MaxEnt method, which is
a sort of “generalized independence method”.
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NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA

+ NASA Home Introduction

+ Ames Home In previous years, the Bayes group at Ames Research Center developed the basic theory and associated

+ Intelligent Systems algorithms for various kinds of general data analysis technigues. Our earliest efforts were applied to the
Division problem of automatic classification of data. We implemented this theory in the Autoclass series of programs.

AutoClass takes a database of cases described by a combination of real and discrete valued attributes, and

automatically finds the natural classes in that data. It does not need to be told how many classes are present

AUtOCl ass or what they look like -- it extracts this information from the data itself. The classes are described
probabilistically, so that an object can have partial membership in the different classes, and the class
definitions can overlap. AutoClass generates reports on the classes it has found at the end of its search.

+ Home AutoClass has been used and tested on many data sets, both within NASA and by industry, academia and
other agencies. These applications typically find surprising classifications that show patterns in the data

+ AutoClass C unknown to the user. Examples include: discovery of new classes of infra-red stars in the IRAS Low
Resolution Spectral catalogue (see figure below; and see here and here for more information), new classes of

+ References airports in a database of all USA airports, discovery of classes of proteins, introns and other patterns in

DNA/protein seguence data, and others.
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The starting point of AUTOCLASS is a mixture model

dP(x)= 2 pdP (20} X p, =1
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FIGURE 1. Some normal mixture densities for K = 2 (first row), K =5 (second
row), K =25 (third row) and K = 50 (last row).
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dP(x) = ;pkdfk (x\ 6)

there is a variable number of classes

the probabilities of belonging to a
given class are drawn from a
multinomial distribution

the component distributions are
taken from a set of predefined
distributions

the parameters define the
shape of the component
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AUTOCLASS chooses a distribution and a parameter set for
each class. Every data set determines a likelihood, and
therefore a posterior distribution.

The class is selected by maximizing the posterior probability
(MAP class estimate).

Edoardo Milotti - Bayesian Methods - MiBi June 2014 61



A

-
<
[}
o
2
=
«©
-

UTOCLASS discoveries

Intensity

14 16
Wavelength (um)

1
14 16
Waveiength (um)

o
=)

L | 1 | 1 | 1

. e :
C e .r..a(_’.sf‘,':,‘-‘,\.f-.”..,31‘.

| i | | 1 1 |

135 90 45 0 315 270 225 180

Longitude (°)

180

In 1983 and 1984, the Infrared Astronomical Satellite (iRAS)
detected 5,425 stellar objects and measured their infrared
spectra. A program called AUTOCLASS used Bayesian inference
methods to discover the classes present in the data and
determine the most probable class of each object. It discovered
some classes that were significantly different from those
previously known to astronomers. One such discovery is
illustrated above. Previous analysis had identified a set of 297
objects with strong silicate spectra. AUTOCLASS partitioned this set

135 90 45 0 315 270 225 180

Longitude (°)

180

into two parts (top). The class on the left (171 objects) has a peak
at 9.7 microns and the class on the right (126 objects) a peak at
10.0 microns. When the objects are plotted on a star map by their
celestial coordinates (bottom), the right set shows a marked
tendency to cluster around the galactic plane, confirming that the
classification represents real differences between the classes of
objects. AUTOCLASS did not use the celestial coordinates in its
estimates of classes. Astronomers are studying the phenomenon
further to determine the cause.
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\ WX _ NV Vel ideaiala 7~V _ 7Y,

Welcome to AutoClass@IJM
the webserver for AutoClass Bayesian clustering system.

Developped by F. Achcarl2and D. MestivierL in collaboration with J.M. Camadro®
We kindly ask users to cite this paper when publishing results derived of the use of AutoClass@IJM.
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