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Frequency or Reasonable Expectation as 
the Primary Concept 

T HE concept of probability has from the 
beginning of the theory involved two ideas: 

the idea of frequency in an ensemble and the 
idea of reasonable expectation. The choice of 
one or the other as the primary meaning of 
probability has distinguished the two main 
schools of thought in the theory.1 

If a box contains two white balls and one black 
ball, indistinguishable except by color, both 
schools agree that the probability that a blind
folded man will draw a white ball on a single 
trial is i and the probability that he will draw a 
black ball is j. On the frequency theory, the 
primary meaning of these probabilities is in 
terms of the ensemble. The ensemble may be 
an indefinitely large number of such boxes 
having the same contents, or it may be an in
definitely large number of drawings from the 
same box, the ball drawn being replaced each 
time. The significant point is that the initial 
circumstances are assumed to be capable of 
indefinite repetition, these repetitions consti
tuting the ensemble. That the probability of a 
white ball is i means simply that the number of 

1 If minor differences are counted, the number of schools 
seems to be somewhere between two and the number of 
authors, and probably nearer the latter number. But the 
clearest line of divisiOn IS the one mentiOned 

1 

trials giving a white ball as result is i the number 
of trials in the whoie ensemble. According to the 
frequency theory, this is not a prediction of the 
theory of probability but the definition of 
the probability. Probability in that theory is a 
characteristic of the ensemble and, without the 
ensemble, cannot be said to exist. 

Again, according to both schools, the proba
bility of a white ball in two successive drawings, 
when the first ball drawn is not replaced, is 
i X t, or t. According to the frequency theory, 
this implies that two balls are drawn successively 
from each of an ensemble of boxes containing 
originally two white balls and one black ball. 
On i of the trials a white ball is drawn first and 
one white and one black ball are left in the box. 
Then, in t of the trials which give this result, 
a white ball is drawn next, so that t of the whole 
number of trials give white balls on both 
drawings. These examples illustrate the general 
fact that, when probability is identified with 
frequency in an ensemble, the probabilities are 
calculated by arithmetic in particular examples 
and, in more general cases, the rules of proba
bility are found by ordinary algebra.2 

2 An exposition of the frequency theory, With some 
comment on other theories, has been given by G. Berg
mann, Am. J Physzcs 9, 263 (1941) Readers with a Wider 
knowledge of phllosophy than mine will be better able to 
compare his views with those of this paper. 
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Probability is recognized also as proVIding a 
measure of the reasonable expectation of an 
event in a single trial. That the probability of 
drawing a white ball is i and of drawing a black 
ball is t means that a white ball is a more likely 
result of a trial than a black ball, and the 
numbers 1 and t serve to compare the likelihoods 
of the two results. According to the second main 
school of probability, this measure of reasonable 
expectation, rather than the frequency in an 
ensemble, is the primary meaning of probability. 

If it could be shown that every measure of 
reasonable expectation is also a frequency in 
some ensemble and that every frequency in an 
ensemble measures a reasonable expectation, 
then the choke of one or the other as the primary 
meaning of probability would not be very im
portant. I shall not attempt to discuss whether 
there are frequencies in an ensemble that are not 
measures of reasonable expectation. It is enough 
for my present purpose to .show that the two 
interpretations are not always identical. For this 
it will suffice to point out that there are proba
bilities in the sense of reasonable expectations 
for which no ensemble exists and for which, if 
one is conceived, it is dearly no more than a 
convenient mental artifice. Thus, when the 
probability is calculated that more than one 
planetary system exists in the universe, it is 
barely tenable even as an artifice that this refers 
to the number of universes having more than one 
planetary system among an indefinitely large 
number of universes, all resembling in some way 
the universe, which by definition is all-inclusive 

Moreover, there is so gradual a transition 
from the cases in which there is a discoverable 
ensemble and those in which there is none that 
a theory which requires a sharp distinction be
tween them offers serious difficulties. A few 
examples will illustrate this point. Let us con
sider the probability that the number of heads 
thrown in a certain number of tosses of an 
unbiased coin shall lie within certain limits, and 
let us compare with this the probability, often 
considered, that the true value of a physical 
constant lies within certain limits. The two 
probabilities have something in common, but 
there is a difference between them. The differ
ence lies in the causes that oblige us to deal with 
probabilities rather than certainties m discussing 

the score in tossing a com and the value of a 
physical constant In discussing the score in a 
given number of tosses of a coin, we have to use 
probabilities because the score will vary from 
one trial to another. The true value of a physical 
constant, on the other hand, is unique. We have 
to speak of the probability that it lies within 
certain limits only because our knowledge is 
incomplete. 

Sometimes, it is true, the probability that the 
value of a physical constant iies within certain 
limits is equivalent to another probability, that 
the error in the average of a number of measure
ments lies within these limits. If there are no 
systematic sources of error, we may imagine an 
ensemble of measurements and treat the meas
urements made as a random sample of this 
ensemble. The probability in question may then 
be found in a manner similar to that used m 
dealing with the coin. For example, the proba
bility of certain limits for the true value of the 
Joule equivalent may perhaps be considered in 
this way. 

The case is somewhat different with the re
ciprocal fine-structure constant that appears in 
quantum mechanics. For here, in addition to the 
values derived from measurements, there is evi
dence of another sort in the argument adduced 
by Eddington 3 that this constant may be ex
pected to be an integer, having the value 137 
If it should be estimated from the measurements 
alone that there is an equal probability that the 
constant lies inside or outside of certain limits 
which include 137, then Eddington's argument 
will increase the probability that it lies inside 
these limits and correspondingly decrease the 
probability that it lies outside. 

As a final example, we may consider the case 
of a purely mathematical constant, of which the 
existence has been proved but the value deter
mined only within certain limits. A problem of 
the theory of numbers, discussed by Hardy4 

among others, provides a good example. It 
concerns the equivalence of an integer to a sum 

3 A. S. Eddington, Relatwtty theory of protons and electrons 
(Macmillan, New York, and Umv. Press, Cambndge, 
1936) 

4 G H. Hardy, Some famous problems of the theory of 
numbers and m parttcular Warmg's problem (Clarendon 
Press, Oxford, 1920) 
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of cubes of smaller integers. It has been proved 
that any integer is given by the sum of not 
more than 9 cubes, and that any integer beyond 
a certain one is given by the sum of 8 or fewer. 
It is expected that large enough integers may 
all be expressed by the sum of some still smaller 
number of cubes, and the problem is to find the 
minimum number required for all integers above 
a certain value. It has been proved that, if this 
value is taken high enough, the number in ques
tion is 4, 5, 6, 7 or 8. This is as far as rigorous 
proof has gone, but the evidence of computation 
makes some of these numbers less likely than 
others. In very large samples-all of the first 
40,000 integers and the 2000 ending at one 
million-the integers requiring 8 cubes are found 
to drop out early in the progress to higher 
integers and those requiring 7 disappear some
what farther on, while those requiring 6 occur. 
more and more rarely until there are only two 
among the 2000 integers next below one million. 
Hardy concludes that the minimum number for 
large enough integers is almost certainly neither 
8 nor 7 and probably not 6. There remain 5 and 4 
as the likely numbers, and he seems to favor 4 
as the more probable. 

Let us consider now these four examples. the 
probability of certain limits for (i) the score in 
a number of throws of a coin, (ii) the value of 
the Joule equivalent, (iii) the value of the 
reciprocal fine-structure constant and (iv) the 
value of the least number of cubes for the ex
pression of large integers. It will most likely be 
granted that other examples can be interpolated 
among these, so that the differences will be very 
slight between each example and those next 
before and after. We shall have then a graded 
series of examples of probability. At one end of 
the series the interpretation of probability in 
terms of frequency will be valid, at the other 
end it will be impossible. For it is certainly im
possible to discuss the statistical spread of the 
determinations of a number which has never in 
fact been determined and of which the determi
nation, when it is made, will give a single and 
logically inevitable value. 

Nevertheless, it must be admitted that there 
is a kind of reasoning common to all these 
examples. The gambler in the first example, the 
physicist in the second and third, and the mathe-

matician in the fourth are all using similar 
processes of inference. 

In this connection it is worth while to observe 
how much of the theory of probability deals 
with relation~ between probabilities: between the 
probability that an event will not occur and 
the probability that it will occur, between the 
probability of both of two events and their 
separate probabilities, between these probabili
ties and the probability that at least one of the 
two events will occur. In the case of probabilities 
that can be identified with frequencies in an 
ensemble, these relations are readily obtained by 
ordinary algebra, as was mentioned earlier. But 
the same or at least similar relations are involved 
in inference concerned with reasonable expecta
tion even when no ensemble is discoverable. 
Thus, under any definition of probability, or 
even without an attempt to define it precisely, 
there will still be agreement that the less likely 
an event is to occur the more likely it is not to 
occur. The occurrence of both of two events will 
not be more likely and will generally be less 
likely than the occurrence of the less likely of 
the two. But the occurrence of at least one of 
the events is not less likely and is generally more 
likely than the occurrence of either. 

For example, if it were a question of the 
credibility of a certain hypothesis for the origin 
of terrestrial hfe or of human language, one 
would hold it as a point against the hypothesis 
that it postulated the occurrence of two events, 
of which neither was considered very probable, 
but the hypothesis would gain in credibility if 
it could be justified by postulating merely that 
one or the other of these events had occurred. 
Generally speaking, a simple hypothesis is pre
ferred to a complex one. If this preference is 
founded on a reasonable belief rather than being 
a mere convention, its justification would seem 
to be that two or more postulates are less likely 
to be true than a single one of about the same 
likelihood. 

This difficulty of the frequency theory of 
probability may now be summarized. There is a 
field of probable inference which lies outside the 
range of that theory. The derivation of the rules 
of probability by ordinary algebra from the 
characteristics of the ensemble cannot justify 
the use of these rules in this outside field. 
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Nevertheless, the use of these rules in this field 
is universal and appears to be a fundamental 
part of our reasoning. Thus the frequency theory 
is inadequate in the sense that it fails to justify 
what is conceived to be a legitimate use of its 
own rules. 

From a purely rational point of view, the 
extent of this field of inference outside the range 
of the frequency theory is irrelevant to the point 
in question. Even if the valid instances of 
reasoning in this field were rare and of little 
consequence, it would still be logically necessary 
to maintain the inadequacy of the frequency 
theory. As a practical matter, however, if these 
instances were few or trivial, we should probably 
be content to ignore them. But actually, as I 
have tried to suggest by the examples given, it is 
rather the cases in which a strictly definable 
ensemble exists that are exceptional. This is not 
to say that they are numerically few. There are 
many of them, and they have a particular 
interest, but they still do not appear to comprise 
in our ordinary practice the greater part of the 
uses of probable inference Nor are the other uses 
by any means trivial. Kemble, 5 in an interesting 
paper which covers, among other things, some 
of the ground thus far traversed here, has made 
the point that the frequency definition of proba
bility does not suffice to establish the connec
tion between statistical mechanics and thermo
dynamics, which is certainly crucial in physical 
theory. 

A very original and thoroughgoing develop
ment of the theory of probability, which does 
not depend on tlie concept of frequency in an 
ensemble, has been -given by Keynes. 6 In his 
view, the theory of probability is an extended 
logic, the logic of probable inference. Probability 
is a relation between a hypothesis and a con
clusion, corresponding to th.e degree of rational 
belief and limited by the extreme relations of 
certainty and impossibility. Classical deductive 
logic, which deals with these limiting relations 
only, is a special case in this more general 
development. Hence it follows in general that 
the theory of probability cannot be based en
tirely on concepts of classical logic. In particular, 

5 E C Kemble, Am J. Phys~cs 10, 6 (1942). 
6 J. M Keynes, A treatzse on probabzhty (Macmillan, 

London, 1929). 

the relation of probability cannot be defined in 
terms of certainty, since certainty itself is a 
special case of probability. The frequency defini
tion of probability is therefore invalid, since it 
depends on the relations of certainty involved in 
the knowledge of numbers of instances. Proba
bility is taken as a primary concept, like distance 
or time in mechanics, not reducible to any more 
elementary terms 

Merely to describe Keynes' position, as I have 
done, without giving the reasoning by which he 
is led to it, does his work very poor justice. The 
reasoning is, to me at least, very convincing, 
and is the originaJ source of a large part of the 
opinions given here, though the arguments I have 
used are not the same as his. Nevertheless, it 
must be conceded that his work does not bring 
us very far in the solution of the problem men
tioned earlier, that of justifying the few basic 
rules of probable inference necessary for the 
development of th~ theory. These rules, in 
Keynes' theory, are simply taken as axiomatic. 
Now some primary assumptions will have to be 
made by anyone who accepts, as I am strongly 
inclined to do, his general point of view as to 
the nature of probability, because some rational 
starting point is needed to replace the frequency 
definition, once that has been abandoned. But 
Keynes' axioms seem to me, as they have doubt
less seemed to others, including Kemble, some
what too arbitrary and too sophisticated to be 
entirely suitable as axioms. They do not appeal 
very directly to common sense, and it is hard to 
see how they would have been formulated with
out considering colored balls in a box, dice, coins, 
or some of the other devices associated with the 
concept of the ensemble. It is rather as if Euclid 
had placed the Pythagorean theorem among the 
axioms of plane geometry. 

RusselF makes a criticism somewhat different 
in form, but which may have the same ground 
as this. After conceding the strength of Keynes' 
argument against the frequency theory, he never
theless prefers that theory, if it can be logically 
established, because of its explicit definition of 
probability. It is this definition that makes it 
possible to avoid the assumption of axioms such 
as characterize Keynes' theory. 

7 B. Russell, Ph1losophy (Norton, New York, 1927). 
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Other authors, who, like Keynes, present an 
axiomatic development, choose somewhat differ
ent sets of postulates, but those I have seen still 
show some of the tool marks of their original 
derivation from the study of games of chance, 
with the consequent implication of an ensemble. 
I think this is true even of the carefully chosen 
postulates of Jeffreys and Wrinch, whether m 
their original form or as revised by Jeffreys. 8 

Relations of Reasonable Expectation Consistent 
with Symbolic Logic 

In what follows next, I shall try to show that 
by employing the algebra of symbolic logic it 
is possible to derive the rules of probability from 
two quite primitive notions, which are inde
pendent of the concept of the ensemble and 
which, as I think, appeal rather immediately to 
common sense. This algebra has been applied to 
probability by a number of writers, including 
Boole, 9 who originated it. Still, its possibilities 
in this respect do not seem to have been fully 
realized. It may be well here to give a brief 
introduction to the Booleian algebra, at least to 
as much of it as the later argument will require. 

Letters, a, b, c, · · ·, will denote propositions. 
There is an advantage in speaking of the proba
bilities of propositions rather than of events, 
partly for the sake of greater generality but 
mainly because speaking of events easily invokes 
the notion of sequence in time, and this may 
become a source of confusion. A proposition may, 
of course, assert the occurrence of an event, but 
it may just as well assert something else, for 
example, something about a physical constant. 
The proposition not-a will be denoted by rva, 
the proposition a-and-b by a· b, and the proposi
tion a-or-b by a v b. 

It is to be borne in mind that the proposition 
"'a is not the particular proposition which in 
some sense is the opposite of a. Thus if a is the 
proposition, "The stranger w:as a short, fat old 
man without coat or hat," "-'a is not the proposi
tion, "The stranger was a tall, thin young 
woman with coat and hat." To assert "-'a means 
nothing more than to answer "no" to the ques-

8 H. Jeffreys, Theory of probabzhty (Clarendon Press, 
Oxford, 1939). 

g G. Boole, An 1,nvestzgatzon of the laws of thought (Mac
millan, London, 1854). 

tion, "Is a wholly true?'' If a is in several parts, 
a1, a2, · · ·, to assert "'a is not to affirm that 
a1, a2, · · · are all false but only to say that at 
least one of them is false. 

Since the letters a, b denote propositions and 
not events, the order in which they appear in 
the symbols a· b and a v b is only the order in 
which two propositions are stated, not the order 
in time in which two events occur. Also the form 
a·a indicates only that a proposition is twice 
stated, not that an event has twice occurred. 

It is also to be understood that a vb means 
a-or-b in the sense of the child who asks, "May I 
have a nickel or a dime?" without meaning to 
exclude the possibility of both a nickel and a 
dime, not in the sense of the orator saying "Sink 
or swim, survive or perish." Thus a vb has the 
sense for which the form a and/or b is often 
employed. 

Finally it may be noted that if the proposition, 
"It is raining," is true, then the proposition, 
"It is raining or snowing," is also true. To 
assert a proposition a is to imply every proposi
tion a v b of which a is one term. 

With the meaning of the symbols thus under
stood, the rules for their combination may be 
set down as follows: 

"'-va =a, (1) 

a·b=b·a, (2) avb=bva, (2') 

a·a=a, (3) ava=a, (3') 

a· (b·c) = (a·b) ·c=a b·c, (4) 

a v (b v c) = (a v b) v c =.a v b v c, (4') 

"-'(a·b) ="'a v "'b, (5) 

"'(a vb) ="'a· ""'b, (5') 

a· (a vb) =a, (6) av(a·b)=a. (6') 

These eleven rules are not all independent. 
From six of them it is possible to prove the re
maining five, and the set of six may be chosen 
in various ways. It is necessary only to include 
the first and one from each similarly numbered 
pair of the others. Thus, for example, Eq. (5') is 
derived as follows. 

"' (a v b) = [by Eq. ( 1) J"'"' ("'"' "'a v "' ""'b) 
=[by Eq. (5)]"-'"-'("-'a·rvb) 

=[by Eq. (1)]"-'a· "'b. 
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Now let the symbol b I a denote some measure 
of the reasonable credibility of the proposition b 
when the proposition a is known to be true. 10 

The term is indefinite at this point, because, if 
there is one such measure, there will be any 
number of others. If b I a is one such measure, 
then an arbitrary function f(b I a) will also be a 
measure. Consequently, the symbol is not now 
to be identified with the conventional proba
bility. To avoid that implication, I shall call b I a 
the li~elihood of the proposition b on the hy
pothesis a, taking advantage of a suggestion 
made by Margenau, 11 but at the same time taking 
the liberty of giving the term a more inclusive 
meaning than the one he proposed. 

It is not to be supposed that a relation of 
likelihood exists between any two propositions. 
If a is the proposition "Caesar invaded Britain" 
and b is "Tomorrow will be warmer than today," 
there is no likelihood b I a, because there is no 
reasonable connection between the two propo
sitions. 

It is now time to make the first of the two 
assumptions mentioned earlier as providing a 
basis for the principles of probable inference. We 
assume, whatever measure be chosen, that the 
likelihood c · b I a is determined in some way by 
the two likelihoods b I a and c I b ·a, or 

c·bla=F(clb·a, bla), (7) 

where F is some function of two variables. 
Written in symbolic form, this assumption 

may not appear very axiomatic. Actually it is a 
familiar enough rule of common sense, as an 
example will show. Let b denote the proposition 
that an athlete can run from one given place to 
another, and let c denote the proposition that 
he can run back without stopping. The physical 
condition of the runner and the topography of 
the course are described in the hypothesis a. 
Then b I a is the likelihood that he can run to 
the distant place, estimated on the information 
given in a, and c I b ·a is the likelihood that he 
can run back, estimated on the initial informa
tion and the further assumption that he has 

1o Keynes has traced the use of such a symbol to H. 
McColl, Proc. Lond Math. Soc. 11, 113 (1880). McColl 
uses the symbol Xa for the probability of the proposition x 
on the hypothesis a. 

n H. Margenau, Am. J. Phys~cs 10, 224 (1942). R. A. 
Fisher has used the term in a quite different sense. 

just run one way. These are just the likelihoods 
that would have to be considered in estimating 
the likelihood, c · b I a, that he can run the com
plete course without stopping. In postulating 
only that the last-named likelihood is some func
tion of the other two, we are making the least 
restrictive assumption possible. 

The form of the function F is partly conven
tional because of the indefiniteness of the measure 
to be used for likelihood. But it is not wholly so, 
for it must be consistent with the algebra of 
propositions. Accordingly we make use of Eq. (4) 
to derive a functional equation involving F, as 
follows: 

d·c·bla=[by Eq. (4)](d·c)·bla 
=[by Eq. (7)]F(d·clb·a, bja). 

But 

d·clb·a=[by Eq. (7)]F[dic·(b·a), clb·a] 
=[by Eq. (4)]F(dlc·b·a, clb·a). 

Hence 

d·c·bla=F[F(dlc·b·a, clb·a), bla]. 

Also 

d·c·bla=[by Eq. (4)]d·(c·b)la 
=[by E,q. (7)]F[dl(c·b)·a, c·b[a] 
=[by Eqs. (4) and (7)] 

F[dlc·b·a, F(clb·a, b[a)]. 

Equating these two expressions for d · c · b I a and, 
for simplicity, letting dlc·b a=x, c[b·a=y, and 
b I a=z, we have 

F[F(x, y), z]=F[x, F(y, z)]. (8) 

The function F must be such as to satisfy 
Eq. (8) for arbitrary values of x, y and z. It is 
easily shown by substitution that this equation 
is satisfied if 

Cf[F(p, q)]=f(p)f(q), 

where f is an arbitrary function of a single 
variable, and C is an arbitrary constant. It is 
shown in th.e appendix that this is also the 
general solution, provided F has continuous 
second derivatives We have then 

Cf(c· b I a) =f(c lb ·a)f(b I a). 

The choice of the function f is purely a matter 
of convention. For it has already been pointed 
out that, if b I a is a measure of the credibility of 



PROBABILITY, FREQUENCY AND REASONABLE EXPECTATION 7 

bon the hypothesis a, then so also is f(b I a). We 
might then continue the discussion with f(b I a) 
as the symbol of likelihood in place of b I a and 
never have to specify the function f. But this 
would give two symbols where one would be 
enough. As a matter of convenience, therefore, 
we write 

Cc · b I a= c I b ·a b I a. (9) 

This is, of course, the same as choosing the 
function f to make f(b I a)= b I a. Since the choice 
was conventional, it follows that another choice 
could have been made. We might, for example, 
have let f(b I a) =exp (b I a), whence it would 
have followed that the likelihood of c · b was, 
except for an arbitrary additive constant, equal 
to the sum of the likelihoods which determine it. 
This would have given us a likelihoo'd related to 
the one we have as entropy is related to thermo
dynamic probability in statistical mechanics. 
It would have been an allowable choice, but a 
less convenient one than that which was made. 

If in Eq. (9) we let c = b, and note that b · b = b, 
by Eq. (3), we obtain, after dividing by. b I a, 

C=blb·a. 

Thus we see that when the hypothesis includes 
the conclusion the likelihood has the constant 
value C, whatever the propositions may be. 
This is what we should expect, since b is certain 
on the hypothesis b ·a, and we do not recognize 
degrees of certainty. 

The value to be assigned to C, the likelihood 
of certainty, is purely conventional. If it is 
desired to make the likelihoods with which we 
are dealing correspond as nearly as possible to 
ordinary probabilities, then C will be given the 
value 1. Other choices are often made, especially 
in conversation. The phrase "one chance in a 
hundred" may be taken to mean unit likelihood 
on a scale in which certainty is represented by 
100. Statements that have the form of assertions 
about numbers in an ensemble may be merely 
convenient ways of stating likelihoods on a 
scale chosen for its aptness to the question con
sidered. In a general discussion the most con
venient value for C is unity, and we therefore 
write Eq. (9) in the form 

c · b I a= c I b ·a b I a. (10) 

This has the same form as the ordinary rule for 
the probability of two events. However, it does 
not make our likelihood correspond uniquely to 
the ordinary probability. For Eq. (10) raised to 
any power m is 

Thus any power of our likelihood satisfies an 
equation of the same form as Eq. (10) and corre
sponds equally well to the ordinary probability. 

Next to be sought is a second assumption of 
probable inference, which is to provide a relation 
between the likelihoods of the propositions b and 
""b on the same hypothesis a. Since "'b is de
termined when b is specified, a reasonable as
sumption, and the least restrictive possible, 
appears to be that ""b I a is determined by b I a, or 

"'bJa=S(bla), (11) 

where S is some function of a single variable. 
By Eq. (1), "'"'bla=bla, and therefore 

S[S(b I a)]= b I a. Thus S must be such a function 
that 

S[S(x)]=x, (12) 

where x may have any possible value of a likeli
hood between those of certainty and impossi
bility. This does not impose enough restriction 
on S to be of much use by itself. Another func
tional equation may be obtained by considering 
S(c vb /a); thus, 

S(cvbja)=,...,(cvb)/a 
=[by Eq. (5')]"-'C· "-'bla. 

We wish to eliminate the propositions "-'C and 
"'b, so as to obtain an equation in the proposi
tions c, b and a and the function S. First we 
eliminate "-'C. 

"-'C·"-'bla=[byEq. (10)]"-'CI"-'b·a "'bja 
=[by Eq. (11)]S(cl "-'b·a)S(bja). 

Thus we have 

S(c vb I a) =S(c I "'b ·a)S(b I a), 
or 

S(c I "'b ·a) =S(c vb I a)/S(b I a). 

Taking the function S of both sides of this equa
tion and using Eq. (12), we obtain 

c I "'b · a=S[S(c v b I a)/S(b I a)]. (13) 
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Next we eliminate "'b : 

c( rovb·a=[by Eq. (10)]c·,...,b(a/"-'b(a 
=[by Eq. (2)]"-'b·cla/"-'bla 
=[by Eq. (10)]"-'blc·ac!a/"'bla 

=[by Eq. (11)]S(blc·a)cla/S(bla). 

Therefore we may write in place of Eq. (13), 

S(b Jc·a)cl a;S(b I a) =S[S(c vb I a)/S(b I a)]. 

It is convenient now to have a as the common 
hypothesis in all the likelihoods. We note that 

blc·a=[by Eq. (10)]b·cla/cla 
=[by Eq. (2)]c·bla/cla. 

Substituting this expression in the preceding 
equation and multiplying both sides by S(b I a), 
we obtain 

S(c· b la/c I a)c I a 
=S[S(c v b I a)/S(b I a) ]S(b I a). (14) 

This equation must hold for arbitrary mean
ings of the propositions a, b and c. Let b = c ·d. 
Then 

cvb=cv(c·d)=[byEq. (6')]c, 
and 

c· b=c· (c·d) 
=[by Eq. (4)](c·c)·d=[by Eq. (3)]c·d. 

Making these substitutions in Eq. (14), we obtain 

S(c· d I a/c I a)c I a=S[S(c I a)/S(c · d I a)]S(c · d I a). 

This may be written in a highly symmetric 
form if we let cja=x and S(c·dl a) =y, and make 
use of the fact that c·dla=[by Eq. (12)] 
S[S(c·dla)]=S(y). In these terms we have 

xS[S(y)/x] = yS[S(x)fy]. (15) 

This equation must be satisfied by the function 
S for all of the values of x and y obtainable by 
arbitrarily varying the propositions c, d and a. 
If the functionS is twice differentiable, the solu
tion of Eq. (15) together with Eq. (12) is, as 
shown in the appendix, 

S(p) = (1-pm)llm, 

where m Is an arbitrary constant. Hence by 
Eq. (11), 

Cb 1 a)m+C ,...,b 1 a)m= 1. 

Now, whatever the value of m, if b I a measures 
the credibility of b on the hypothesis a, then so 

also will (b I a)m. It has already been pointed out 
that (b I a)m may replace b I a in Eq. (10). There
fore we may take (b I a)m as the symbol of 
likelihood without being under any necessity of 
assigning a value to m. This is the same as to say 
that the choice of a value for m is purely con
ventional. For simplicity of notation we let m = 1 
and write 

bla+"'bja=l. (16) 

This has the same form as the ordinary rule 
relating the probability of "'b to that of b, or, as 
it is usually said, the rule for the probability that 
an event will not occur, given the probability 
that it will occur. 

If in Eq. (16) we let b =a, then 

ala+"-'ala=l. 

The two likelihoods are now those of certainty 
and impossibility. Since certainty has been given 
the likelihood 1, it now follows that impossibility 
has the likelihood zero. 

Two other useful theorems are easily obtained. 
By Eq. (10), 

C· b I a+,...,c· b I a= (c lb ·a+ "'clb·a)b I a. 

By Eq. (16), 

c lb ·a+"'c I b·a= 1. 
Therefore, 

c· b I a+"'c· b I a=b I a, (17) 

This is one of the theorems. The other is 
obtained as follows. 

c vb I a= [by Eq. (16)]1- "'(c vb) I a 
=[by Eq. (5') ]1- "'c · "'b I a 

=[by Eq. (17)]1-"'bla+c·"-'bla. 

Now, by Eq. (16), 1- "'b I a= b I a. Also, 

C·"-'bla=[by Eq. (2)]"'-'b·cla 
= [by Eq. ( 17) ]c I a-b · c I a 

=[by Eq. (2)]cja-c·bja. 
Therefore, 

cvbla=cla+bla-c·bla, (18) 

which has the same form as the ordinary rule for 
the probability that at least one of two events 
will occur. When, as is often done, the rule is 
stated for mutually exclusive events, the last 
term in the right-hand member does not appear. 
This conceals the rather interesting symmetry of 
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the equation between the propositions c v b 
and c·b. 

The indefiniteness of the concept of likelihood, 
defined only as a measure of reasonable credi
bility, has been removed by the conventions 
which have been adopted. The symbol b I a stands 
now for a particular measure of credibility. Since 
this measure has been shown to be subject to the 
ordinary rules of probability, it is appropriate to 
call it the probability of the proposition bon the 
hypothesis a, discarding the term likelihood, 
which was less definitely defined. 

The rules obtained, being only relations be
tween probabilities, do not of themselves assign 
numerical values to all the probabilities arising in 
specific problems. The only numerical values thus 
far obtained are those corresponding to certainty 
and impossibility, and these were assigned by 
convention rather than required by the rules of 
symbolic logic. It is hardly to be supposed that 
every reasonable expectation should have a 
precise numerical value. In a number of cases, 
however, the familiar rule of insufficient reason 
may be employed. If there are n propositions of 
which, with respect to a given hypothesis, one 
and no more than one can be true, and if the 
hypothesis gives no reason for considering any 
one of them more likely than another, then, by 
the rules obtained, each of them has the proba
bility 1/n. 

Probability and Frequency 

The whole discussion thus far has consisted of 
two parts. The first part was intended to show 
that the rules of probable inference are credited 
by common sense with a wider validity than can 
be established by deducing them from the fre
quency definition of probability. In the second 
part they were derived without reference to this 
definition, from rather elementary postulates. It 
remains now to see what is the connection be
tween probability, as here understood, and the 
frequency of an event. 

Let us suppose that two capsules contain equal 
masses of radon, but that the contents are of 
different ages, one having been produced by the 
very recent decay of radium, and the other 
having been drawn from a vessel in which radon 
has been accumulating for a long time over 
radium in solution. Suppose there are two 

identical ion counters, each receiving radiation 
from one capsule, and each placed with respect 
to its capsule in the same relative position as the 
other. One of the two capsules will be the first to 
cause 1000 discharges in its ion counter. More 
than one hypothesis will ascribe to each capsule 
the same probability of being first. A physicist 
will estimate equal probabilities on the ground of 
the many observations which have been made on 
rates of radioactive transformation, with some 
additional evidence from quantum mechanics 
that the stability of such an aggregate of ele
mentary particles as an atomic nucleus is inde
pendent of its age. Another person, quite unfamil
iar with all this, will estimate equal probabilities 
merely on the ground that he does not know 
which capsule contains the older radon and has 
therefore no possible reason to suppose that one 
sample rather than the other will be the first to 
cause 1000 discharges. 

These are the extreme cases, the first estimate 
being highly significant and the second quite 
trivial, but each is right on the hypothesis given. 
Kemble calls the estimate of the physicist one of 
objective probability and that of the other person 
one of subjective, or primary, probability. The 
latter term seems preferable to me, as it does to 
him. It is true that the estimate of the non
physicist is subjective in the sense that it is 
relative to his limited information, but it is 
objective in the sense that another person with 
the same information would reasonably make the 
same estimate. It seems questionable whether 
there is a real difference in the kind of judgment 
made by the nonphysicist and the physicist. The 
nonphysicist bases his estimate on the fact that 
the capsules are indistinguishable. The physicist 
bases his estimate on the accumulated evidence 
that the atoms of radon themselves are indis
tinguishable. The difference seems to be not so 
much a difference in the nature of the evidence 
as in its amount and relevance or, to use Keynes' 
suggestive term, its weight. 

Now let the experiment with the radon capsules 
be tried a number of times, with the old and new 
samples identified in advance of each trial. Even 
a long run of instances in which the older sample 
is first will not change the probabilities as 
estimated by the physicist. The evidence on 
which he made his first estimate had so much 
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weight that no additional number of instances, 
not enormously large, could require a new esti
mate. The probabilities have for practical pur
poses become stable. Strictly speaking, since 
probability is relative to an experience that is 
never complete, it is always subject to change by 
new experience. A stable probability is a limit 
that is not strictly attainable, but that can in 
certain cases be approximated as nearly as 
necessary for practical use. It is to be expected 
that a stable probability will give a better basis 
for prediction than will an unstable one. 

Let a be a hypothesis of which a number of 
instances may be examined. Let b, mean that a 
certain proposition b is valid in the rth instance 
of a. Unless the hypothesis a itself assigns a stable 
probability to b, then b./a, b,Ja·b,and b./a· "'br 
will generally all be different; the knowledge that 
b is valid or that it is not valid in one instance 
will affect the reasonable expectation of its 
validity in another instance. But now let there be 
included in the hypothesis a proposition p, which 
asserts that the probability is stable and equal 
top, some number between 0 and 1. This means 
that the probability of b. is the same whether b, 
or "-'br or neither is included in the hypothesis. 
Thus 

b./ a·p · b,= b.j a·p · "'br= b./ a·p =P· 

Then by Eqs. (10) and (16) we obtain 

b,·b,Ja·p=p2, 

b.· ""br/ a·p=p(l-p), 
,....,b,· ""br/ a·p= (1-p)2. 

Let nN mean that the number of instances of b 
in N instances of a is exactly n. Then by Eqs. 
(10), (16) and (18) it is possible to derive the well
known result of Bernoulli, that 

nN/a·p=pn(1-p)N-nN!jn!(N-n)!. 

This is a maximum when p=n/N, and the 
maximum becomes sharper as N is increased. 
Thus, when there is a stable probability, the 
frequency may confidently be expected to ap
proach it as a limit. 

There will sometimes be questions in which the 
existence of a stable probability is known but its 
value is undetermined. As a rather artificial but 
simple example, let it be supposed that there are 
two dice, both dynamically symmetric, but one 

of them defectively marked, having two faces 
instead of one stamped with four dots. Then for 
either of these dice there is a stable probability of 
throwing a four, equal to i if it is the true die and 
to ! if it is the defective one. Suppose one die of 
the pair is picked up at random and, without 
being examined, is tossed N times. If a four turns 
up on n of these throws, what is the probability 
of a four on the next throw? 

The problem may be generalized as follows. 
Let it be supposed that in the ensemble of 
instances of a proposition a, another proposition 
b is known to have a stable probability, but the 
value of this stable probability is unknown. As 
before, p will denote the proposition that the 
probability is stable and equal to a number p, but 
in the present case p is not a part of the hypothe
sis. Instead, the hypothesis contains a weaker 
proposition which only assigns a probability to 
the proposition p corresponding to every value 
of p. 

We may let the single symbol a represent the 
entire initial hypothesis, including this proposi
tion. Thus, in the example of the dice, a will 
describe the two dice and will also assert that one 
is chosen at random and tossed without being 
identified. There are then only two possible 
stable probabilities, i and i, and they are equally 
probable at the beginning. Hence in this example 
pI a has the value ! if p is either i or i and the 
value zero if pis any other number. 

Returning to the general problem, we suppose 
that N instances of a are observed, and b is found 
valid in n of them and invalid in the rest. What 
is now the probability of b in theN+ 1 th instance 
of a? As before, let nN denote the proposition that 
n is the number of instances of b in N instances 
of a. The problem is to find bN +II a· llN, given n 
and N, and also p J a for every value of p. 

The theorems available are enough to give the 
result 

I: pn+I(1-p)N-npja 

I: pn(l-p)N-npja' 

where the summations are over-all values of p. 
If, on the hypothesis a, the stable probability 

has a continuous range of possible values from 
0 to 1, and if f(p)dp denotes the probability of a 
value between p and P+dp, the summations are 
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replaced by integrals, and we have 

fl pn+1(1-p)N-nf(p)dp 
0 

bN+li a· nN =----------

f1pn(1-p)N-n£(p)dp 
0 

It was assumed by Laplace that an unknown 
probability is equally likely to have any value 
from 0 to 1. On this assumption, f(p) is constant 
in the last equation. The integrals in this case are 
known; and the result, sometimes called the rule 
of succession, is simply 

or approximately, for large values of nand N, 

Several authors have pointed out that an 
unknown stable probability is not necessarily one 
for which all values from 0 to 1 are equally likely, 
and the rule of succession has been shown to lead 
to some absurd results. Nevertheless, we should 
expect that for large numbers it will generally be 
right. For we know, by the theorem of Bernoulli 
given earlier, that, when there is a stable proba
bility, the ratio n/ N is very likely to be nearly 
equal to it when N is large. Also we have under
stood a stable probability to be the limit that the 
probability approaches as the weight of the 
evidence is increased, and usually the surest way 
to increase the weight of evidence is to increase 
the number of observed instances. If the ratio 
n/ N and the probability approach a common 
limit, then certainly they must approach each 
other. 

If the absurdities to which Laplace's rule has 
led are examined, they are found to fall into three 
classes : those in which N is not a very large 
number, those in which n/ N = 1, and those in 
which n/ N = 0. (The last two are really one class, 
since to say that b is valid inN out of N instances 
of a is the same as to say that ,....., b is valid in none 
of N instances.) If these conditions are excluded, 
Laplace's rule may be derived from a much less 
drastic assumption than the assumption that all 
values of the stable probability are equally likely. 

If from the general equation for bN+rl a·nN we 

eliminate n by letting n/ N = v, we obtain 

f1p[p•(1-p)1-v]Nf(p)dp 
0 

bN+rl a ·nN =-----------

J.r [p•(1- p)I-•]Nf(p)dp 
0 

If O<v<l, then pv(1-p)1-• has a maximum 
value when p = v. The Nth power of this ex
pression, when N is large enough, will have so 
pronounced a maximum that its values when p 
is more than slightly different from v will be 
relatively negligible. Hence, unless f(p) is ex
tremely small when p = v, its only values of 
importance in the integrals will be those for 
which p and v are very nearly equal. Therefore, 
unless f(p) is rapidly varying around this point, 
it may be replaced in the integrals by the 
constant f(v). 

Thus we arrive again at Laplace's rule. Its 
generality is much less than Laplace supposed. 
But it serves to show how a probability ap
proaches stability as the number of instances is 
increased, and this is all we should expect of it. 12 

* * * 
Professor K. 0. Friedrichs, of New York Uni

versity, read a preliminary draft of this paper. I 
wish to thank him for this kindness and for his 
help in correcting some mathematical inaccu
racies. He is not responsible, of course, for any 
errors that remain or for the opinion expressed 
as to the nature of probability. 

Appendix: The Solution of the 
Functional Equations 

The first equation to be solved is 

F[F(x, y), z]=F[x, F(y, z)]. (8) 

Let F(x, y)=u, and let F(y, z)=v. Then Eq. (8) becomes 
F(u, z)=F(x, v). Differentiating this with respect to x, y 
and z in turn, and writing F1(p, q) for aF(p, q)jap and 
F.(p, q) for aF.(p, q)jaq, we obtain 

F1(u, z)aujax=F1(x, v), (19) 

F1(u, z)aujay=F.(x, v)avjay, (20) 

F 2(u, z)=F.(x, v)avjaz. (21) 

Differentiating Eq. (20) with respect to x, y and z in turn, 

12 The problem of inverse probability when n/ N = 1 
(or 0), which is important in the application of probability 
to inductive reasoning, is discussed at length by Jeffreys 
in reference 8. 
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wntmg Fu(P, q) for aFt(P, q)jap, and similarly repre
senting the other second derivatives, we obtain 

F11(u, z)(aujax)(aujay)+Ft(u, z)a2ujaxay 
= F 12(x, v )av jay, (22) 

Fn(u, z)(aujay)2+Ft(u, z)a2ujay2 

=F22(x, v)(avjay)2+F2(x, v)a2vjay2, (23) 
F12(u, z)aujay=F22(x, v)(avjay)(avjaz) 

+ F 2(x, v )a2v / ayaz. (24) 

Differentiating Eq. (19) with respect to z, or Eq. (21) with 
respect to x, we obtain 

F12(u, z)aujax=F12(x, v)avjaz. (25) 

Among Eqs. (20), (22), · · ·, (25) we can now eliminate 
the functions of u and v other than their derivatives. Thus, 
eliminating F12(u, z) and F12(x, v) among Eqs. (22), (24) 
and (25), we find 

[F 11(u, z)(aujay)2- F 22(x, v )(avjay)2](aujax)(avjaz) 
= F 2(x, v)(a2vjayaz)(avjay)(aujax) 

- F t(u, z)(a2ujaxay)(aujay)(avjaz) 

Combining this with Eq. (23), we can eliminate Fn(u, z) 
and F 22(x, v) together, obtaining 

F1(u, z)(avjaz)[(a2ujay2)(aujax)- (a2ujaxay)(aujay)] 
= F 2(x, v )(aujax)[(a2v/ay2)(avjaz)- (a2vjayaz)(avjay)]. 

Combining this with Eq. (20), we eliminate Ft(U, z) and 
F 2(x, v) together and obtain 

a2ujaxay a2ujay2 a2vjayaz a2vjay2 
aujax aujay avjaz - avjay · 

This may be written in the form, 

~In (aujax) =-~In (avjay)· 
ay aujay ay avjaz 

Now u=F(x, y) and v=F(y, z), so that 

aujax =F1(x, y) and avjay =Fr(y, z). 
aujay F2(x, y)' avj.az F2(y, z) 

We have then, 

Since x appears only in the left-hand member and z only 
in the right-hand member of this equation, it follows that 
each member is a function only of the remaining variable y. 
It will be corrvenient to denote the integral of this function 
by In <J>(y), so that we have 

~In [Fr(x, y)] =_!In <J>( ), (26) 
ay F2(x, y) dy Y 

and 

we obtain 

~In [Ft(X, y)]dx+~ In [Ft(X, y)]dy 
ax F2(x, y) oy F2(x, y) 

=-dIn <J>(x)+d In <P(y). 

The left-hand member being now a complete differential, 
we may integrate and so find 

Ft(X, y)/F2(x, y)=h<J>(y)/<J>(x), (29) 

where his a constant of integration. 
To make use of this result, we divide Eq. (20) by Eq. 

(21), obtaining 
F t(U, z) au avjay 
F2(u, z) ay = av/oz" 

The right-hand member is simply Ft(y, z)/F2(y, z), and, 
with the aid of Eq. (29), the equation may be written as 

<J>(z) au <J>(z) 
<J>(u) ay = <J>(y)" 

Replacing in this equation u by its value F(x, y) we have 

aF(x, y)/ay=<P[F(x, y)]/<P(y). (30) 

Similarly, from Eqs. (19) and (20) we obtain 

aF(y, z)/iJy=<J>[F(y, z)]/<J>(y), 

which becomes, when x and y are written for y and z, 

aF(x, y)jax=<P[F(x, y)]/<P(x). (31) 

Combining Eqs. (30) and (31) to obtain the differential dF 
(the variables being understood as x and y) we find 

dF /<P(F) =dx/<P(x)+dy/<J>(y). 

If we denote J[dP/<P(p)] by In f(p), we obtain, by 
integrating and taking the exponentials of both members of 
this equation, 

Cf(F)=f(x)f(y), 

where Cis a constant of integration. This then is the solu
tion of Eq. (8). 

The solution of the equation 

xS[S(y)/x]=yS[S(x)/y] (15) 

is obtained in a similar manner, but more quickly. This 
equation and the three derived from it by differentiation 
with respect to x, to y, and to x and y may be written as 
follows, when S(y)/x is denoted by u and S(x)/y by v: 

xS(u)=yS(v), (32) 

uS'(u)-S(u)= -S'(v)S'(x), (33) 

S'(u)S'(y)= -vS'(v)+S(v), (34) 

uS"(u)S'(y)/x=vS"(v)S'(x)/y. (35) 

Multiplying Eq. (32) by Eq. (35), we eliminate x and y 
simultaneously, obtaining 

uS" (u )S(u )S' (y) = vS" (v )S(v )S' (x ). 

~In [Fr(y, z)] =-~In <J>(y). 
ay F2(y, z) dy 

(27) With this equation, together with Eqs. (33) and (34), it is 
possible to eliminate S'(x) and S'(y). The resuit•is the 

Permuting x, y and z in Eq. (27), we obtain 

~In [Fr(x, y)] =-~In <J>(x). (28) 
ax F2(x, y) dx 

Multiplying Eq. (28) by dx and Eq. (26) by dy and adding, 

equation 
uS"(u)S(u) vS"(v)S(v) 

[uS'(u)-S(u)]S'(u) [vS'(v )-S(v)]S'(v )" 

Since each member of. the foregoing equation is the 
same function of a different variable, this function must 
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be equal to a constant. Calling this constant k, we have 

uS" (u )S(u) = k[uS' (u) -S(u) ]S' (u ). 

This may be put in the form 

dS' /S' =k(dS/S-du/u), 

whence, by integration, 

S'=A(Sju)k, 

where A is a constant. 

The variables being separable, another integration gives 

Sm=Aum+B, 

where m has been written for 1-k, and B is a constant of 
integration. It is now found by substitution that Eq. (15) 
can be satisfied for arbitrary values of x and y only if 
B =A2• Finally, if the solution of Eq. (15) is also to satisfy 
the equation S[S(x)] =x, it is necessary that A= -1. 
Thus we obtain [S(u)]m+um= 1. 

Application of Group Theory to the Calculation of Vibrational 
Frequencies of Polyatomic Molecules1 

ARNOLD G. MEISTER AND FORREST F. CLEVELAND 
Illinois Institute of Technology, Chicago, Illinois 

W ILSON2 has devised a method for obtaining 
the vibrational frequencies of polyatomic 

molecules in which group theory is used to 
simplify the calculations. The method is espe
cially good for molecules having considerable 
symmetry and several equivalent atoms, that is, 
atoms with identical nuclei that transform into 
one another for all operations of the point group 
of the molecule. A further advantage of the 
method is that it requires no coordinate system, 
but only bond distances, interbond angles and 
unit vectors directed along the bonds. 

Since one who is beginning calculations of 
vibrational frequencies may find the symbolism 
of Wilson's papers difficult, and since other 
papers involving the method omit many of the 
details, it seems worth while to give an ele
mentary treatment of a few typical molecules for 
those desiring to start work in this field. The 
H20 molecule is considered first because it has 
only a small number of atoms, has no degenerate 
frequencies, and permits the reader to concen
trate on the method without being confused by 
the complexity of the molecule. 3 Then the CH3Cl, 
CH4 and CD4 molecules are treated to show how 
the method is applied when doubly or triply 
degenerate frequencies are present. 4 

1 Communication N0. 43 from the Spectroscopy Labora
tory. 

2 E. B. Wilson, Jr., J. Chem. Physics 7, 1047 (1939); 9, 
76 (1941). 

3 A more complicated molecule, CH2Ch, involving only 
nondegenerate frequencies has been discussed by G. Glock
ler, Rev. Mod. Physics 15, 125 (1943). 

4 A treatment in outline form of the CH 3Cl molecule is 
given at the end of Wilson's second paper, reference 2. 

THE H 20 MOLECULE 

Symmetry Coordinates 

The methods given in a previous paper5 are 
used to determine the point group of the molecule 
as well as the number of fundamental vibrations 
of each type. It is found that the H20 molecule 
belongs to the point group C2v and that there 
are two vibrations of type A 1 and one of type B 2• 

Since a nonlinear molecule containing N atoms 
has 3N- 6 vibrational degrees of freedom, 3N- 6 
coordinates are necessary to describe the vibra
tions of the molecule. To attain the simplification 
made possible by the use of group theory, it is 

z 

FIG. 1. Bond distances d1 and d2, interbond angle a, and 
principal symmetry axis Z for the H20 molecule. 

6 A. G. Meister, F. F. Cleveland and M. J. Murray, Am. 
J. Physics 11, 239 (1943). 


