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The nature of probabilities

In a dice throwing game one
‘ defines probabilities of different

events by counting the outcomes

og Examples:
« with one die, the probability of

gettinga 4is 1/6

« with two dice, the probability of
getting two 4’s is 1/36

« with two dice, the probability of
getting one 4 AND one 5is 1/18

« with two dice, the probability of
getting one 4 OR one 5 is ?7?
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# of
outcomes

4 Not4 or 5 4
5 Not4 or 5 4
Not 4 or 5 4 4
Not4 or5 5 4
4 4 1 \I/\lvgbli:j 4:1 :\?: 5 were independent, we
4 > 1 P(4 OR5)=P(4) + P(5)=1/3+1/3=2/3
5 4 1
5 5

: _20_5<2
Total: 20 p = 36 9 3
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Die 1 # of Outcomes =
outcomes elementary events

4 Not 4 or 5 4
> Ne 4 el e E Composite events
Not 4 or 5 4 4 <— contain many
Not 4 or 5 5 A elementary events
4 4 1
We usually assume that
4 > 1 elementary events are
5 4 1 all equally likely.
5 5 1 o
E——— This is not true for
otat: biased dice.
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Coin tossing as a model of randomness

Sequence #1

THHHHTTTTHHHHTHHHHHHHHTT THHT THHHHHT TTTTTHHTHHTHHHT
TTHTTHHHHTHTTTHTTTHHTTTTHHHHHHT TTHHTTHHHTHHHHHTTT T
THTTTHHTTHTTHHTTTHHTTTHHTHHTHHT TTTTHHTHHHHHHTHTHT T
HTHTTHHHTTHHTHT HHHHHHHHT THTTHHHTHHT THTTTTTTHHHTHHH

Sequence #2

THTHTTTHTTTTTHTHTTTHTTHHHTHHTHTHTHTTTTHHTTHHTTHHHT
HHHTTHHHTTTHHHTHHHHTTTHTHT HHHHTHT T THHHTHHTHTTTHHTH
HHTHHHHT THTHHTHHHTTTHTHHHTHHTTTHHHTTTTHHHTHT HHHHTH
TTHHTTTTHTHTHTTHTHHTTHTT THTTTTHHHHTHTHHHTTHHHHHT HH

One of these sequences has been obtained with a real coin, the other one is
artificial. Which one belongs to the true coin?
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Heads. Heads. Heads. Heads. Heads. Heads. Heads. Heads. Heads. Heads.
Heads, again.

Tom Stoppard’s classic play Rosencrantz and Guildenstern Are Dead opens with
two Elizabethan players, some well-stocked prop moneybags, and the flip of a coin
that lands as heads. Again. And again. And again.

in HICHARD) UARY/
In Stoppard’s scene, the bit actors Rosencrantz and ROSENCRANTZ <.
Guildenstern kill time during a production of GUILDENSTERN
Shakespeare’s Hamlet by betting on coin tosses. vonsomors . AARE DEAD

Guildenstern flips a florin and Rosencrantz predicts that it
will land as heads. It does. Guildenstern spins another
coin and it lands as heads again.

After Rosencrantz has successfully bet heads 77 times in
a row, Guildenstern proclaims that, “A weaker man might
be moved to re-examine his faith, if in nothing else at least
in the law of probability.” He ends up flipping heads 92
times in a row.

What are the odds of such a thing happening?
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Now, consider “coins” with different aspect ratio r

(aspect ratio = thickness/diameter)

r=0.05 r=0.25 r=0.5

How do these coins land on heads, tails, sides? When is the probability
of landing on the side equal to the probability of landing on heads or

tails?
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Tails

figure from Mahadevan and Yong,
“Probability, physics, and the coin toss”,
Phys. Today, July 2011, pp. 66-67

a. Von Neumann’s answer: consider solid angles subtended by heads, tails, sides

0o
27 X / sin 0df = 27(1 — cos 6y) Qheads = Qtails = Lsides = 47/3
0
= 27m(1 —cosfy) = 47w /3
h r

h e e e

= 7“:1/2\/5
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Tails

“Probability, physics, and the coin toss”,
Phys. Today, July 2011, pp. 66-67

figure from Mahadevan and Yong,

b. alternative answer: consider angles subtended by heads, tails, sides (rotation
about axis through center of coin, and parallel to faces)

Hheads — Htails — Hsides — 7T/3
= cos by =1/2
h r
VhZ+d2  Vr?2 41 /

=r=1/V3
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N
“Probability, physics, and the coin toss”,

figure from Mahadevan and Yong,
Phys. Today, July 2011, pp. 66-67

In 1986 J. B. Keller analyzed the infinitely thin coin and found
that coin toss is not random for finite rotation speed and
vertical speed (rotation axis as in previous case b)
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Coin tossing machine (Diaconis, Holmes and Montgomery 2007)




Coin tossing machine (Diaconis, Holmes and Montgomery 2007)
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Coin tossing machine (P. Diaconis, S. Holmes and R. Montgomery 2007)




Coin tossing machine (Diaconis, Holmes and Montgomery 2007)
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... Coin-tossing is a basic example of a random phenomenon.
However, naturally tossed coins obey the laws of mechanics
(we neglect air resistance) and their flight is determined by
their initial conditions. Figure 1 a-d shows a coin-tossing
machine. The coin is placed on a spring, the spring released
by a ratchet, the coin flips up doing a natural spin and lands in
the cup. With careful adjustment, the coin started heads up
always lands heads up — one hundred percent of the time. We
conclude that coin-tossing is ‘physics’ not ‘random’. ...

(Diaconis, Holmes and Montgomery, “Dynamical bias in the
coin toss”, SIAM Rev. 49 (2007) 211)



Therefore, the assumed randomness of coin toss — and in
general, of complex mechanical processes — is related to
the difficulty in determining the outcome, both because of
the complex and often unknown dynamics, and because of
the uncertain initial conditions.

Thus — at least in this case — probabilities are a measure of
our own ignorance rather than an intrinsic property of the
physical system.



Bertrand’s paradox and the ambiguities of
probability models

Bertrand’s paradox goes as follows:

“consider an equilateral triangle inscribed inside a circle, and
suppose that a chord is chosen at random. What is the
probability that the chord is longer than a side of the
triangle?”

(Bertrand, 1889)
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Solution: we take two random points on the circle (radius R), then we
rotate the circle so that one of the two points coincides with one of the
vertices of the inscribed triangle. Thus a random chord is equivalent to
taking the first point that defines the chord as one vertex of the triangle
while the other is taken “at random” on the circle. Here “at random” means
that it is uniformly distributed on the circumference. Then only those chords
that cross the opposite side of the triangle are actually longer than each
side. Since the subtended arc is 1/3 of the circumference, the probability of
drawing a random chord that is longer than one side of the triangle is 1/3.

Edoardo Milotti - Bayesian Methods - September 2018 21



Solution 2: we take first a random radius, and next we choose a random
point on this random radius. Then, we take the chord through this point and
perpendicular to the radius. When we rotate the triangle so that the radius
is perpendicular to one of the sides, we see that half of the points give
chords longer than one side of the triangle, therefore the probability is 1/2.
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Solution 3: we take the chord midpoints located inside the circle inscribed
in the triangle, and we obtain chords that are longer than one side of the
triangle. Since the ratio of the areas of the two circles is 1/4, we find that
now the probability of drawing a long chord is just 1/4.

At least 3 different “solutions”: which one is correct, and why?
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Now we widen the scope of the problem and we consider the
distribution of chords in the plane
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distribution of chords (left panel) and of midpoints (right

panel) in the first solution of Bertrand’s paradox (the left panel shows 400

chords, the right panel shows 100000 midpoints).

Distribution 1



Distribution 2: Distribution of chords (left panel) and of midpoints (right
panel) in the second solution of Bertrand’s paradox (the left panel shows
400 chords, the right panel shows 100000 midpoints).

In this case it is very easy to find the radial density function of chord
centers, since here we take first a random radius, and next we choose a
random point (the center) on this random radius.
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Distribution 3: Distribution of chords (left panel) and of midpoints (right
panel) in the third solution of Bertrand’s paradox (the left panel shows 400
chords, the right panel shows 100000 midpoints). Notice that while the
distribution of midpoints is uniform, the distribution of the resulting chords is

distinctly non-uniform.
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Hidden assumptions
(Jaynes):
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be the probability density
of chord centers
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Rotational invariance

In a reference frame which is at an angle o with respect to the original
frame, i.e., the new angle 6’ = 6 — «, the distribution of centers is
given by a different distribution function g(r,0") = g(r,0 — ) .
Since we require rotational invariance

f(r,0) =g(r.0 —a)

with the condition g(r, 8)|a=0 = f(r, ), and this must hold for every
angle «, so the only possibility is that there is no dependence on 6,

and £(r, 6) = g(r, 0) = £(r).
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Scale invariance

When we consider a circle with radius R, the normalization of the distribution f(r) is

given by the integral
2[R R
/ / f(r)rdrdd = 271'/ f(ryrdr =1
o Jo 0

The same distribution induces a similar distribution /(r) on a smaller concentric
circle with radius aR (0 < a < 1), such that h(r) is proportional to f(r), i.e.,
h(r) = Kf(r), and

aR ak aR
f— 27r/ h(u)udu = 27r/ Kf (u)udu = 27rK/ f(u)udu
0 0 0

1.€., .
K ! = 27r/ f(u)udu
0
and

ak
£(r) = 2mh(r) /O £(d)udu

inside the sma]ler circ]e, Edoardo Milotti - Bayesian Methods - September 2018 31



Now we invoke the assumed scale invariance: the probability of
finding a center in an annulus with radii r and r + dr in the original
circle, must be equal to the probability of finding a center in the
scaled down annulus,

h(ar)(ar)d(ar) = f(r)rdr

and therefore

a*h(ar) = f(r)
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Equation
a*h(ar) = f(r)

can also be rewritten in the form

and inserting this into equation

aR
flr) = 271'/1(}‘)‘/0 f(u)udu

we find

aR
a*f(ar) = 27rf(r)/0 f(u)udu

Edoardo Milotti - Bayesian Methods - September 2018
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We solve equation
ak
a*f(ar) = 27f(r) / f(u)udu
0

taking first its derivative with respect to «: the relation that we find must hold for all
a’s, and therefore also for ¢ = 1 (no scaling), and we find the differential equation

if'(r) = (27R°F(R) — 2) £(r)

1€,
i (r) = (¢ — 2)£(r)
where the constant ¢ = 27R*f(R) is unknown. However, we can still solve the

equation and find
f(r) =Ar~"

The constant A is easy to find from the normalization condition: A = ¢/27R?, and
therefore
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Translational invariance

O
) ‘
7"
0 b
b
Geometrical construction for the discussion of translational invariance.

The original circle (black) is crossed by a straight line (red) which defines
the chord. The translated circle is shown in blue.
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This circle is displaced by the amount b, and the new radius and angle
that define the midpoint of the chord are

r' = |r — bcos 0|
¢ =0 (ifr>bcosf) or 0 =60+x (if r <bcost)
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Now consider a region I" surrounding the midpoint in the original
circle, which is transformed into a region I/ by the translation. The
probability of finding a chord with the midpoint in the region I is

—1
o e qrq - q qg—1
/1“f(r),d’d9_/r Sy drdf) = ZWRq/I‘r drdf

Likewise, the same probability for the translated circle is

q INg—1 1.0 10/ B g—1
27qu/F,(r) dr'df = 27‘R /|r bcosO|T drdd  (3)

where the Jacobian of the transformation is 1. Equating these
expressions, we see that the integrand must be a constant, and
therefore ¢ = 1, and

f(r,0) =

|
27RYr

(r <K 0< 0= 2x%)
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Therefore

Fr.0) = ) = Or
= (normalization) 1= / f(r)2nrdr = 2nC'R
C

1
- 2mrR

= f(r)



Using this distribution, we find that the probability of finding a
midpoint inside the circle with radius R/2 — i.e., the probability of
finding a chord longer than the side of the triangle in Bertrand’s
paradox — is

2w R/?. R/2 1 l
/(; 0'0/0 flr,0)edri= 27r/0 27‘_Rrrdr =5

which corresponds to the second alternative in the previous discussion
of Bertrand’s paradox.

Lesson drawn from Bertrand’s paradox:

probability models depend on physical assumptions, they
are not God-given. We define the elementary events on the
basis of real-world constraints, derived from our own
experience.
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Probabilities as a measure of “reasonable
expectation”, and their relationship with statistical
Inference. (Cox, 1946)

« We construct — explicitly or implicitly — probabilistic
theoretical models to understand measurements (the most
common such model is the Gaussian model)

« We utilize the empirical probability distributions to infer the
parameter values of physical models
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What if we “measure” a mathematical constant instead
of a physical parameter?

Example:

area of Bernoulli’s
lemniscate obtained

with a Monte Carlo
simulation.



Parametric equation of Bernoulli’'s lemniscate

r = aVv cos 20

What is its area?
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Empirical Monte Carlo distribution of the area estimate

120+ ]

100+

60 -

098 100 102 104

area estimate
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Empirical Monte Carlo distribution of the area estimate

120+ ]

100+

80+~

60 -

098 100 102
a probability distribution of area estimate
a mathematical constant???
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Frequentist view: this is the distribution of an estimate, it does not
make sense to talk of the distribution of a constant.

Bayesian view: while in this case the value to be estimated is
unmistakably “true”, this is not a real experiment where the model itself
is not certain, and probability applies to it as well.

We can start from the Bayesian “reasonable expectation”
and use it unambiguously as probability: indeed Cox
showed that any reasonable measure of “reasonable
expectation” must behave just like common probability.
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AMERICAN
JOURNAL of PHYSICS

A Journal Devoted to the Instructional and Cultural Aspects of Physical Science

Vorume 14, Numser | Janvary-FepruAry, 1946

Probability, Frequency and Reasonable Expectation

R T, Cox
The Johns Hopkins Unsversity, Baltsmore 18, Maryland
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Boolean algebra (symbolic logic)

a, b, c ... propositions (true or false)

Basic operations Truth tables

OR: avb a/blavbilla/bla-bllal ~a_
T T T T T T T F

AND: a‘b T F F T
F T
F F

T T F
T F T
F F F

m T M

NOT: ~a
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Combinations of propositions

f\/‘\/a“_“a’
a-b=>b-a, (2) avb=Dbva,
a-a=a, (3) ava=a,

a-(b-c)=(a-b)-c=a b-c,
av(bvc)=(avb)vc=avbvec,
~(a-b)=~av ~b,
~(avb)=~a-~Db,

a-{avb)=a, (6) av(a-b)=a.
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The combination rules are not all independent, e.g.,
consider

~(a'b) =~av~b and ~(avb)=~a~b

When we assume the first, and utilizing ~~a = a, we can
deduce the second:

~(@ v b) = ~(~~a v ~~b) = ~~(~a-~b) = ~a-~b



Now let

p(bla)

denote any measure of reasonable credibility (credibility for
short) of proposition b when a is known to be true, and let F

be a function that combines credibilities
p(c-bla) = Flp(c|b-a),p(bla)]

While p is still quite arbitrary, F is constrained by the
algebra of propositions.
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Now we derive a functional equation for F from

p(d-c-bla)=p((d-c)-bla)

= Flp(d -

c|b-a),p(bla)]

— F[F[p(d]c-b-a),p(c]b~a)],p(b]a)]

and also

p(d-c-bla) =p(d-(c-b)la)

= F'[p(d
= F'[p(d

c-b-a) p(c-bla)]
c-b-a), Fp(c|b-a),p(bla)]]



Therefore, setting

r =p(d|c-b-a)
= p(c|b - a)
z = p(bla)

we find the functional equation

Flz, Fly, || = F |Flz,y], 2]



It is easy to see by substitution that the equation
Fla, Fly, 2] = F [Flz,y), 2]

has the solution

C f(Flp,q]) = f(p)f(q)

where C is an arbitrary constant and fis an arbitrary single-
variable function. It can be shown that this is also the general
solution if F has continuous second derivatives.

(homework!)



Given the arbitrariness of f, we take the identity function, so that
C p(c-bla) = C Flp(clb - a),p(bla)]
= p(c|b - a)p(bja)

Then, when we let ¢ = b, and we assume that credibility ranges
from O (no credibility) to 1 (certainty), and therefore

p(ala) = p(certainty) =1

we find
C p(b-bla) = C p(bla) = p(b|b - a)p(bla) = p(b|a)

and therefore C=1.



Thus we have found that credibility satisfies the condition
p(c-bla) = p(c|b-a)p(bla)

however this is not yet enough, because if we took a power
law instead of the identity, we could still satisfy all the
conditions and find, e.g., a condition like

p(c-bla)™ = p(c/b-a)™ p(bja)™

Can we do better?



We have used the properties of logical AND, but not yet those
of logical NOT and OR ...

Taking a negated proposition we expect to find the relationship

p("bla) = S[p(bla)

and therefore we find a functional equation

p(bla) = p(""bla) = 5|S[p(bla)]]

which, however, is not restrictive enough ...



Now we note that

Slp(cV bla)]

p(T(cVb)la)=p(“c-" bla)
p(Tc[7b-a)p("bla)
Slp(c|™b - a)|S|p(bla)]

and also that
p(c-"bla) p("b-cla)

p(c[b-a) =

p("bla)  p("bla)
_ p("blc - a) p(c|a)
p("bla)

_ Slp(bjc-a)] p(c|a)
Sp(bla)]




And finally we find

p(c|™b-a)) =

Slp(blc - a)] p(c|a)

or alternatively

S

'p(c-bla)

S[p(bla)]

p(c|a)

- plcla)

Slp(bla)]

=5

. {S[p(cvb!a)]}

Slp(bla)]

Slp(cVbla)]

 S[p(bla)]



This results hold for all propositions, and ifwe let b = ¢ - d
we find

plc-dla)]  plela) [ Slp(cla)]
| Tp(ca) | Shple-dla)] | Shlc- dla)].

Introducing the auxiliary variables
r =p(cla); y=S[p(c-dla)]

we obtain a compact form for the functional equation for S

xS_ﬁ_ =y S %
x Y




It is easy to see by substitution that the equation

CIZ‘S_E_ =y S %
x Y

has the solution

Sp] = (1—p™)"'™

It can be shown that this is also the general solution if S is
twice differentiable.

(homework!)



Again, this means that

p("bla) = Slp(bla)] = (1 ~ p(bla)™)"/"
= p(bla)™

and again, whatever the value of m, credibility satisfies the

usual probability rule. Since the choice of m is conventional
we take m = 1.



Summarizing, we have the following collection of
assumptions and rules:

p(certainty) = 1

p(impossibility) = 0

p(bla) +p("bla) =1
p(c-bla) = p(c|b - a)p(bla)

and from these all the usual rules of probability follow.

Therefore we can take probabilities as measures of
credibility.



Probability in Quantum Mechanics

Probability in QM has a fundamental role. This is highlighted by
the Bell’s inequalities.

Consider two identical objects, i.e., objects that share the same
general properties, and assume that

1. the properties are multivalued, and that their values are predetermined
and are not influenced by measurement (an example of such a property
could be the color of a set of “identical” balls: the color can take different
values such as red or blue);

2. locality holds, i.e., when the objects are spatially separated, the
determination of the value of the property of one object does not influence
the other one.



We assume that these two objects share 3 different binary
properties, A, B, and C, which can take the values 0 and 1, and
we experiment with them.

We enclose each of them in an opaque box, so that we cannot observe
them directly, and because of locality, we know that a measurement on
object 1 cannot influence a measurement on object 2.

We can also consider probabilities for each particular property value or
combination of property values, such as

P(A; =By)

which is that the probability that the value of property A for object 1 is the
same as the value of property B for object 2, i.e., that they are both 0 or
both 1.



If we assume that the two objects share exactly the same property values for
each property, then

P(A1=A;)=P(B1=B;) =P(C;=Cy) =1
From this assumption we deduce that

P(A1=B,) + P(A;=Cy) +P(B1=Cy) 21

sample

space A =C, B1=C,

A1=B2

A#B, 3 .



sample
space

A1=Bz

A= Cy

B,=0C;

The overlap region shared by the two
regions marked A, =B, and A, = C,
clearly contains events such that B, = C..

The same happens in the external region
where A, # B, and A, # C,, because of the
binary nature of the properties A, B and C.

However B, = B, by assumption, therefore

B, = C,implies B, = C,4, and finally we
obtain the inequality

P(A1=B;) + P(A;=Cy) +P(B1=Cy) 21



The inequality is violated by QM

Consider two two-level systems in an entangled state

~|00) + |11)
V2

and the two-valued properties A, B, and C obtained by
projecting the entangled state onto rotated orthogonal bases

o7")

5. ) 1) =3510) + 2I1)
| [b1) = 2°10) = 311)
o L leoy = 510) = 1)
o) = 210) + 3[1)



It is easy to check that these are orthogonal bases and that

_ \aoa()} + |a1a1> _ |bobo> —+ ‘b1b1> _ |C()C()> + |Cl(31>
V2 V2 V2

67)

so that

1
(apaole™) = (a1a1]¢™) = 7
and therefore
P(Al :OandA2 :O) ZP(Al = 1andA2 = 1) = 1/2

o

P(A; = Ag) = 1



Similar calculations hold for properties B and C, and thus
P(A; =A2)=P(B1=B)=P(C; =0 =1

holds.

However, when we write the vectors A as linear combinations
of the B’s

we find

lao) (|bo) + v/3|b1)) + |a1) (v/3[bo) — |b1))
2v/2

") =



This means that

(aobolé™) = (arbi|é™) = %

and therefore

P(A1anndBlzO):P(Alzlanngzl)zl/S
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this can be replicated to find
P(A1 =C2) =P(B1=02) =1/4
and therefore
P(A1=Bs)+ P(A1=C)+P(B1=0s)=3/4<1

which violates Bell's inequality



The inequality presented here is
just one of many versions that
have been produced since Bell's
discovery in 1964.

The violation is surprising, it is
confirmed by experiments, and it
indicates that there is something
amiss in our understanding of the
physical world.

It is still unclear how all this
comes about, what is the origin of
the violation.
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Probabilities and inference: the case of the Phoenix virus

Identification of an infectious progenitor
for the multiple-copy HERV-K human
endogenous retroelements

Marie Dewannieux,'-? Francis Harper,”* Aurélien Richaud,’* Claire Letzelter,’
David Ribet," Gérard Pierron,? and Thierry Heidmann'~>

"Unité des Rétrovirus Endogénes et Eléments Rétroides des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy,
94805 Villejuif Cedex, France; ?Laboratoire de Réplication de I’ADN et Ultrastructure du Noyau, UPR1983 Institut André Lwoff,
94801 Villejuif Cedex, France

Human Endogenous Retroviruses are expected to be the remnants of ancestral infections of primates by active
retroviruses that have thereafter been transmitted in a Mendelian fashion. Here, we derived in silico the sequence of
the putative ancestral “progenitor” element of one of the most recently amplified family—the HERV-K family—and
constructed it. This element, Phoenix, produces viral particles that disclose all of the structural and functional
properties of a bona-fide retrovirus, can infect mammalian, including human, cells, and integrate with the exact
signature of the presently found endogenous HERV-K progeny. We also show that this element amplifies via an
extracellular pathway involving reinfection, at variance with the non-LTR-retrotransposons (LINEs, SINEs) or
LTR-retrotransposons, thus recapitulating ex vivo the molecular events responsible for its dissemination in the host
genomes. We also show that in vitro recombinations among present-day human HERV-K (also known as ERVK) loci
can similarly generate functional HERV-K elements, indicating that human cells still have the potential to produce
infectious retroviruses.
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Amplification
+ genetic drift

Infection of primate Present-day
ancestor germ cell human genome

Phoenix, the ancestral HERV-K(HML2) retrovirus

To construct a consensus HERV-K(HML2) provirus, we assembled
all of the complete copies of the 9.4-kb proviruses that are human
specific (excluding those with the 292-nt deletion at the begin-
ning of the env gene) and aligned their nucleotide sequence to
generate the consensus in silico, taking for each position the
most frequent nucleotide.

* provirus = virus genome integrated into DNA of host cell
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Name GenBank Accession FirstPosition  Last position  Orientation
Number
K104 AC116309 123,567 114,122 —
K108-1 AC072054 47,417 37,947 —
K108-2 AC072054 38,914 29,443 —
K109 ACO055116 139,321 148,740 +
K113 AY037928 1 9,472 +
K115 AY037929 1 9,463 +
Y 178333 1 8,629 +
AP000776 101,084 110,549 +
AC025420 37,159 46,615 +

This table provides the GenBank coordinates of the human endogenous HERV-K copies used

to generate the Phoenix provirus.

Edoardo Milotti - Bayesian Methods - September 2018

75



P B e

.'->">-"‘,x;z‘a.‘;-'»:- ;

-:-E‘.,,-._,
e P

1 od

L
.‘- -'-‘ ~*

: 2 20 P

Image of representative particles obtained after transfection with an
expression vector for the Phoenix pro mutant. Scale bar 100 nm.
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An extremely short history of early Bayesianism

 Rev. Thomas Bayes discovered an early form of Bayes’ theorem
(second half of 18t century)

« Price discovered the theorem inside Bayes’ unpublished notes (end
18! century)

« Laplace reinvented a version of the theorem and later expanded it
after studying the Bayes’ notes (around 1800)

« Laplace successfully applied the theorem to many experimental
data analysis problems (until about 1820)

« Laplace was sometimes ridiculed by people who did not understand
some of his approaches

« Laplace discovered the basic version of the Central Limit Theorem
and in his later life he abandoned the Bayes theorem in favour of
frequency-based methods (until about 1830)

« After the death of Laplace, Bayes’ theorem was nearly forgotten and
cornered to the darkest parts of statistics (crossing the desert ...)



Conditional probabilities and Bayes’ Theorem

P(AB) — P(A’B)P(B) — P(B’A)P(A) Joint probability and

conditional probabilities

P(B | A)P(A) Bayes’ theorem: a
P(A|B) = .
AIB) =5 B) purly logca
P(D\H Bayes’ th in:
P D) = PP by now as an inferential

statement
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Likelihood Prior

. /H /
P(\H|D) — ](J(J)))P(H)

distribution Evidence



P(BI1A)-P(A)

P(AIB)= 7B}

P(A,1B)= P(Bllfggf(A") k=1,..,N

if the events A, are mutually
exclusive, and they fill the universe

P(B):iP(BIAk).P(Ak)

k=1




P(AIB)= P(BI1A)-P(A)

P(B)

L

P(B)= Y P(BIAP(4,)




P(D|Hy)
>_; P(D|H;)P(H;)

» MAP estimates

P(Hg|D) = P(Hy)
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Check the webpage:

http://wwwusers.ts.infn.it/~milotti/Didattica/Bayes/Bayes.html
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