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Prior distributions
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The choice of prior distribution is an important aspect of Bayesian 

inference

• prior distributions are one of the main targets of frequentists: 

how much do posteriors differ when we choose different 

priors?

• there are two main “objective” methods for the choice of priors

1. Jeffreys' method

2. The Maximum Entropy Method
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Changing variables
We can reformulate a problem in terms of different random variables. But 
moving from, say x to x2, means changing the prior PDF. This is obviously 
related to the fact that in many cases we do not know what the physically 
meaningful elementary, equiprobable events are.

This means that result depends on the choice of the random 
variable. Can we obviate this problem?

Recall that the conservation of probability implies

Therefore

py(y)dy = px(x)dx = px[x(y)]

����
dx

dy

���� dy

py(y) = px[x(y)]

����
dx

dy

����
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Jeffreys started from the averaged distribution of data, which – in the context of a 
given model – is described by the likelihood function. Then he took a scale-invariant 
version of it, the log-derivative, and to correct for possible negativity, he took the 
RMS, i.e., 

Indeed, taking the transformation

we find  
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The rationale of Jeffreys’ choice is that, although we do not 

know the physical constrains that determine the choice of the 

“least informative prior”, we can use the physical model 

provided by the Likelihood as a substitute.
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Example: Gaussian case

1. with respect to mean

2. with respect to standard deviation (Jeffreys’ prior, usually taken to mean “scale 
invariance”, additive in a log scale)

L =
1p
2⇡�

exp

✓
� (x� µ)2

2�2

◆

lnL = ln
p
2⇡ � ln� � (x� µ)2

2�2

p(µ) ⇠ constant

p(�) ⇠ 1

�

6



A short refresher on (Boltzmann’s) entropy in statistical 
mechanics

• consider a system where states n are occupied by Nn identical 
particles  (n, n=1, ... , M).

• the number of ways to fill these states is given by 

• then Boltzmann’s entropy is 
 
Ω = N!

N1!N2 !…NM !

 

SB = kB lnΩ = kB ln
N!

N1!N2 !…NM !
≈ kB N lnN − N( )− Nn lnNn − Nn( )

n
∑⎛

⎝⎜
⎞
⎠⎟

= kB N lnN − Npn ln pn + lnN( )
n
∑⎛

⎝⎜
⎞
⎠⎟
= kB pn ln

1
pnn

∑
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SB = kB pi ln
1
pii

∑

Boltzmann’s entropy is just like 
Shannon’s entropy

SI = pi log2
1
pii

∑

probability of physical 
states

probability of source 
symbols
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Shannon’s entropy is the average 
information output by a source of 
symbols

this logarithmic function is 
the information carried by 
the i-th symbol
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Examples: 

• just two symbols, 0 and 1, same source probability  

SI = �2

✓
1

2
log2

1

2

◆
= 1 bit

there are 2 
equal terms average information 

conveyed by each 
symbol

the result is given in 
pseudounit “bits” (for 
natural logarithms this is 
“nats”)
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• just two symbols, 0 and 1, probabilities ¼ and ¾ , 
respectively

• 8 symbols, equal probabilities 

SI = �1

4
log2

1

4
� 3

4
log2

3

4
⇡ 0.81 bit

SI = �
8X

1

1

8
log2

1

8
= log2 8 = 3 bit
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The Shannon entropy is additive for independent sources. 

If symbols are emitted simultaneously and independently by two sources, 
the joint probability distribution is

and therefore the joint entropy is  

p(j, k) = p1(j)p2(k)

S = �
X

j,k

p(j, k) log2 p(j, k) = �
X

j,k

p1(j)p2(k) log2[p1(j)p2(k)]

= �
X

j

p1(j) log2 p1(j)�
X

k

p2(k) log2 p2(k)

= S1 + S2
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The Shannon entropy is the highest for the uniform 
distribution.

This is an easy result that follows using one Lagrange multiplier to keep 
probability normalization into account

all probabilities have 
the same value

S + �
NX

k=1

pk = �
NX

k=1

pk log2 pk + �
NX

k=1

pk

= � 1

ln 2

NX

k=1

pk ln pk + �
NX

k=1

pk

@

@pj
(S + �

NX

k=1

pk) = � 1

ln 2
(ln pj + 1) + � = 0

pj = exp(� ln 2� 1) = 1/N
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Edwin T. Jaynes (1922-1998),
introduced the method of maximum
entropy in statistical mechanics: when
we start from the informational
entropy (Shannon’s entropy) and we
use it introduce Boltzmann’s entropy
we reobtain the whole of statistical
mechanics by maximizing entropy.

In a sense, statistical mechanics also
arises from a comprehensive
“principle of maximum entropy”.

http://bayes.wustl.edu/etj/etj.html
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In these papers Jaynes argues that information theory provides a
constructive criterion for setting up probability distributions on the basis of
partial knowledge, and leads to a type of statistical inference which is
called the maximum-entropy estimate.

It is the least biased estimate possible on the given information; i.e., it is
maximally noncommittal with regard to missing information.

If one considers statistical mechanics as a form of statistical inference
rather than as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function, are an
immediate consequence of the maximum-entropy principle.
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In the resulting "subjective statistical mechanics," the usual rules are
justified independently of any physical argument, and in particular
independently of experimental verification; whether or not the results agree
with experiment, they still represent the best estimates that could have been
made on the basis of the information available.

Jaynes concludes that statistical mechanics need not be regarded as a
physical theory dependent for its validity on additional assumptions not
contained in the laws of mechanics (such as ergodicity, metric transitivity,
equal a priori probabilities, etc.).

Furthermore, it is possible to maintain a sharp distinction between physical
and statistical aspects. The former consists only of the correct enumeration
of the states of a system; the latter is a straightforward example of statistical
inference.
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left ~left

blue 1/9 2/9

~blue 2/9 4/9

left ~left

blue 0 1/3

~blue 1/3 1/3

left ~left

blue 1/3 0

~blue 0 2/3

no correlation                   maximum negative correlation      maximum positive correlation
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Now let’s move on and maximize entropy in order to solve 
problems and  find prior distributions ...

The kangaroo problem (Jaynes)

•Basic information: one third of all kangaroos has blue eyes, 
and one third is left-handed.

•Question: which fraction of kangaroos has both blue eyes and 
is left-handed?
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probabilities

entropy (proportional to Shannon’s entropy)

constraints (3 constraints, 4 unknowns)

pbl pbl pbl pbl

S = pbl ln
1
pbl

+ pbl ln
1
pbl

+ pbl ln
1
pbl

+ pbl ln
1
pbl

pbl + pbl + pbl + pbl = 1
pbl + pbl = 1 3
pbl + pbl = 1 3
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entropy maximization with constraints

SV = pbl ln
1
pbl

+ pbl ln
1
pbl

+ pbl ln
1
pbl

+ pbl ln
1
pbl

⎛
⎝⎜

⎞
⎠⎟

+λ1 pbl + pbl + pbl + pbl −1( ) + λ2 pbl + pbl −1 3( ) + λ3 pbl + pbl −1 3( )

∂SV
∂pbl

= − ln pbl −1+ λ1 + λ2 + λ3 = 0

∂SV
∂pbl

= − ln pbl −1+ λ1 + λ3 = 0

∂SV
∂pbl

= − ln pbl −1+ λ1 + λ2 = 0

∂SV
∂pbl

= − ln pbl −1+ λ1 = 0

pbl = exp −1+ λ1 + λ2 + λ3( )
pbl = exp −1+ λ1 + λ3( )
pbl = exp −1+ λ1 + λ2( )
pbl = exp −1+ λ1( )
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pbl = pbl exp λ3( )
pbl = pbl exp λ2( )
pbl = pbl exp λ2 + λ3( )

⎧

⎨
⎪

⎩
⎪

⇒ pbl pbl = pbl pbl

pbl + pbl + pbl + pbl =1
pbl + pbl =1 3
pbl + pbl =1 3
pbl pbl = pbl pbl

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒

pbl = pbl =1 3− pbl
pbl =1 3+ pbl

1 3− pbl( )2 = pbl 3+ pbl2
1 9 − 2pbl 3+ pbl

2 = pbl 3+ pbl
2

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⇒ pbl =
1
9
; pbl = pbl =

2
9
; pbl =

4
9

this solution coincides 
with the least 
informative distribution 
(no correlation)
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Solution of underdetermined systems of equations

In this problem there are fewer equations than unknowns; the 
system of equations is underdetermined, and in general there 
is no unique solution. 

The maximum entropy method helps us find a reasonable 
solution, the least informative one (least correlations between 
variables)

Example:  

3x + 5y +1.1z = 10
−2.1x + 4.4y −10z = 1

x, y, z > 0( )
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S = − x
x + y + z

ln x
x + y + z

+ y
x + y + z

ln y
x + y + z

+ z
x + y + z

ln z
x + y + z

⎛
⎝⎜

⎞
⎠⎟

= − 1
x + y + z

x ln x + y ln y + z ln z − x + y + z( )ln x + y + z( )⎡⎣ ⎤⎦

Q = S + λ 3x + 5y +1.1z −10( ) + µ −2.1x + 4.4y −10z −1( )

∂Q
∂x

= −
ln x − ln x + y + z( )

x + y + z
+
x ln x + y ln y + z ln z − x + y + z( )ln x + y + z( )

x + y + z( )2
+ 3λ − 2.1µ

=
y + z( )ln x + y ln y + z ln z

x + y + z( )2
+ 3λ − 2.1µ = 0

3x + 5y +1.1z = 10
−2.1x + 4.4y −10z = 1

x, y, z > 0( )
this ratio can be taken to be 
a “probability”
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∂Q
∂x

=
y + z( )ln x + y ln y + z ln z

x + y + z( )2 + 3λ − 2.1µ = 0

∂Q
∂y

=
x ln x + x + z( )ln y + z ln z

x + y + z( )2 + 5λ + 4.4µ = 0

∂Q
∂z

=
x ln x + y ln y + x + y( )ln z

x + y + z( )2 +1.1λ −10µ = 0

10 = 3x + 5y +1.1z
1= −2.1x + 4.4y −10z

x = 0.606275;   y = 1.53742;   z =  0.449148;   
λ  = 0.0218739;   µ  = -0.017793
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this is an example of an “ill-posed” problem

the solution that we found is a kind of regularization

of the ill-posed problem
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Finding priors with the maximum entropy 
method

S = pk ln
1
pkk

∑ = − pk ln pk
k
∑ Shannon entropy

entropy maximization when all information is 
missing and normalization is the only constraint:

∂
∂pk

− pk ln pk
k
∑ + λ pk

k
∑ −1⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − ln pk +1( ) + λ = 0

pk = e
λ−1; pk

k
∑ = eλ−1

k
∑ = Neλ−1 =1 ⇒ pk =1 N
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entropy maximization when the mean is known µ

∂
∂pk

− pk ln pk
k
∑ + λ0 pk

k
∑ −1⎛

⎝⎜
⎞
⎠⎟
+ λ1 xk pk

k
∑ − µ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= − ln pk +1( ) + λ0 + λ1xk = 0

pk = e
λ0 +λ1xk −1;

incomplete 
solution... 

We must satisfy two constraints now ... 

Edoardo Milotti - Bayesian Methods - September 2018 26



pk = e
λ0 +λ1xk −1

pk
k
∑ = eλ0 +λ1xk −1

k
∑ = eλ0 −1 eλ1xk

k
∑ = 1

xk pk
k
∑ = xke

λ0 +λ1xk −1

k
∑ = eλ0 −1 xke

λ1xk

k
∑ = µ

eλ0 −1 =
1
eλ1xk

k
∑

;
xke

λ1xk

k
∑

eλ1xk
k
∑

= µ

no analytic solution, 
only numerical 
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Example : the biased die
(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy 
Formalism; Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

1
6
1+ 2 + 3+ 4 + 5 + 6( ) = 21

6
= 3.5

mean value for a biased die

3.5 1+ ε( )
Problem: for a given mean value of the biased die, what is the 
probability distribution of each value? 
The mean value is insufficient information, and we use the 
maximum entropy method to find the most likely distribution 
(the least informative one).

Edoardo Milotti - Bayesian Methods - September 2018 28



entropy maximization with the biased die:

∂
∂pk

− pk ln pk
k=1

6

∑ + λ0 pk
k=1

6

∑ −1⎛
⎝⎜

⎞
⎠⎟
+ λ1 kpk

k=1

6

∑ − 7
2
1+ ε( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= − ln pk +1( ) + λ0 + kλ1 = 0
pk = e

λ0+λ1k−1

pk
k=1,6
∑ = eλ0−1 eλ1k

k=1,6
∑ = 1

kpk
k=1,6
∑ = eλ0−1 keλ1k

k=1,6
∑ = 7

2
1+ ε( )

eλ0−1 = 1
eλ1k

k=1,6
∑ ;

kpk
k=1,6
∑

eλ1k
k=1,6
∑ = 7

2
1+ ε( )

we still have to satisfy the 
constraints ... 
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eλ0 −1 eλ1k
k=1,6
∑ = eλ0 −1 eλ1k

k=0,6
∑ −1

⎛
⎝⎜

⎞
⎠⎟
= eλ0 −1 1− e

7λ1

1− eλ1
−1

⎛
⎝⎜

⎞
⎠⎟
= 1

keλ1k
k=1,6
∑

eλ1k
k=1,6
∑

=
∂
∂λ1

ln eλ1k
k=1,6
∑ =

∂
∂λ1

ln eλ1 eλ1k
k=0,5
∑⎛

⎝⎜
⎞
⎠⎟

=
∂
∂λ1

λ1 + ln 1− e
6λ1( ) − ln 1− eλ1( )⎡⎣ ⎤⎦

= 1− 6e6λ1

1− e6λ1
+

eλ1

1− eλ1
=
7
2
1+ ε( )

the Lagrange multipliers are obtained from nonlinear 
equations and we must use numerical methods 
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with a biased die we obtain skewed distributions. 

These are examples of UNINFORMATIVE PRIORS

numerical solution
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1 2 3 4 5 60.00

0.05

0.10

0.15

0.20

0.25

0.30

Example: mean = 4

pn

n

1/6
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Entropy with continuous probability distributions
(relative entropy, Kullback-Leibler divergence)

S→ − p x( )dx⎡⎣ ⎤⎦ ln p x( )dx⎡⎣ ⎤⎦
a

b

∫ this diverges!

Sp |m = − pk ln
pk
mkk

∑ relative entropy

Sp |m = − p x( ) ln p x( )
m x( ) dxa

b

∫ this does not diverge!
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Mathematical aside on the Kullback-Leibler divergence

The obvious extension of the Shannon entropy to continuous distributions 

does not work, because it diverges. 

A solution is suggested again by statistical mechanics ... 

S =

Z +1

�1
p(x)dx log2

1

p(x)dx

34
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Boltzmann entropy with degeneracy number attached to each 
level

⌦ =
N !

N1!N2! . . . NM !
gN1
1 gN2

2 . . . gNM
M

ln⌦ = lnN !�
MX

k=1

lnNk! +
MX

k=1

Nk ln gk

= �N
MX

k=1

(Nk/N) ln
(Nk/N)

gk

= �N
MX

k=1

pk ln
pk
gk

IKL =
MX

k=1

pk ln
pk
gk

Kullback-Leibler
divergence
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Properties of the Kullback-Leibler divergence

• extremal value when pk = gk.
Indeed, using again a Lagrange multiplier we must 
consider the auxiliary function

and we find the extremum at 

IKL + �
X

k

pk

pk = gke
��1 = gk

normalization(homework!)
36
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• the KL divergence is a measure of the number of excess bits 
that we must use when we take a distribution of symbols 
which is different from the true distribution 

IKL =
MX

k=1

pk ln
pk
gk

=
MX

k=1

pk ln
1

gk
�

MX

k=1

pk ln
1

pk

37
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• the KL divergence for continuous distributions does not 
diverge

IKL =
X

k

pk ln
pk
gk

!
Z +1

�1
p(x)dx ln

p(x)dx

g(x)dx

=

Z +1

�1
p(x) ln

p(x)

g(x)
dx

38
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• the KL divergence is non-negative

Notice first that when we define we find

where and therefore

�(t) = t ln t

�(t) = �(1) + �0(1)(t� 1) +
1

2
�00(h)(t� 1)2 = (t� 1) +

1

2h
(t� 1)2

t < h < 1

IKL =

Z +1

�1
p(x) ln

p(x)

g(x)
dx = �

Z +1

�1

p(x)

g(x)
ln

p(x)

g(x)
g(x)dx =

Z +1

�1
�

✓
p(x)

g(x)

◆
g(x)dx

=

Z +1

�1

"✓
p(x)

g(x)
� 1

◆
+

1

2h

✓
p(x)

g(x)
� 1

◆2
#
g(x)dx =

Z +1

�1

1

2h

✓
p(x)

g(x)
� 1

◆2

g(x)dx

=

Z +1

�1

1

2h

(p(x)� g(x))2

g(x)
dx � 0
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The KL divergence is a quasi-metric (however a local version of 
the KL divergence is the Fisher information, which is a true 
metric)

The KL divergence can be used to measure the “distance” 
between two distributions. 

Example: the KL divergence

for the distributions  

IKL(p, q) =

Z +1

�1
p(x) ln

p(x)

q(x)
dx

p(x) =
1p
2⇡�2

exp

✓
� x2

2�2

◆

q(x) =
1p
2⇡�2

exp

✓
� (x� µ)2

2�2

◆ IKL(p, q) =
µ2

2�2
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Now consider a family of parametric distributions and evaluate the KL divergence 
between two close elements of the family

Since

we find, using the first Bartlett identity,

i.e., locally the KL divergence is just the Fisher information

IKL (p(x, ✓), p(x, ✓ + ✏)) =

Z +1

�1
p(x, ✓) ln

p(x, ✓)

p(x, ✓ + ✏)
dx

= E (ln p(x, ✓)� ln p(x, ✓ + ✏))

IKL (p(x, ✓), p(x, ✓ + ✏)) = �E

✓
@ ln p(x, ✓)

@✓
✏+

1

2

@2 ln p(x, ✓)

@✓2
✏2
◆

= �1

2
E


@2 ln p(x, ✓)

@✓2

�
✏2 =

1

2
I(✓)✏2

ln p(x, ✓ + ✏) ⇡ ln p(x, ✓) +
@ ln p(x, ✓)

@✓
✏+

1

2

@2 ln p(x, ✓)

@✓2
✏2
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Homework: go back to the estimate of the parameter of the 
binomial distribution and find the KL divergence of 
successive estimates

End of mathematical aside
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Entropy extremization with additional conditions (partial 
knowledge of moments of the prior distribution)

Q p[ ] = − p x( )ln p x( )
m x( ) dxa

b

∫ + λk xk p x( )dx −Mk
a

b

∫
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪k

∑

xk = xk p x( )dx
a

b

∫

function (functional) that must be extremized
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δQ = − δ p ln p x( )
m x( ) +1− λk x

k

k
∑⎧

⎨
⎩

⎫
⎬
⎭
dx

a

b

∫ = 0

variation

ln p x( )
m x( ) +1− λk x

k

k
∑ = 0

p x( ) = m x( )exp λk x
k

k
∑ −1

⎛
⎝⎜

⎞
⎠⎟
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p x( ) = m x( )exp λnx
n

n
∑ −1

⎛
⎝⎜

⎞
⎠⎟

Mk = xkm x( )exp λnx
n

n
∑ −1

⎛
⎝⎜

⎞
⎠⎟
dx

a

b

∫

p(x) is determined by the choice of m(x) and by the 
constraints

The constraints can be the moments themselves:
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1. no moment is known, normalization is the only 
constraint, and p(x) is defined in the interval (a,b)

M 0 = m x( )exp λ0 −1( )dx
a

b

∫ = 1

we take a reference distribution which is uniform on (a,b), 
i.e., 

m x( ) = 1
b − a

M 0 =
1

b − a
exp λ0 −1( )dx

a

b

∫ = exp λ0 −1( ) = 1

⇒ λ0 = 1; p x( ) = m x( )exp λnx
n

n=0

0

∑ −1
⎛
⎝⎜

⎞
⎠⎟
=

1
b − a
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2. only the first moment is known, i.e, the mean, and p(x) is 
defined on (a,b)

M 0 =
1

b − a
exp λ0 + λ1x −1( )dx

a

b

∫ = 1

M1 =
1

b − a
x exp λ0 + λ1x −1( )dx

a

b

∫

M 0 = 1=
exp λ0 −1( )

b − a
exp λ1x( )dx

a

b

∫ =
exp λ0 −1( )

b − a
·
exp λ1b( )− exp λ1a( )

λ1

M1 =
exp λ0 −1( )

b − a
xexp λ1x( )dx

a

b

∫ =
exp λ0 −1( )

b − a
1
λ1

bexp λ1b( )− aexp λ1a( )( )− 1
λ1
2 exp λ1b( )− exp λ1a( )( )⎡

⎣
⎢

⎤

⎦
⎥

in general these equations can only be solved numerically...
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special case:

a→ −
L
2
; b→ L

2
; M1 = 0

exp λ0 −1( )
L

·
exp λ1L 2( ) − exp −λ1L 2( )

λ1
= 1

exp λ0 −1( )
L

1
λ1

L
2
exp λ1L 2( ) + L

2
exp −λ1L 2( )⎛

⎝⎜
⎞
⎠⎟
−
1
λ1
2 exp λ1L 2( ) − exp −λ1L 2( )( )⎡

⎣
⎢

⎤

⎦
⎥ = 0

exp λ0 −1( )
L

·
exp λ1L 2( ) − exp −λ1L 2( )

λ1
= 1

L
2
exp λ1L 2( ) + exp −λ1L 2( )( ) − 1λ1 exp λ1L 2( ) − exp −λ1L 2( )( ) = 0
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p x( ) = m x( )exp λk x
k

k=0

1

∑ −1
⎛
⎝⎜

⎞
⎠⎟
=
1
L

exp λ0 −1( ) sinh λ1L 2( )
λ1L 2

= 1

L cosh λ1L 2( ) − 2
λ1
sinh λ1L 2( ) = 0

⇒ λ1L 2( ) = tanh λ1L 2( ) ⇒ λ1 = 0; λ0 = 1
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a→ −
L
2
; b→ L

2
; M1 = ε

exp λ0 −1( )
L

·
exp λ1L 2( ) − exp −λ1L 2( )

λ1
= 1

exp λ0 −1( )
λ1L

L
2
exp λ1L 2( ) + exp −λ1L 2( )( ) − 1λ1 exp λ1L 2( ) − exp −λ1L 2( )( )⎡

⎣
⎢

⎤

⎦
⎥ = ε

exp λ0 −1( )
λ1L 2( ) ·sinh λ1L 2( ) = 1

L
2

1
tanh λ1L 2( ) −

1
λ1

= ε

nonzero mean
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tanh λ1L 2( ) = 1
λ1L 2

+
2ε
L

⎛
⎝⎜

⎞
⎠⎟

−1

tanh z( ) = 1
z
+
2ε
L

⎛
⎝⎜

⎞
⎠⎟
−1

this is similar to the equations of ferromagnetism 

z − z
3

3
≈ 1

z
+ 2ε
L

⎛
⎝⎜

⎞
⎠⎟
−1

⇒ z − z
3

3
⎛
⎝⎜

⎞
⎠⎟
1
z
+ 2ε
L

⎛
⎝⎜

⎞
⎠⎟ ≈1+

2ε
L
z − z

2

3
= 1

⇒ 2ε
L

− z
3
≈ 0 ⇒ z ≈ 6ε

L

λ1L
2

≈ 6ε
L

⇒ p x( ) ≈ 1
L
exp λ1x( ) ≈ 1

L
1− 12ε

L
x⎛

⎝⎜
⎞
⎠⎟
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another special case a = 0; b→∞

M 0 = 1 = m0 exp λ0 −1( )· 1
−λ1( )

M1 = m0 exp λ0 −1( ) 1
λ1
2

⎡

⎣
⎢

⎤

⎦
⎥ = −λ1( ) 1

λ1
2

⎡

⎣
⎢

⎤

⎦
⎥ = −

1
λ1

= x

M 0 =
1

b − a
exp λ0 + λ1x −1( )dx

a

b

∫ = 1

M1 =
1

b − a
x exp λ0 + λ1x −1( )dx

a

b

∫
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p x( ) = m x( )exp λnx
n

n
∑ −1

⎛
⎝⎜

⎞
⎠⎟

= m0 exp λ0 −1( )exp λ1x( ) = 1
x
exp −

x
x

⎛
⎝⎜

⎞
⎠⎟

and we obtain the exponential distribution

then

m0 exp λ0 −1( ) = −λ1 =
1
x
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3. both mean and variance are known, and the interval is 
the whole real axis

M 0 = m0 exp λ0 + λ1x + λ2x
2 −1( )dx

a

b

∫ = 1

M1 = m0 x exp λ0 + λ1x + λ2x
2 −1( )dx

a

b

∫

M 2 = m0 x2 exp λ0 + λ1x + λ2x
2 −1( )dx

a

b

∫

exp λ0 + λ1x + λ2x
2 −1( ) = exp λ2 x2 + 2 λ1

λ2
x + λ1

2

λ2
2

⎛
⎝⎜

⎞
⎠⎟
+ λ0 −1−

λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟
exp λ2 x + λ1

λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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M 0 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

exp −
1

2 −1 2λ2( ) x +
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−∞

+∞

∫ = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

−
π
λ2

= 1

M1 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

x exp −
1

2 −1 2λ2( ) x +
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−∞

+∞

∫ = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

−
π
λ2

−
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟
= −µ

M 2 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

x2 exp −
1

2 −1 2λ2( ) x +
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−∞

+∞

∫ = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

−
π
λ2

−
1
2λ2

+
λ1
2

λ2
2

⎛
⎝⎜

⎞
⎠⎟
= σ 2 + µ2

M 0 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

− π
λ2

= 1

M1 =
λ1
λ2

= µ

M 2 = − 1
2λ2

+ λ1
2

λ2
2

⎛
⎝⎜

⎞
⎠⎟
=σ 2 + µ2

⇒ λ1 = −
µ
2σ 2 ; λ2 = −

1
2σ 2 ; m0 exp λ0 −1−

λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟
=

1
2πσ 2
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p(x) = m0 exp λ0 + λ1x + λ2x
2 −1( )

= m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟
exp −

1
2 −1 2λ2( ) x +

λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1
2σ 2π

exp 1
2σ 2 x − µ( )2⎡

⎣⎢
⎤
⎦⎥

... in this case where mean and variance are known, the 
entropic prior is Gaussian
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An alternative form of entropy that incorporates the 
normalization constraint

Q p;m[ ] = − dx
X
∫ p(x)ln p(x)

m x( ) + λ dx
X
∫ p(x)− dx

X
∫ m(x)

⎛

⎝⎜
⎞

⎠⎟

= dx
X
∫ − p(x)ln p(x)

m x( ) + λ p(x)− λm(x)
⎛
⎝⎜

⎞
⎠⎟

δQ = δ pdx
X
∫ − ln p(x)

m x( ) −1+ λ
⎛
⎝⎜

⎞
⎠⎟
= 0

p(x) = m x( )exp λ −1( )
dx

X
∫ p(x) = dx

X
∫ m x( )exp λ −1( ) = exp λ −1( ) dx

X
∫ m x( ) = exp λ −1( ) = 1

⇒ λ = 1

Q p;m[ ] = dx
X
∫ − p(x)ln p(x)

m x( ) + p(x)−m(x)
⎛
⎝⎜

⎞
⎠⎟
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Until now we have emphasized the role of the momenta of 
the distribution, however other information can be 
incorporated in the same way in the entropic prior. 

A “crystallographic” example (Jaynes, 1968)

Consider a simple version of a crystallographic problem, 
where a 1-D crystal has atoms at the positions

and such that these positions may be occupied by impurities. 

 x j = jL L = 1,…,n( )
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From X-ray experiments it has been determined that impurity 
atoms prefer sites where

so that  

which means that we have the constraint

where pj is the probability that an impurity atom is at site j. 

cos kx j( ) > 0

cos kx j( ) = 0.3

cos kx j( ) = pj cos kx j( )
j=1

n

∑ = 0.3
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Then the constrained entropy that must be maximized is

from which we find the maximization condition

i.e.,  

The rest of the solution proceeds either by approximation or 
by numerical calculation. 
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∂Q
∂pj

= − ln pj +1( ) + λ0 + λ1 cos kx j( ) = 0

Q = − pj ln pj
j=1

n

∑ + λ0 pj
j=1

n

∑ −1
⎛

⎝⎜
⎞

⎠⎟
+ λ1 pj cos kx j( )

j=1

n

∑ − 0.3
⎛

⎝⎜
⎞

⎠⎟

pj = exp 1− λ0 − λ1 cos kx j( )⎡⎣ ⎤⎦
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