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Two important computational techniques with a

Bayesian basis

1. The EM algorithm
2. Image processing techniques (MLM, MEM, etc.)



1. The EM algorithm (Dempster, Laird & Rubin, 1977)

Recall the max. likelihood principle:

uniform distribution
(usually an improper prior)

p(dle,I) /

-P(O11 ikelihoo
P(dl]) ( ) likelihood

_ £(d0)
evidence N P(d | I)

PO1d,I)=

-P(O11)< £(d,0)

in this (approximate) setting, the MAP estimate coincides with
the ML estimate.



when data are independent and identically distributed (i.i.d.) we find the
following likelihood function

L (d96) = Hp(di

and we estimate the parameters by maximizing the likelihood function

0)

0 = argmax £(d,0)
6
or, equivalently, its logarithm

0 = argmax[ log £ (d,6) ]
6

(in real life, this procedure is often complex and almost invariably it requires
a numerical solution)



The EM algorithm is used to maximize likelihood with incomplete information,
and it has two main steps that are iterated until convergence:

E. expectation of the log-likelihood, averaged with respect to missing data:

parameters (with respect
to which we want to
maximize the expression

measured missing
data data previous parameter
Ilkel|hood estimate (constant
values

logp Xy\O XO”1

E,
j | log p(x,y|0) |p y‘x@”l) y
Y

ofo.0")

M. maximization of the averaged log-likelihood with respect to parameters:
-1
0" = argmax Q (0, 0" ))
0
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Example: an experiment with an exponential model
(Flury and Zoppe)

Light bulbs fail following an exponential distribution with mean failure time 0
To estimate the mean two experiments are performed
1. n light bulbs are tested, all failure times u; are recorded

2. m light bulbs are tested, only the total number r of bulbs failed at time t are
recorded
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missing data!



combined likelihood
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log-likelihood
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expected failure time for a bulb

that is still burning at time t t+0

expected failure time for a bulb O — teXP(_t/Q)
that is not burning at time t 1 — exp(—t/@)




Note on mean failure time for a bulb that is not burning at time ¢

P(l")‘x%e_t'/e 0<t <t
normalization = j p(t')dt' — jd_t, o0 —1— o1/®
0 0 9
| dt
mean failure time = _[t’p(t’)dt’ — _t/e J‘ o110 20
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0

average log-likelihood

0= E{—nln@— ”g"> +i(—1n9—%ﬂ
n{u) 1(0_ feXP(—f/H))j_(m;”)(ew)

= — Ino— _
(n-+m)In 1—exp(—1/6

0

this ends the expectation step
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the max of the mean likelihood

1
Q——(n+m)ln9—5

n{u)+ r(@ — texp(—t/@)

1—exp(—1/6

))+(m—r)(9+t)_

can be found by maximizing the approximate expression

Qz—(n+m)ln9—l
0
Z—gz—(n+m)%+i2

n<u>+r[9 ¢

_ Q(k)
n<u>—|—r o) — texp( t/ )
l—exp(—t/G(k)

n texp(—t/G(k))
- exp(—t/e(k)

)]+(m—r)(9(k)+t) =0

)]+(m—r)(9(k) -I—t)_




dQ 1

E —(I’l-l- WL)E-I-
Q(k-i—l) — 1
n+m

o7 n<u>+r(9 —

1 0 texp(—t/H(k))

l—exp(—t/é?

(k))]+(m— r)(e(k) +t)

1- exp(—t/é(k)

iterate this until convergence ...

n{u)+ r[O(k) — texp(—t/e(k)))]_i_ (m— r)(Q(k) + t)




Example with mean failure time = 2 (a.u.), and randomly
generated data (n = 100; m = 100). In this example r = 36.
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Important application of the EM method: parameters of “mixture
models”.

Example: a Gaussian
mixture model (M=2)




direct maximization of log likelihood

6)=Llogp(x,
=;10g Zapl( )

6)

log £(x,0) long(

difficult numerical treatment ... however we can manage
with a reinterpretation of the mixture model parameters ...

O, = probability of drawing the k-th component of the mixture model

» new (hidden) variable: y = index of component (integer values only)

thus we must redefine data and parameters
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new likelihood which includes the hidden variables

log £/(x,y,0) = logp(x,y 9)
=log] | p(x,.,

=D log| p(x,

=Y log| e, p, (x,

6)

0)]

v,.0)p(»,

0.}

( 6. are the parameters restricted to the i-th component)

The structure is simpler now, there is no sum in the argument
of the logarithm, however there is a new hidden variable y.



Now we proceed by averaging the likelihood
(Expectation step)

Vo
Q(G,G("‘l)): _logp(x,y\e)‘x,e("‘l)}

Ey
J[ﬁ_ogp(X,y\H)]p(y‘X,O(i_l))dy
—> Z[logp(x,y\@)]p(y‘x,e(i_l))

\

sum instead of integral, because the
y variate is discrete



prior probabilities in the expression of the averaged log-
likelihood

0(6.6"")=>[log p(x.yl6)]p(y[x.6"")

y
and now we use Bayes:

yn’e)p(yn 9) B *,, Py, (xn Oyn)
M
p(xn 9) Zakpk ('xn ek)
k=1
0
o 0)=T] %P [x.]e..)
= oD, ('xn ek)
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Therefore, using log £ ’(x,y,9) = Zlog[aynpyn (xn‘eyn )}

N
and p(y|X,9)=HP(yn‘xn’9)
n=1

we find
0(6.6")= X [log p(x.y16)]p(v[x.6"")

y
N log[ay P, (xk‘Oyk )}]ﬁp(yj‘xjae(i—l))
]:

mMi%M




Q(0,0 ) = ii 2 lﬁlog[aykpyk (xk

y=ly,=1 yn=l1 1

:ii iié%k’g[ gpg(xk|9 )}

n=ly,=1  yy=lk

/!

to decouple the variables, we add one sum and one Kronecker’s delta...

:z
>

—_
=

=
S
\_é

after the decoupling, we can use the normalization of
conditional probabilities



>p(€‘xk,9(i_l))

J
‘] J

_ iilog[a p (x |9 ):lp(f X e(i—l)) \ these sums all add to 1 (normalization

- I AAN A k

of conditional probabilities)
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M N
Q (9, H(i_l)) = Z Zln laep(l|zi, 0)] pe(zi, 80 D)
(=1 k=1
M N M N
:ZZInag pe(xr, 8°D) +ZZlnp Oz, 0) pe(zy, 0°D)
(=1 k=1 (=1 k=1
this depends only on the O/ parameters this term depends on the parameters of

the component distributions

Thus there are two terms that can be maximized separately.
Moreover, the first term must be maximized with the normalization
constraint, i.e.

9
o

) 4

iaip(m‘xk,e(i_l))+ A=0

k=1 %m
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%ip(m\xkﬁ“'”)

k=1
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This is as far as we can go without introducing an explicit form for the
component distributions: to evaluate the other term we explicitly consider the
1D Gaussian mixture model:

1 (x_.uz)z

Pf(xwwge): Wexp 262
p /

9 ZM ZN ZN (% — pn)
™ op=1 k=1 k=1 m
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Finally we find the following set of recursive formulas, that
combine the E and M steps:

1 (x—um)2
pm(x|,um,0'm)=Wexp — k

NS
N
| Zxkp(m‘xk .U,(qi_l) G,(n_l)) ) i(xk—u,(n))zp(m‘xk ul 6,(”_1))
My =45 (o)) ==—
> p(mfx.ul .0l > p(mlxon 0l )



We remark that the probabilities

AN

2 &, Dy ('xn 0, )
k=1

p(y,

are an estimate of the frequencies of the y,, using the observed
data x,, and this amounts to a classification (selection of one of
the component distributions).
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Example: classification of response of DNA microarrays.
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Microarray image

from:http://www.wormbook.org/chapters/www germlinegenomics/germlinegenomics.html


http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomics.html

Microarray: lab on a chip

30



DNA gene in genome

Transcription
Pre-mRNA

Intron splicing

In vivo

Mature mRNA

Reverse transcription

ds-cDNA labelled target (sample)
fixed probes *

Fragmentation
ds-cDNA fragments

I

| T
| ,j\l.
o

Fluorescent labelling
Labelled fragments I * «

Array binding

In vitro

different features
(e.g. bind different genes)

Fully complementary Partially complementary

Ordered microarray
strands bind strongly  strands bind weakly

Array fluorescence intensity m

Gene 1234

In silico

Within the organisms, genes are transcribed and spliced (in eukaryotes) to produce mature mRNA transcripts (red). The mRNA is
extracted from the organism and reverse transcriptase is used to copy the mRNA into stable cDNA (blue). In microarrays, the
cDNA is fragmented and fluorescently labelled (orange). The labelled fragments bind to an ordered array of complementary
oligonucleotides and measurement of fluorescent intensity across the array indicates the abundance of a predetermined set of
sequences. These sequences are typically specifically chosen to report on genes of interest within the organism’s genome.

(from https://en.wikipedia.org/wiki/File:Summary_of RNA_Microarray.svq)
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Cancer Cells Normal Cells

RNA Isolation
v v
mRNA mRNA
Reverse
Transcriptase
Labeling
v v
"Red Fluorescent” Targets "Green Fluorescent” Targets

Combine Targets

Hybridize to
Microarray

Microarray image from:http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomics.html

Further informations on DNA microarrays:http://www.ncbi.nim.nih.gov/About/primer/microarrays.html
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Easy-to-understand example: waiting times between eruptions of the Old
Faithful Geiser (Yellowstone National Park — \WWyoming)

25¢

20¢

15}

10}

Gaussian mixture model for
waiting time distribution
(R example) 0
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In this case, the mixture model has two Gaussian components

p(w‘e) — CMN(U); :ulvo_l) + (1 - OC)N(UJ;,LLQ, 02)

where the vector of parametersis @ = (()47 Ui, o, 01, (72)

The resulting log likelihood with n waiting times w; is

InL = Zln l[aN(w;; p1,01) + (1 — )N (w;; o, 02)]
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Again, we substitute the likelihood with the new one
L=]]a¥ (=) ¥ [N (ws;pr, 00)]V [N (wi; pa, 09))
i

where the new, unobserved data y; are indicator variables that select
extraction from the first (y; = 1) or the second (y; = 0) Gaussian.

Then

1 Y
InL = Z [yz na+ (1 —y)In(l —a)+y; (—§1I1(27T0'1) _ (wim )

202
(1 —y,) <_% n(2mo2) - (wi2_0§2)2>]

)



The probability that a given
time interval belongs to the
first Gaussian is

this probability is also equal to the mean
K value of the indicator variable

a X N (w;; piy, 01)
a X N(wg; p1,01) + (1 —a) X N(wg; pi2, 02)

oM expl—(wi — 1y”)* /201" 2m(07")?

Di =

a® expl—(w; — )2 /2(a1)2] /)21 (07)2 + (1 — a®) exp[—(w; — p§”)2/2(a57)2] /1) 2 (5")?
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Now, averaging the log likelihood with respect to the missing data we find

Q(0,0W) =3" [ D na+ (1 -pMm@1 - a) +p™ ( ;m(zm%) _ i _“1)2>

2
207

)

+(1 - pi*) (—% In(2mo) — Wi 52)2)]

205

(the mean value of the indicator variable is equal to the current estimate
probability o)

Next we maximize with respect to all the remaining parameters, and we

find:
QD) _ Zp(k)
k
(U§k+1))2 _ Zz’pi (w@ - /ig ))2, §k+1) Z p@ ’tUz
Zip@(k) | Z p(k)
k k k

(U(k+1))2 e — ) (w; — ))2, (k+1) 2o (1 — P Nw,

2 - —

sa-py P > (1 — ™)



Finally we have the following set of equations:

k k k
a® expl—(w; — i§")2/2(01")?) /1) 27 (o"))2

(k)
p;, =
a® expl—(w; — p)2/2(0)2)/1/27(01)2 + (1 — a®) exp[—(w; — p§”)2/2(a57)2] /) 27(0 )2
kD) — ZP(M
k
(k4+1)\ 2 _ Zz'p- ( ( ))2, (k+1) Zzp( ) w;
m - Eip%) | S 5 pt)
k
k+1)\2 D (1= ( ))<wz ,U<2 ))2, (k1) 21— ( )) (F
92 - (k) ’ Ho o = (k)
Zi(l_Pi ) Zi(l_pi )
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Comparison of the original data with the mixture model obtained with the EM
algorithm

12} - gu

ol AL 11N

50 60 70 8 90

Waiting time (min)
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Waiting time (mins)

50 60 70 80 90 100

40

Waiting time vs Eruption time
Old Faithful geyser

Eruption time (mins)

Edoardo Milotti - Bayesian Methods - September 2018

42



[Home]

Download
CRAN

R Project

About R

Logo
Contributors
What's New?
Reporting Bugs
Development Site
Conferences
Search

R Foundation

Foundation
Board
Members
Donors
Donate

Help With R
Getting Help

Documentation

The R Project for Statistical
Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide
variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN
mirror.

If you have questions about R like how to download and install the software, or what the license terms
are, please read our answers to frequently asked questions before you send an email.

News

R version 3.4.0 (You Stupid Darkness) has been released on Friday 2017-04-21.

R version 3.3.3 (Another Canoe) has been released on Monday 2017-03-06.

useR! 2017 (July 4 - 7 in Brussels) has opened registration and more at http://user2017.brussels/
Tomas Kalibera has joined the R core team.

The R Foundation welcomes five new ordinary members: Jennifer Bryan, Dianne Cook, Julie Josse,
Tomas Kalibera, and Balasubramanian Narasimhan.

The R Journal Volume 8/1 is available.
The useR! 2017 conference will take place in Brussels, July 4 - 7, 2017.

R version 3.2.5 (Very, Very Secure Dishes) has been released on 2016-04-14. This is a rebadging of
the quick-fix release 3.2.4-revised.

Notice XQuartz users (Mac OS X) A security issue has been detected with the Sparkle update
mechanism used by XQuartz. Avoid updating over insecure channels.



faithful {datasets} R Documentation
0ld Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

Usage

faithful

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption (in mins)

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times originally in seconds, where multiples of 5 are more frequent than expected under non-human measurement. For
a better version of the eruption times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more complete version.

Source

W. Hirdle.

References

Hirdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics 39, 357-365.
See Also

geyser in package MASS for the Azzalini-Bowman version.
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2. Image processing techniques (MLM, MEM)

The Crab Nebula in Taurus (VLT KUEYEN + FORS2) +%+

ESO PR Photo 40£99 ( 17 November 1999 ) © European Southern Observatory ar
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for | foo| fo3| foq .. true
- ixel ixel vector
for | Fuo| fos | Foa - el map j> P ;

osterior pixel o
gistributiopr)] likelihood a priori pixel

distribution
)2 (g‘ f) l /

P(f‘g) - P(g) P(f) - P(g‘ f)P(f) Bayesian estimate of

true pixel vector from
observed pixel vector




We estimate the true pixel distribution taking the pixel vector that

maximizes the posterior distribution (MAP estimate: Maximum A
Posteriori estimate).

This depends on the prior distribution

P(f) flat prior :: > I(\I/\I/Iaalzr;wm Likelihood Estimate

P(f|g) =< P(g|f) P(f) = P(g]f)

P(f) entropic prior :: > I(\I/\I/Iaéll\r/gum Entropy Method



Notice that
log P(f|g) = log P(g|f)— | —log P(f)]

therefore we obtain the estimate f' by maximizing the
likelihood with the penalty function

[—logP(f)]

Experiments have been tried with many different
penalties, many of them barely justified on probabilistic
grounds (or not at all!)



Let f be the vector of “true values” (uncorrupted intensities of an image, a

spectrum, etc. ...), and translate these values into counts

n, = \_OCfl_I

(i=1, ..., M). The least informative prior is that for a structureless image is

uniform, and the probability of one count at the j-th position is just 1/M.

Likewise, the probability of a given vector of values where the total number

of counts is N, is given by the multinomial probability

N! 1\
P = nM!(Mj’ 2m =N

nln,l...




Using Stirling’s approximation
n'=n'e” Inn!=nlnn—-n

M
we find, with the definition p, = £,/ D/

k=1

M
InP(n)=(NnN-N)-3 (n,Inn,—n,)
=1

l:

M
= NlnN—an. Inn,
i=1

M
~ _az fIn f + cost. entropic prior
i=1

\

P(n)e< exp[—(xi f1In f,} oc exp{—aﬁ; p.In pl} = exp| aS(f) |

i=1



Using the entropic prior and Bayes’ theorem we find

P(f)<exp| aS(f) ]

P(flg) < P(g|f) P(f) = P(g|f)exp[ xS (f)]

log P(f|g) = log P(g[f) + xS (f)

therefore we find the combination of pixels (i.e., the f vector)
that maximizes the posterior distribution by maximizing a linear
combination of likelihood and Shannon’s entropy.



Image likelihood: 1. the observation model

. . .
4 PSF
& (Point Spread
Function
true image
of a galaxy
g N mm) W
.
(example from Eric Thiebaut) “dirty image”

Edoardo Milotti - Bayesian Methods - September 2018 52



Counts

104 o . .
L % tf h(?‘) oC 1 + - 4
i ‘..‘:
.0.; “l.)’. z
* ’?\l},;,
1000 - . '.‘:..';m{ ’
:‘_" :o 1
“1‘3 .
10c |
0 2 4 8 8
Radius (Pixels)

PSF from atmospheric turbolence
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Relative flux

The Hubble PSF before the first servicing mission

100

80

o
=)

S
o

20

anticipated PSF

1] —

L
—

_.L\__observed PSF x 10
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In general the effect of the PSF is modeled by a linear
operator

f — Hf

/ N\

action of optical “true” pixel
system on true image vector
Is modeled by matrix H



Image likelihood: 2. the noise model (degradation model)

(g-Hf)

62

Gaussian noise model P(g\ f) o< eXP| —

Hf 8n
Poisson noise model P(g‘f) oc H( . ),n exp[—(Hf)n]

(Poisson noise mostly from detection process, Gaussian
noise mostly from electronics or from approximation of
Poisson noise)



sometimes we can use the Gaussian approximation of
Poisson noise

8n

T eso[ (),
g Hexp _ (8n B (Hf)n)

: 2(Hf)




Gaussian noise only:

maximize linear combination of entropy and chi-square

(g—HFf)’

62

(g, —(HF) )

=OCS(f)—Z 2

= aS(f) -y (f)

log P(f|g)= arS(f)—




Combined noise model

detector noise: Poisson noise
electronic noise:; Gaussian noise

k

(8, — k)" |(HF)

P(glt) =TT e erp| 7 |5 exp - (u),

maximize

log P(f|g)=asS(f)+ zn:log {zk: \/2;7 GXP{— s _zk) }(}g)i exp[—(Hf)n ]}

0

> numerical maximization procedure



Applications of Max.Ent. to image processing
(J. Skilling , Nature 309 (1984) 748)

o,
¥

Car movement introduces linear correlations among pixels. The model of linear
corrections does not allow direct inversion to find the corrected image because the
number of variables is larger than the number of equations. The MaxEnt methods
regularizes the problem and finds a reasonable solution.
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Reconstruction of missing data
(from http://www.maxent.co.uk )

95%

99%
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http://www.maxent.co.uk

low resolution (MEM enhanced)

low resolution

R high resolution
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Maximum Entropy Data Consultants Ltd.

L ’A“:'

John Skilling: Biographical information

John is Scientific Director of MEDC. He did his Ph.D. (on cosmic rays) in

1

About MEDC the Department of Physics at Cambridge University, and went on to
become a Lecturer in the Department of Applied Mathematics and
Applications Theoretical Physics, and a Fellow of St Johns College.
Examples In the late 1970s, another radio astronomer, Steve Gull, introduced him to
P the power of the Maximum Entropy Method. John wrote what was to
become the first MemSys kernel system, and helped lay the Bayesian
Prices foundations for MEM. In 1881 he and Steve founded MEDC to exploit
opportunities to apply MEM in other fields.
John resigned his Lectureship in 1880 in order to go fulltime with MSL and
MEDC. Thanks to the wonders of modern technology John is able to
= telecommute from his new home in the West of Ireland, and he makes
Search MEDC regular visits to clients both in the UK and further afield.

Quick Search:

Home | Applications | Products | Prices | Documents | About MEDC |
Contact Us | Full search

@MEDC Ltd. Last revised Wed Sep 19 22:19:39 2007

http://www.maxent.co.uk/ (currently not working - May 2017)

Edoardo Milotti - Bayesian Methods - September 2018 63


http://www.maxent.co.uk/

Fl. | 1 LIE. 2B - ! r I

Example of LensEnt P acisT038 keV) .+ " ' GMOSNR
: 040" |-———— Weak lensi .
usage (Bridle et al, b by e b s .
1998): : B e R :
> il o .
‘ S s e N o v
. ' / 4 gy SN ’ )
reconstruction of mass 39'F - Y 8/ P T . 7
i - S ' swd/ /47 7 2 S DN
density from lensing § % 044 /PP
data, using Max Ent S | A/ I°-177 5 e A DN A A .
= ’ /) N\ \\\ V)
o 38'|- pZ g |l (|- % (= W4 \ P4 IR Y PR N I l
g el B, 2 o 7R | 8 ey L) K
= o/ Lo \[CANNNS=" L2
8 - EA YO\ NN\ NSTer S .
A L\ N NN Y .
ﬂ . BRSNS N e e 5/ 2 ¢
~ N S saf/ /
reconstructed mass > 4 \k\_\ \\:: o= s I °
density / : A Ry ‘
. . v~ ’ . -
X-ray emission data N / . < . 5
— 1 l 1 1 ! 1 * ! . 1 l Il 1 ! o | ! ™
7h32m3(s 258 208 158 108
Right Ascension (J2000)

GMOS image of the central region of Abell 586 with logarithmically spaced X-ray isophotes
(solid lines) and weak-lensing reconstructed mass density (dashed lines) superposed. The
X-ray point source nearthe southwest corner is the Seyfert 1 galaxy C171_3650.

(from Cypriano et al., ApJ, 630 (2005) 38-49)
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Many related methods: e.g. the Richardson-Lucy (RL)
algorithm

noise model: Poisson noise
prior: flat prior

P(f|g) o H(Hf)gn

1= !" exp| —(HFf) |P(f)

logP(f\g) = Z[—(Hf)n +g log(Hf)n]+ const.

/

imize thi s _
:)noas)?erggre distribution ::> f=arg mfaXZ[_(Hf)n T8, log(Hf)n]




A 8. Raw image of planet Saturn obtained with the WF/PC cam-
era of the HST.

. 9. Reconstruction of the image of Saturn using the R-L algo-
rithm.
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NGC 604 in Spiral Galaxy M33
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