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Bayesian estimates often require the evaluation of 
complex integrals. Usually these integrals can only be 
evaluated with numerical methods.

enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling 
perspective
5. introduction to Markov chains and to the Metropolis 
algorithm
6. Markov Chain Monte Carlo (MCMC)
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1. The acceptance rejection method

Edoardo Milotti - Bayesian Methods - September 2018

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

f x( )

g x( )

y

x
0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

y

x
generate'x'(uniform)'

f x( )

g x( )

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

y

x

generate'y'(uniform'in'(0,g(y))' outside'gray'region:'reject!'

f x( )

g x( )

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

y

x
generate'y'(uniform'in'(0,g(y))'

inside'gray'region:'accept!'

f x( )

g x( )

3



Example: random numbers with semi-Gaussian distribution 
from exponentially distributed random numbers.

f x( ) = 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟

x ≥ 0

g x( ) = exp −x( )
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f x( ) = 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟

x ≥ 0

g x( ) = exp −x( )

⇒
f x( ) = cg x( )
′f x( ) = c ′g x( )

⎧
⎨
⎪

⎩⎪
⇒

2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟
= cexp −x( )

x 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟
= cexp −x( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⇒ x = 1; c = 2
π
exp − x

2

2
+ x

⎛
⎝⎜

⎞
⎠⎟
≈1.31549

Definition of contact point (to maximize efficiency)

Edoardo Milotti - Bayesian Methods - September 2018 5



0 2 4 6 8 10
0

500

1000

1500

x

Exponentially distributed values

Edoardo Milotti - Bayesian Methods - September 2018 6



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

x

A/R accepted values (10000 accepted sample pairs) 

Edoardo Milotti - Bayesian Methods - September 2018 7



0 1 2 3 4
0

200

400

600

800

x

Histogram of accepted x values

Edoardo Milotti - Bayesian Methods - September 2018 8



0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

Comparison with the original distributions

Edoardo Milotti - Bayesian Methods - September 2018 9



0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Edoardo Milotti - Bayesian Methods - September 2018 10



Now notice that in this method we generate pairs of real 
numbers           that are uniformly distributed between
and the x-axis, therefore we can use these pairs to estimate 
the total area under the curve

(here the reference area is the area of the enclosing rectangle which 
corresponds to a uniform distribution)  

u,θ( ) f θ( )

area =
# of accepted pairs

# of pairs
reference area
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In general, if , where p is a pdf h x( ) = f x( ) p x( )

h x( )dx
a

b

∫ = f x( ) p x( )dx
a

b

∫ = Ep f x( )⎡⎣ ⎤⎦ ≈
1
N

f xn( )
n=1

N

∑

and we find that the variance of this estimate of the integral 
is

1
N

1
N −1

f xn( ) − Ep f x( )⎡⎣ ⎤⎦⎡⎣ ⎤⎦
2

n=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭

We encounter a problem with this method when we 
must sample functions that have many narrow peaks.

here the x are i.i.d with pdf p(x)
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2. Importance sampling

h x( )dx
a

b

∫ = f x( ) p x( )dx
a

b

∫ = f x( ) p x( )
q x( )

⎡

⎣
⎢

⎤

⎦
⎥q x( )dx

a

b

∫

= Eq f x( ) p x( )
q x( )

⎡

⎣
⎢

⎤

⎦
⎥ ≈

1
N

f xn( ) p xn( )
q xn( )n=1

N

∑

this pdf is troublesome ... therefore we use this ...
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here the x are i.i.d with pdf q(x)
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3. Bootstrap (B. Efron, 1977) and the importance of edf’s

The bootstrap method is a 
resampling technique that 
helps calculate many 
statistical estimators
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the distribution of data is an approximation of the �true�
underlying distribution (in this case a mixture model)
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distribution of mean value obtained from 5000 sets of 
data (sample size = 50)

You can do this if you have large datasets ... but what if you 
have only a handful of measurements?
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example: single dataset (same size as before, 50 
measurements)

the distribution is a rough representation of the underlying 
distribution ... and yet it can be used just as before ...
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Bootstrap recipe: 

if you want to find the distribution of the mean (or any other 
statistical estimator) use the dataset itself to generate new 
datasets

resample from dataset (with replacement)
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distribution of mean value

repeated sampling from 
original distribution

resampling from single 
dataset

true mean: -0.2
mean from repeated sampling (size = 250000): -0.200222 � 0.0813632
mean from resampling dataset (size = 50): -0.142699 � 0.0838678
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bootstrap estimate of correlation 
coefficient distribution

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and 
Efron, Statistics of Science 13 (1998) 95

counts of CD4 limphocytes
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4. Bayesian methods in a sampling-resampling perspective 
(Smith & Gelfand, 1992)
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In Bayesian methods we have to evaluate many integrals, 
like, e.g.,

normalization (evidence)

marginalization

averages (statistical estimators)
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Bayesian learning as a resampling procedure

p θ x( ) = l θ; x( )
l θ; x( ) p θ( )dθ∫

p θ( )

1. prior distribution defined 
by initial samples

2. Bayes factor distorts 
the distribution of initial 
samples 

3. posterior distribution 
corresponds to a resampling of 
initial samples
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Example (McCullagh & Nelder): take two sets of binomially 
distributed independent random variables Xi1 and Xi2 (i=1,2,3)

The observed random variables are the sums 

Yi = Xi1 + Xi2

Xi1 = Binomial ni1,θ1( )
Xi2 = Binomial ni2 ,θ2( )

likelihood =
ni1
ji

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ni2
yi − ji

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
θ1

ji 1−θ1( )ni1− ji θ2y1− 1−θ2( )ni1−y1+ ji
ji
∑

i=1

3

∏

max 0, yi − ni2( ) ≤ ji ≤min ni1, yi( )
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Sample data

1 2 3
ni1 5 6 4
ni2 5 4 6
yi 7 5 6
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Example of implementation in Mathematica
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2D parameter space)
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Posterior as a resampled prior using acceptance-rejection
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Posterior as a resampled prior using weighted bootstrap
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The resampled points are representative of the posterior 
distribution and can be used to evaluate any sample estimate
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5. Very short introduction to Markov chains

Consider a system such that:

• the system can occupy a finite or countably infinite set of states Sn; 
• the system changes state randomly at discrete times t = 1, 2, . . . ; 
• if the system is in state Si, then the probability that the system goes 

into state Sj is 

i.e., this probability depends only on the previous state, and is 
independent of all previous states (this is the Markov property); 

• the transition probabilities pij do not depend on time n. 
• Such a system is a special type of discrete time stochastic 

process, which is called Markov chain.

P St+1 = s j St = sk ,…,St−n = sl ,…( )

Edoardo Milotti - Bayesian Methods - September 2018 32



In general we should have 

however the Markov property tells us that only the previous 
state is important in determining the next state

P St+1 = s j St = sk ,…,St−n = sl ,…( )

P St+1 = s j St = sk ,…,St−n = sl ,…( ) = P St+1 = s j St = sk( ) = P k→ j( )
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B
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π j t +1( ) = P k→ j( )π k t( )
k
∑

= Tkjπ k t( )
k
∑

π t +1( ) = π t( )T

T =
0 0.1 0.9
0.4 0 0.6
0.2 0.2 0.6

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Now let be the probability that the system is in state j
at time t:

π j t( )

transition matrix; it belongs 
to the class of “stochastic 
matrices” (rows add to 1)

Example of a 3-state 
system
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The following equation also holds

and more generally

Moreover we find

and therefore

π t +1( ) = π t( )T = π t −1( )T2

π t + k( ) = π t( )Tk

π t + k + m( ) = π t + k( )Tm = π t( )TkTm = π t( )Tk+m

Tk+m = TkTm Tij
k+m( ) = Tin

k( )

n
∑ Tnj

m( )

discrete version of the Chapman-Kolmogorov eq.
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It can be shown that Markov chains have a stationary 
distribution 

such that the detailed balance also holds

Indeed we see that

and therefore the distribution is stationary. 

Detailed balance holds if and only if the distribution is 
stationary.

π* = π*T

π iP i→ k( ) = π kP k→ i( ) i.e. π iTik = π kTki

π i t +1( ) = Tkiπ k t( )
k
∑ = Tikπ i t( )

k
∑ = π i t( ) Tik

k
∑ = π i t( )
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Now we consider the Traveling Salesman Problem (TSP), where we 
want to find the shortest closed path that connects N cities. 

The problem was first stated by the Viennese mathematician Karl 
Menger and is one of the most studied problem in combinatorial 
optimization.

1

2

3

4

5

6

7

8

9

10

11

12
12 �cities” randomly distributed in the  
(0,1) square: the path corresponds to 
a random permutation of the 
sequence of cities.

(path length L=1.93834)
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Paths are enumerated by permutations of “city names”, e.g., {9, 2, 7, 8, 1, 

12, 4, 5, 3, 10, 11, 6} (start at 9, step to 2, and so on until you reach 6 and 

then return to 9).

The total number of configurations (undirected paths) is

The problem belongs to the class of NP-complete problems (Non-

Polynomial complexity, a class of particulary hard problems)

In such cases there is only one known solution: the full 

enumeration of all paths.

1
2
n −1( )!
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Approximate solution of the TSP with the Simulated 
Annealing algorithm

path length            energy of the system

exploration of the configuration space with the Metropolis 
algorithm (Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)
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Additional details

• the algorithm needs a slow cooling (it is common to choose an exponential 
cooling schedule)

• if cooling is not gradual, the system can get stuck into a local minimum

• simple exchanges of pairs of cities are the individual moves in the SA solution of 
the TSP

• the individual steps from one configuration to the next can be described by a 
Markov chain

1. We generate a new configuration ′C  from the present configuration C
2. We compute the energy of the new configuration, ′E
3. We compute the energy difference ΔE = ′E − E
4. The new configuration is accepted with probability p 

p = 1 ΔE < 0

p = exp − ΔE
kT

⎛
⎝⎜

⎞
⎠⎟ ΔE ≥ 0

⎧

⎨
⎪

⎩
⎪
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Decrease of total path length in a realization of the SA solution of the 
50-cities problem
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Here we note that the transition probability can be written as follows

T C→ ′C( ) = min 1, exp −
′E − E( )
kT

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Moreover, the algorithm preserves detailed balance 

P C( )T C→ ′C( ) = P ′C( )T ′C → C( )

where P(C) is the stationary probability of configuration C. Indeed at 
equilibrium we find that, if E� > E,

P C( )exp −
′E − E( )
kT

⎛
⎝⎜

⎞
⎠⎟
= P ′C( )

P ′C( )
P C( ) = exp −

′E − E( )
kT

⎛
⎝⎜

⎞
⎠⎟

Boltzmann’s 
distribution
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Moreover

T C→ ′C( ) = min 1, P ′C( )
P C( )

⎡

⎣
⎢

⎤

⎦
⎥

This algorithm is the starting point for an important further 

step, the Metropolis-Hastings algorithm.
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6. MCMC – definition of the Metropolis-Hastings (M-H) 
algorithm (1970)

• we define the transition probability 

and the target density  

• we take state

• we choose randomly another state     and we accept it                      
with probability

q x,y( ) = P x→ y( )

x = xn

y

α x,y( ) = min 1,π y( )q y,x( )
π x( )q x,y( )

⎧
⎨
⎩

⎫
⎬
⎭

π x( )

y→ xn+1( )
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If the transition probability is symmetrical, then the 
acceptance probability takes on the simpler form

and it depends on the target density only. 

α x,y( ) = min 1,π y( )q y,x( )
π x( )q x,y( )

⎧
⎨
⎩

⎫
⎬
⎭
→ min 1,

π y( )
π x( )

⎧
⎨
⎩

⎫
⎬
⎭

Edoardo Milotti - Bayesian Methods - September 2018 47



The M-H  algorithm defines a Markov chain and it is easy to show that 
detailed balance holds. The transition probability is 

• case 

P x→ y( ) = q x,y( )α x,y( ) = q x,y( )min 1,π y( )q y,x( )
π x( )q x,y( )

⎧
⎨
⎩

⎫
⎬
⎭

π y( )q y,x( )
π x( )q x,y( ) ≥ 1

α x,y( ) = 1; α y,x( ) = π x( )q x,y( )
π y( )q y,x( )

P x→ y( ) = q x,y( )

P y→ x( ) = q y,x( )π x( )q x,y( )
π y( )q y,x( )

π x( )P x→ y( ) = π x( )q x,y( )

π y( )P y→ x( ) = π y( )q y,x( )π x( )q x,y( )
π y( )q y,x( ) = π x( )q x,y( )
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Detailed balance holds in both cases and 
therefore is stationaryπ x( )

π y( )q y,x( )
π x( )q x,y( ) < 1

α x,y( ) = π y( )q y,x( )
π x( )q x,y( ) ; α y,x( ) = 1

P x→ y( ) = q x,y( )π y( )q y,x( )
π x( )q x,y( )

P y→ x( ) = q y,x( )

π x( )P x→ y( ) = π x( )q x,y( )π y( )q y,x( )
π x( )q x,y( ) = π y( )q y,x( )

π y( )P y→ x( ) = π y( )q y,x( )

• case
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The following figure shows a simulation with the MCMC algorithm and 
the distribution

(a three-component mixture model)
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p(x) = 0.5⇥ 1p
2⇡

exp

✓
�x2

2

◆
+ 0.3⇥ 1p

2⇡
exp

✓
� (x� 3)2

2

◆
+ 0.1⇥ 1p

0.5⇡
exp

✓
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Example of application of the MCMC technique in 
radiobiology

Survival curve for HeLa cells in culture exposed to x-rays. (From Puck TT, Markus 
Pl: Action of x-rays on mammalian cells. J Exp Med 103:653-666, 1956)
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Phenomenology: the linear-quadratic law

S(D) ⇡ e�↵D��D2
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Target theory

Simple Poisson model: 

Probability of hitting n times a given target, when the average number of 
good hits is a:

Probability missing the target: 

Average number of hits:

P (n) =
an

n!
e�a

P (0) = e�a

a = D/D0

S(D) = P (0, D) = e�D/D0
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Multitarget model, asymptotic behavior and threshold effect. 

If there are multiple targets, say n targets, all of which must be hit to kill a 
cell, then the probability of missing at least one of them – i.e., the survival 
probability – is

then, for large dose

i.e., 

which is a linear relation with intercept ln n, and slope -1/D0.

S(D) = 1� (1� e�D/D0)n

S(D) ⇡ ne�D/D0

lnS(D) ⇡ lnn�D/D0
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Notice that

and that 

The derivatives differ in the origin, and the multitarget model fails to 
reproduce the observed linear-quadratic law. 


d

dD
e�↵D��D2

�

D=0

= (�↵� 2�D)e�↵D��D2
���
D=0

= �↵

d

dD

h
1� (1� e�D/D0)n

i

D=0
= �n

e�D/D0

D0
(1� e�D/D0)n�1

����
D=0

= 0
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S = exp −aD( ) + bDexp −cD( )

The RCR (Repairable-Conditionally Repairable Damage) model

In this case the surviving fraction is 

This is a 3-parameter expression, which is not easy to fit to data when the data 
set is small. 
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1a. Simple Gaussian likelihood for the LQ model

1b. Chose exponential priors for the parameters

1c. Complete posterior pdf

1d. Use MCMC to find the MAP estimate (and any moment of the pdf)

L α ,β( ) = exp −
Sk − S α ,β( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏

p α ,β Sk{ }, I( ) = exp −
Sk − S α ,β( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
exp −0.1α( )exp −0.1β( )
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α

β

sample points for the 
posterior distribution
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2a. Simple Gaussian likelihood for the RCR model

2b. Chose exponential priors for the parameters

2c. Complete posterior pdf

2d. Use MCMC to find the MAP estimate (and any moment of the pdf)

L a,b,c( ) = exp −
Sk − S a,b,c( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏

p a,b,c Sk{ }, I( ) = exp −
Sk − S a,b,c( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e−0.2ae−0.2be−0.2c

64



Edoardo Milotti - Bayesian Methods - September 2018

Path in (a,b,c) space
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Revise priors to include constraint on derivative

(priors vanish where derivative in the origin is negative)
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“Straight line fit” with the MCMC
An example with Gaussian errors and exponential priors.
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model y = ax+ b
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