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A few more applications of Bayesian methods

« The incidence of lung cancer
« Bayes classifiers

* The case of the AUTOCLASS unsupervised classifier
* The nature of learning in Bayesian and MaxEnt methods

Edoardo Milotti - Bayesian Methods - September 2018 2



Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.

Died: September 17, 1979, in Herndon, Virginia.

A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA.
APPLICATIONS TO CANCER OF THE
LUNG, BREAST, AND CERVIX!

JeroME CosNFIELD, Nolionai Cancer Instilule, Nalional

Ln;mma of Health, 'U. S. Public Health Sm, Bethesda,

1 Recelved for publication February 23, 1081,
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Fisher developed four lines of argument in questioning
the causal relation of lung cancer to smoking.

1) If Ais associated with B, then not only is it possible
that A causes B, but it is also possible that B is the
cause of A. In other words, smoking may cause
lung cancer, but it is a logical possibility that lung
cancer causes smoking.

2) There may be a genetic predisposition to smoke
(and that genetic predisposition is presumably also
linked to lung cancer).

3) Smoking is unlikely to cause lung can- cer because
secular trend and other ecologic data do not
support this relation.

4) 4) Smoking does not cause lung cancer because
inhalers are less likely to develop lung cancer than
are noninhalers

FIGURE 1. Passport photograph of Ronald Ayimer
Fisher at age 34. Reprinted from Box JF. RA Fisher:

the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.
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Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

Having cancer | Healthy Total
of the lung

Smokers 0.119-103 0.579910 0.580025
Nonsmokers  0.036-10-3 0.419935 0.419971
Total 0.155-103 0.999845 1.000000

what is the proportion having cancer of the lung in each population?

Smokers: 0.119-10-3/0.580025 = 2.05164-10*
Nonsmokers: 0.036-10-3/0.419971 = 8.57202-105

And the prevalence of lung cancer in smokers with respect to
nonsmokers is

Smokers/Nonsmokers = 2.4
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We can also write an easy Bayesian equation that leads to
some information as to the causation of cancer of the lung

k
P(Cancer|Smoker) = P(Smoker|Cancer) P(Smoker)

P(Cancer)
P(Cancer|Nonsmoker) = P(Nonsmoker|Cancer) P(Nonsmoker)
P(Cancer)
Therefore
P(Cancer|Smoker) P(Smoker|Cancer) P(Smoker)

P(Cancer|Nonsmoker)  P(Nonsmoker|Cancer)P(Nonsmoker)

and with the numbers in the table one finds that this ratio
is about 3.5.



According to Jeffreys, a Bayes ratio of 3.5 is already

substantial support in favor of the hypothesys that smoking
does cause lung cancer.

log1o(B) B Evidence support

O0to1l/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive
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In 1954 Richard Doll and Bradford Hill published evidence in the British
Medical Journal showing a strong link between smoking and lung cancer. They
published further evidence in 1956.

Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He
did not think the statistical evidence for a link was convincing.

Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following
an operation for colon cancer.

With bitter irony, we now know that the likelihood of getting this disease

increases in smokers. Ronald Fisher was cremated and his ashes interred in
St. Peter’'s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017
<www.famousscientists.org/ronald-fisher/>.)
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Trends in Tobacco Use and Lung Cancer Death Rates in the U.S.
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Death rates source: US Mortality Data, 1960-2010, US Mortality Volumes, 1930-1959, National Center for Health Statistics, Centers

for Disease Control and Prevention.

Cigarette consumption source: US Department of Agriculture, 1900-2007.
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TOBACCO THREATENS US ALL

’—* 2 SAYNOTO
Y TOBACCO

PROTECT HEALTH,
\Y:WORLDNOTOBACCODAY  #NoTobacco

REDUCE POVERTY AND
PROMOTE DEVELOPMENT
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Bayesian classification

this likelihood is defined by

data X, classes C training data
( ’\/ )
Pl X|C

P(C|X)= P(X) P(C)

the prior is also defined by
training data

we can use the prior learning to assign a class to new data

Pl X|C
Ckzarggnax I(D(‘X)k)P(Ck)zarggnaxP(X\Ck)P(Ck)

Edoardo Milotti - Bayesian Methods - September 2018



Consider a vector of N attributes given as Boolean variables
x = {x;} and classify the data vectors with a single Boolean
variable.

The learning procedure must yield:

it is easy to obtain it as an empirical distribution from

p(y) an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N+
different values, and we must estimate 2(2N-1)

P(X‘ )7) parameters ... for instance, with N = 30 there are more
than 2 billion parameters!
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How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,,’s:
naive Bayesian learning

for instance, with just two attributes

P(x,.3,]y) = P(x]x%.3) P(x,|y) = P(x]y) P(x,]y)

conditional independence assumption

with more than 2 attributes

P(xly) = T1P(x]v)

k=1



Therefore:




More general discrete inputs

If any of the N x variables has J different values, e if there are
K classes, then we must estimate in all NK(J-1) free
parameters with the Naive Bayes Classifier (this includes
normalization) (compare this with the K(JN-1) parameters

needed by a complete classifier)
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Continuous inputs and discrete classes — the Gaussian case

i} -
P(xn yk): 210 =P _( 262:)
nk | n _

here we must estimate 2NK parameters + the shape of the

distribution P(y) (this adds up to another K-1 parameters)



Gaussian special case with class-independent variance and
Boolean classification (two classes only):

P(X|y = O)P(y = O)
X|y = O)P(y = O)+P(X|y = l)P(y = 1)

P(y=O|X): P(

1 ('xn o aLLnO )2
P(x |y=0)= _
(w[y=0) 2no? exp_ 20, |
1 _ (xn _ ILLnl )2 _
P(x,|y=1)= -







logistic shape

N
W, + anxn)

exp(
P(y=1x)=1-P(y=0|x)= —
1+ exp(wo + anxnj
n=1
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Finally an input vector belongs to class y = 0 if

P(y=0|x)
P(y=1[x)

0

N
1+ exp(wo + ZWHxnj

n=1

N
N
exp| w, + ) w x
exp(w0+2wnxnj » p[ 0 ; nn
n=1

N
1+ exp(wo + anxnj

n=1

N
» wo+ Y wx <0
n=1
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P(yz O|X)=

P(y= 1|X):

J<i
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Naive Bayesian learning is an example of supervised

learning, however there are also unsupervised Bayesian

learning methods, such as the AUTOCLASS program and

similar such projects.
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NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA

+ NASA Home AutoClass

+ Ames Home

+ Intelligent Systems
Division

+ Robust Software
Engineering

+ Synthesis Projects & Introduction
Applications

In previous years, the Bayes group at Ames Research Center developed the basic theory and
associated algorithms for various kinds of general data analysis techniques. Our earliest efforts were
applied to the problem of automatic classification of data. We implemented this theory in the Autoclass

AutoClass series of programs. AutoClass takes a database of cases described by a combination of real and
discrete valued attributes, and automatically finds the natural classes in that data. It does not need to
be told how many classes are present or what they look like - it extracts this information from the data
itself. The classes are described probabilistically, so that an object can have partial membership in the
+ AutoClass C different classes, and the class definitions can overlap. AutoClass generates reports on the classes it
has found at the end of its search. AutoClass has been used and tested on many data sets, both within
+ Web-based Interface NASA and by industry, academia and other agencies. These applications typically find surprising
classifications that show patterns in the data unknown to the user. Examples include: discovery of new
+ References classes of infra-red stars in the IRAS Low Resolution Spectral catalogue (see figure below; and see

here and here for more information), new classes of airports in a database of all USA airports,
discovery of classes of proteins, introns and other patterns in DNA/protein sequence data, and others.
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The starting point of AUTOCLASS is a mixture model

dP(x) = Zpdek (x‘ 9); Epk =1

T
.
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FIGURE 1. Some normal mixture densities for K = 2 (first row), K =5 (second
row), K = 25 (third row) and K = 50 (last row).
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dP(x) = Epdek (x‘ 6)
therebis afvalriable /77 1‘

the probabilities of belonging to a

given class are drawn from a
multinomial distribution

1

the component distributions are
taken from a set of predefined
distributions

the parameters define the
shape of the component
distribution
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AUTOCLASS chooses a distribution and a parameter set
for each class. Every data set determines a likelihood, and
therefore a posterior distribution.

The class is selected by maximizing the posterior probability
(MAP class estimate).



The Infrared Astronomical Satellite (IRAS) was the
first-ever space telescope to perform a survey of the
entire night sky at infrared wavelengths (launch date:
25 January 1983; mission end date: November 21,
1983)

Infrared Astronomical Satellite

Infrared all-sky survey by IRAS (http://irsa.ipac.caltech.edu/Missions/iras.html)
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AUTOCLASS discoveries
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In 1983 and 1984, the Infrared Astronomical Satellite (iRAS)
detected 5,425 stellar objects and measured their infrared
spectra. A program called AUTOCLASS used Bayesian inference
methods to discover the classes present in the data and
determine the most probable class of each object. It discovered
some classes that were significantly different from those
previously known to astronomers. One such discovery is
illustrated above. Previous analysis had identified a set of 297
objects with strong silicate spectra. AUTOCLASS partitioned this set

1
180 135 90 45 0 315 270 225 180

Longitude (°)

into two parts (top). The class on the left (171 objects) has a peak
at 9.7 microns and the class on the right (126 objects) a peak at
10.0 microns. When the objects are plotted on a star map by their
celestial coordinates (botton), the right set shows a marked
tendency to cluster around the galactic plane, confirming that the
classification represents rea! differences between the classes of
objects. AUTOCLASS did not use the celestial coordinates in its
estimates of classes. Astronomers are studying the phenomenon
further to determine the cause.
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AutoClass@IJM: a powerful tool for Bayesian
classification of heterogeneous data in biology

Fiona Achcar'?, Jean-Michel Camadro® and Denis Mestivier'*
"“Modeling in Integrative Biology’ Group and 2‘Protein Engineering and Metabolic Control’ Group, Jacques
Monod Institute, UMR7592 CNRS and Univ Paris-Diderot, Batiment Buffon, 15 rue Héléne Brion, 75205

Paris Cedex 13, France

Received January 31, 2009; Revised April 23, 2009; Accepted May 11, 2009

%

Welcome to AutoClass@IJM
the webserver for AutoClass Bayesian clustering system.
Developped by F. Achcar2and D. MestivierL in collaboration with J.M. Camadro®
We kindly ask users to cite this paper when publishing results derived of the use of AutoClass@LM.
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“‘AutoClass@IJM: a powerful tool for Bayesian classification of

heterogeneous data in biology ”, Nucleic Acids Research, 2009, Vol. 37, Web Server

From F. Achcar et al.:
issue W63-W67

- Dataset D={X1, X2, ...Xi...Xn}
Input :  Each element Xi is associated with attributs : {Xi1...Xi...Xik}

- A Type of Distribution believed to have generated the data
(Here a gaussian distribution)

Autoclass generates a list of pseudo-random numbers
as numbers of classes

%N Clustering done = N tries

N
[ Y
A

IlTryII i :
input : Dataset D and Number of classes |

Randomly generates the parameters V
of the all ) classes ( here the means and

standard deviations of the gaussians )
|
Y
Compute for each element of D and for
each class, the weights wij (wijis the
probability for element i to be a member
of class j) using parameters V

Y

Reestimation of V using the wij

Converged ?
No Yes

Records the resulting clustering Hi:
composed of ' classes of parameters V
where J' may be different for starting |

(some classes might be empty)

Wy

For each "try", Autoclass compute the probability that the clustering
is the best regarding the dataset

Ouput : the best clustering (consisting in a number of class J,
classes parameters V, and the wi for each element and classes)
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Naive Bayesian classifiers are part of the current toolbox of machine

learning (see, e.g., Tom Mitchell's introductory book "Machine Learning”,
http://www.cs.cmu.edu/~tom/)

. Introduction

. Concept Learning and the General-to-Specific Ordering
. Decision Tree Learning

. Artificial Neural Networks

Evaluating Hypotheses

Bayesian Learning

Computational Learning Theory
Instance-Based Learning

. Genetic Algorithms

10. Learning Sets of Rules

11. Analytical Learning

12. Combining Inductive and Analytical Learning
13. Reinforcement Learning

©ONO® A WN =
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On the nature of learning in Bayesian and MaxEnt Inference
(from Cheeseman & Stutz, 2004)

here we consider these three problems:

1. find the probabilities 0,of getting face i in a throw of a possibly biased
die, given the frequencies n; of each face in a total of N throws;

6
2. find the probabilities when only the mean M = Zinl,
i=1
and the total number of throws N, are given;

3. analyze the kangaroo problem with a more complex contingency
table



1. Find the probabilities 6, of getting face i in a throw of a
possibly biased die, given the frequencies n; of each face in a

total of N throws;

likelihood is given by the multinomial probability

0,N.I)= N f[el."f

L({nl,...,n6}



if, initially, we take a uniform prior, the posterior distribution
from Bayes’ theorem is

ﬁegl(s[jej_lj

i=1 j=1

1

| Hi”l5(z6:9j—l]d9i

0 Jj=1

_ 61“(N+6) ﬁ@n’5£i9j—1j
[IT(n,+1) =

J=1

p(0{n,.....n}.N.,I)= —
=1

l

and we obtain a Dirichlet distribution (conjugate posterior of
the multinomial distribution, just as the Beta distribution is the
conjugate posterior of the binomial distribution).



Mathematical note on the normalization of the Dirichlet distribution:

['(m)T'(n) relationship between Beta and

1
_ m=1(1 n-1 _
B(m’”)—it (1-2)" di= I'(m+n) Gamma function

1-6,

j 6,"0::05(6,+6,+6,—1)d6,de,do, = | 6/ de, j p"[(1-6)-p] dp
0<6,<1 0<6;<1 0

1
01 do,(1-6,)""" [x" (1-x)" dx
0<6.<1 0
1

= B(n,+Ln,+1) [0/ (1-6,

0

_ F(n2 +1)1"(n3 +1).1“(n1 +1)l"(n2 +n, +2) B 1"(n2 +1)1“(n3 +1)1"(n1 +1)

do, = B(n2 +1,n, +1)B(n1 +1,n, +n, +2)

F(n2+n3+2) F(n1+n2+n3+3) B F(l’l1+n2+n3+3)
M
H n, +1
<6< 11—1[9'1 d05(29 _lj 1(N+M) normalization factor
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thus, if we assume some prior information, we can start with
a Dirichlet prior

p(6|w.I)= rw) Hew 15(29 —1) with W:iwj

J=1

C(N+W) 15 s
1L 6 6 - HO 15(2 )
[Tle So,-1)ao, TIr(n+n) "
o i=1 1




The inferred distribution can be used to compute averages,
and also for prediction.

Indeed, the probability of observing r; occurrences of the j-th
face in the future is

P(r

n,N,R,w,I) = JP(r

1)p(6

o T g S, L
oIt~ HF(nj+wj) . =

J=1 J=1

n,N,w,I)d0=

6
R!  T(N+W) QF(’“’?*WJ')

ﬁr! f[r(n.+w].) IC(N+R+W)




so that we find, e.g.,

6
vy [1rr8)

P(r,=1n,N,R=1,w,I)=

: '(N+W+1
gr(nj+wj) ( T +)

_hTw
N+W




6
2. Find the probabilities when only the total M = Zi”f and
the total of throws N, are given i=1

Let <n> o be the set of vectors that satisfy the conditions,

then the likelihood is

o.N.7)= Y P(ajo.n.)= Y M e

(M), (n),, H n]‘ y i=1

P(M

j=1



now notice that

M|0,N,1)P(6|N,w.1)
P(M|N.I)

) (G‘N,W,I)

P(6|M N, w,I)= P

2P
ZIP

NMe

O\N w I)de

Y P(n|6,N,I)P(6|N,w.I)= > 6N ! 6F(W) ﬁgi"ﬁwi—l
& ST ()
j=1

6
HF(nl.+wl.)
Y [P(n|e,N.1)P(8|N.w.I)d6 = Z N! _T(W) &
T T(N+W)
ST TTr(w)
j=1 j=1

from these formulas we can calculate all marginals and any
expectation, although it is quite difficult to manipulate them



ISf
10k

20

present multinomial distributions

-

ibution with n = 20, k = 3 and p1 = ps = p3 = 1/3, plotted
and consider ways to re

as a function of the independent values ny and na. Density plot (left panel) and lego plot
(right panel). As an exercise, explain why in this symmetrical case the distribution is not

centered in the nq,n9 domain,

Figure 3: Multinomial distr
with & > 3.
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outcome 2

p(1,2,3) \

The posterior density for the 3-faces die example with a mean spot count of 2.5, N = 60,
and prior weights of (1.1,1). Because of the normalization constraint, the third variable (not shown) is

i

.

outcome 1

FIGURE 2.

given by 03 = 1—0; —0,.
The figure, from C&S, shows that the probability mass is concentrated close to the

subspace defined by constraints, and becomes increasingly so as N increases.
Bayesian inference tells us nothing on the distribution inside the subspace.

42
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3. The kangaroo problem with an extended contingency table

attributes (number of values):

handedness (2)
beer-drinking (2)
state-of-origin (7)
color (3)

4-dimensional contingency table
with 2x2x7x3 = 84 entries

The size of the contingency table increases exponentially
as the number of attributes grows
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If we are given the number of occurrencies n;;, , for each
position in the contingency table, we fall back on the first
example of dice throw

with the likelihood
N

o.N.1) =T

i,j.k,0 1.kl

L(n

i,j,k,l



The n;; /s are sufficient statistics and we can estimate all the
corresponding probabilities as in the first example.

However if we are only given a set of marginals, i.e., of constraints, we are
in the same situation as example 2, the marginals define a subspace of the
whole parameter space, and in this subspace the distribution is eventually

determined by the prior information only.

With enough attributes, the contingency table becomes VERY large, and it
becomes impossible to collect sufficient statistics, we are mostly limited to
marginals.

The situation is very different if we assume independence: then the
marginals are sufficient statistics. E.q., if probabilities factorize, then
kangaroos have only (2+2+7+3)-(1+1+1+1) = 10 independent values (using
normalization) instead of 84.
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Maximum entropy approach to the kangaroo problem, given
marginals

DM =i 2 =N

okl i
n
— 1 —_ l
z ei’j’ksl o 1, 2 Hi’j’k’l N
i,jk,l Jok.l

Example with two marginals: we maximize the constrained
entropy

n n
5= Z 0.411080, ;11 + Ao [ Z 0, jx1~ 1] +4 [Zel,j,k,l - ﬁlj +4, (ZHZJ,k,l - sz
i okl

i,jk,l ikl



In the original kangaroo problem

1 1 1 1
S, = [sz log—+ P; log—_+ P, log—+ Dir log—)

Pui Py Py Prr

+4, (pbl TPy TPyt Py 1) + 4, (pbl TPy 1/3) + 45 (pbl TPy~ 1/3)

=—logp, —1+A +A,+4,=0

=—logp, —1+A4,+4,=0

=—logp,—1+A4 +4,=0

—logp —1+4,=0



Py = Py exp(4,)
\ Py = Pi7 exp(lz) = Dy Py7 = PuPir
Por = Ppr eXP(;Lz T 2“3)

Put Pyt Pyt Py =1 ( Py = Py =1/3—py
pbl+pbl_:1/3 pb_l_l/3+pbl
_ R ) )
pbl+p51_1/3 (1/3_pbl) :pbl/3+pbl
PuPpr = PuPpyr \1/9_217191/3"'19131 :sz/3+pzfl
1 2 4  this solution coincides
— = — =0 = — = — with the independence
Po 9 Po P 9 P 9 hypothesis



In the extended kangaroo problem we find

aS
00

m,j.k,l

Ok = exp(/lo +A, - 1)
6, ., =exp(4,+4,—1)

= —(logH

m,j.k,l

+1)+ 2, + A4, =0

thus we obtain again a multiplicative structure.

Whatever the choice of marginals, probabilities factorize, and the
MaxEnt solution corresponds to a set of independent probabilities.

Thus independence is built-in the MaxEnt method, which is
a sort of “‘generalized independence method”.
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A nice account of the history of
Bayesian ideas by Sharon
Bertsch (Yale Univ. Press, 2011)

(strongly bent towards history,
no math)

how bayes’ cracked
*«*éisthe enigma code,
hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy
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