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A few more applications of Bayesian methods

• The incidence of lung cancer
• Bayes classifiers
• The case of the AUTOCLASS unsupervised classifier
• The nature of learning in Bayesian and MaxEnt methods
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Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.

Died: September 17, 1979, in Herndon, Virginia.

Reproduced by permission of the Royal Statistical Society

Jerome Cornfield was arguably the most influential
statistician in the biomedical sciences in the US from
the 1950s until his death. He was the consummate
statistical scientist. His understanding of the nature
of the subject-matter of statistics and of its essential
role in the inductive process of integrating data into
a body of empirical knowledge, particularly in the
biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him
to identify essential statistical problems. He exercised
considerable influence as an advisor and consultant,
and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the
Bronx, New York, he entered New York University,
graduating in 1933 with a major in history. Cornfield
did not receive any advanced degrees. He did, how-
ever, take some formal graduate courses in history at
Columbia University. After moving to Washington,
DC, in 1935, Cornfield took a number of courses in
statistics at the US Department of Agriculture Grad-
uate School during the period 1936–1938, including
courses with M.A. Girshick in general statistics and

multivariate analysis. He also had a course in sam-
pling which, together with what he learned on the
job from Duane Evans, enabled him to advance the
cause of getting probability sampling accepted by
several Federal Agencies. Although his formal train-
ing was minimal, most of what he had to learn about
statistical theory, reasoning, and methodology was
self-taught from a continually expanding literature.
This enabled him to be discriminatingly selective
both as to subject-matter and to the time at which
he felt it necessary to learn about a subject. In later
years, biomedical associates and statistical colleagues
were surprised to discover that he had no docto-
rate.

A brief review of the major positions he held
begins with the Bureau of Labor Statistics, where
he was a statistician from 1935 to 1947. In 1947
he joined Harold Dorn’s methods unit in the Pub-
lic Health Service. This unit was shortly transferred
to the National Cancer Institute on the campus of
the National Institutes of Health (NIH). Cornfield
remained in the Cancer Institute until 1955 or 1956
when both he and Dorn moved over to a new Division
of Research Services. Here, he consulted with inves-
tigators in various Institutes of the NIH. In 1958 he
was invited to succeed William Cochran as Chair-
man of the Department of Biostatistics in the School
of Hygiene and Public Health of the Johns Hop-
kins University. He was also appointed Professor
of Biomathematics in the School of Medicine. He
returned to the NIH in 1960 as Assistant Chief of the
Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made
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A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA. 
APPLICATIONS TO CANCER OF THE 
LUNG, BREAST, AND CERVIX 1 

JEROME CORNFIELD, Nationat Cancer Imtit"", National 
Imtitut.& of HeaUh, U. 8. Public HeaUh Smtia, B.a...da, 
Md. 

A frequent problem in epidemiological research is the attempt to deter-
mine whether the probability of having or incurring a stated disease, such 
as cancer of the lung, during a specified interval of time is related to the 
possession of a certain charscteristic, such as smoking. In principle, 
such a question offers no difficulty. One selects representative groups 
of persons having and not having the characteristic and determines the 
percentage in each group who have or develop the disease during this 
time period. This yields a true rate. The difference in the magnitudes 
of the rates for those possessing and lacking the characteristic indicates 
the strength of the association. If it were true, for example, that a very 
large percentage of cigarette smokers eventually contracted lung cancer, 
this would suggest the possibility that tobacco is a strong carcinogen. 

An investigation that involves selecting representative groups of those 
having and not having a characteristic is expensive and time consuming, 
however, and is rarely if ever used. Actual practice in the field is to take 
two groups presumed to be representative of persons who do and do not 
have the disease and determine the percentage in each group who have the 
characteristic. Thus rather than determine the percentage of smokers 
and nonsmokers who have cancer of the lung, one determines the per-
centage of persons with and without cancer of the lung who are smokers. 
This yields, not a true rate, but rather what is usually referred to as a 
relative frequency. Relative frequencies can be computed with compar-
ative ...Se from hospital or other clinical records, and in consequence most 
investigations based on clinical records yield nothing but relative frequen-
cies. The difference in the magnitudes of the relative frequencies does 
not indicate the strength of the association, however. Even if it were 
true that there were many more smokers among those with lung cancer 
than among those without it, this would not by itself suggest whether 
tobacco was a weak or a strong carcinogen. We are consequently inter-
ested in whether it is possible to deduce the rates from knowledge of the 
relative frequencies. 

1 Received for publication Febrw:irr 23, 1961. 
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418 Stolley

Pearson. He took notice of Fisher's work
and genius and, as editor of Biometrika,
arranged to publish some of Fisher's articles.
Pearson published Fisher's paper describing
the general sampling distribution of the cor-
relation coefficient. When Pearson pub-
lished another article by Fisher about maxi-
mum likelihood and editorially criticized it
without first informing Fisher he would do
this, Fisher developed a strong antipathy for
Pearson, the first of Fisher's several feuds.

In September 1917, Fisher started work as
a statistician at Rothamsted experimental
agricultural station which, under his leader-
ship, was to become a world center for the
theoretical development of experimental de-
sign. There he developed the analysis of
variance, the principle and contribution of
randomization, and the idea and importance
of replication. He made great contributions
to the understanding of confounding and
created designs to handle problems created
by confounding. In 1925 he published Sta-
tistical Methods for Research Workers (4),
and 10 years later The Design of Experi-
ments was published (5). In 1938 he and
Frank Yates brought out Statistical Tables
for Biological, Agricultural, and Medical Re-
search, still used today (6). (See figure 1.)

Following up his work on the distribution
of the correlation coefficient, Fisher derived
the sampling distributions of other statistics
in common use, including the F distribution
and the multiple correlation coefficient. He
developed the theory of estimation in 1922.
In later years he made many other contri-
butions to genetic and evolutionary theory
that are considered central to the under-
standing of the theory of natural selection
(7).

Fisher was offered the chair as the Galton
Professor of Eugenics at University College
in London. Actually, a new Department of
Eugenics was created in order to attract him
to the University. Fisher would never have
agreed to work in the statistics department
under Karl Pearson because of the antipathy
between them which had originated with
Pearson's critical editorial in Biometrika.
Consequently, two departments doing the
same kind of work coexisted at the Univer-

RGURE 1. Passport photograph of Ronald Aylmer
Fisher at age 34. Reprinted from Box JF. RA Fisher
the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.

sity College—Statistics under E. G. Pearson,
who headed the department after his father,
and statistics (misnamed Eugenics) under
Fisher. An intense rivalry and bad feeling
existed between Pearson and Fisher which
was reflected in their departmental activities.

Jerzy Neyman joined Egon Pearson in
Statistics in 1934 and immediately chal-
lenged some of Fisher's ideas on hypothesis
testing, introducing the ideas of power and
decision theory which he developed further
in the United States with Abraham Wald.
Fisher was unaccustomed to being contra-
dicted and confronted Neyman as follows
(related to Constance Reid by Neyman when
he was an old man in working retirement at
the University of California, Berkeley):

And he said to me that he and I are at
the same building... he had published a
book and that's Statistical Methods for Re-

Fisher developed four lines of argument in questioning 

the causal relation of lung cancer to smoking. 

1) If A is associated with B, then not only is it possible 

that A causes B, but it is also possible that B is the 

cause of A. In other words, smoking may cause 

lung cancer, but it is a logical possibility that lung 

cancer causes smoking. 

2) There may be a genetic predisposition to smoke 

(and that genetic predisposition is presumably also 

linked to lung cancer).

3) Smoking is unlikely to cause lung can- cer because 

secular trend and other ecologic data do not 

support this relation. 

4) 4) Smoking does not cause lung cancer because 

inhalers are less likely to develop lung cancer than 

are noninhalers 
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Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

what is the proportion having cancer of the lung in each population? 

Smokers: 0.119·10-3/0.580025 = 2.05164·10-4

Nonsmokers: 0.036·10-3/0.419971 = 8.57202·10-5

And the prevalence of lung cancer in smokers with respect to 
nonsmokers is

Smokers/Nonsmokers ≈ 2.4

Having cancer 
of the lung

Healthy Total

Smokers 0.119·10-3 0.579910 0.580025
Nonsmokers 0.036·10-3 0.419935 0.419971
Total 0.155·10-3 0.999845 1.000000
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We can also write an easy Bayesian equation that leads to 
some information as to the causation of cancer of the lung

Therefore 

and with the numbers in the table one finds that this ratio 
is about 3.5.

P (Cancer|Smoker) =
P (Smoker|Cancer)P (Smoker)

P (Cancer)

P (Cancer|Nonsmoker) =
P (Nonsmoker|Cancer)P (Nonsmoker)

P (Cancer)

P (Cancer|Smoker)

P (Cancer|Nonsmoker)
=

P (Smoker|Cancer)P (Smoker)

P (Nonsmoker|Cancer)P (Nonsmoker)



Edoardo Milotti - Bayesian Methods - September 2018 7

According to Jeffreys, a Bayes ratio of 3.5 is already 
substantial support in favor of the hypothesys that smoking 
does cause lung cancer. 
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In 1954 Richard Doll and Bradford Hill published evidence in the British 
Medical Journal showing a strong link between smoking and lung cancer. They 
published further evidence in 1956.

Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He 
did not think the statistical evidence for a link was convincing.

Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following 
an operation for colon cancer. 

With bitter irony, we now know that the likelihood of getting this disease 
increases in smokers. Ronald Fisher was cremated and his ashes interred in 
St. Peter’s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017 
<www.famousscientists.org/ronald-fisher/>.)



Edoardo Milotti - Bayesian Methods - September 2018 9



Edoardo Milotti - Bayesian Methods - September 2018 10



P C X( ) = P X C( )
P X( ) P C( )

Bayesian classification

data X, classes C this likelihood is defined by 
training data

Ck = argmax
Ck

P X Ck( )
P X( ) P Ck( ) = argmax

Ck
P X Ck( )P Ck( )

we can use the prior learning to assign a class to new data

the prior is also defined by 
training data
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Consider a vector of N attributes given as Boolean variables 
x = {xi} and classify the data vectors with a single Boolean 
variable. 

The learning procedure must yield: 

it is easy to obtain it as an empirical distribution from
an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples 
suffice to determine the empirical distribution to better 
than 10%. 

there is a bigger problem here: the arguments have 2N+1

different values, and we must estimate 2(2N-1) 
parameters ... for instance, with N = 30 there are more 
than 2 billion parameters!

P y( )

P x y( )
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How can we reduce the huge complexity of learning? 

we assume the conditional independence of the xn’s:
naive Bayesian learning

for instance, with just two attributes

with more than 2 attributes

P x1, x2 y( ) = P x1 x2 , y( )P x2 y( ) = P x1 y( )P x2 y( )
conditional independence assumption

P x y( ) ≈ P xk y( )
k=1

N

∏
Edoardo Milotti - Bayesian Methods - September 2018 13



P yk x( ) = P x yk( )
P x( ) P yk( ) = P x yk( )

P x yj( )P yj( )
j
∑

P yk( )

≈
P xn yk( )

n=1

N

∏

P yj( ) P xn yj( )
n=1

N

∏
j
∑

P yk( )

Therefore:

and we assign the class according to the rule (MAP)

y = argmax
yk

P xn yk( )
n=1

N

∏

P yj( ) P xn yj( )
n=1

N

∏
j
∑

P yk( )
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More general discrete inputs

If any of the N x variables has J different values, e if there are 

K classes, then we must estimate in all NK(J-1) free 

parameters with the Naive Bayes Classifier (this includes 

normalization) (compare this with the K(JN-1) parameters 

needed by a complete classifier)
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Continuous inputs and discrete classes – the Gaussian case

here we must estimate 2NK parameters + the shape of the 

distribution P(y) (this adds up to another K-1 parameters)

P xn yk( ) = 1
2πσ nk

2
exp −

xn − µnk( )2
2σ nk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Edoardo Milotti - Bayesian Methods - September 2018 16



Gaussian special case with class-independent variance and 
Boolean classification (two classes only):

P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

P xn y = 0( ) = 1
2πσ n

2
exp −

xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P xn y = 1( ) = 1
2πσ n

2
exp −

xn − µn1( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

=
1

1+
P x y = 1( )P y = 1( )
P x y = 0( )P y = 0( )

=
1

1+ P y = 1( )
P y = 0( ) exp −

xn − µn1( )2
2σ n

2 +
xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

N

∏

=
1

1+ exp ln P y = 1( )
P y = 0( )

⎛
⎝⎜

⎞
⎠⎟
+

µn1 − µn0( )xn
σ n
2 + µn0

2 − µn1
2

2σ n
2

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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w0 = ln
P y = 1( )
P y = 0( )

⎛
⎝⎜

⎞
⎠⎟
+

µn0
2 − µn1

2

2σ n
2

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑

wn =
µn1 − µn0( )

σ n
2

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x( ) = 1− P y = 0 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

logistic shape
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Finally an input vector belongs to class y = 0 if 

P y = 0 x( )
P y = 1 x( ) > 1

exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟
< 1

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

w0 + wnxn
n=1

N

∑ < 0
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Naive Bayesian learning is an example of supervised 

learning, however there are also unsupervised Bayesian 

learning methods, such as the AUTOCLASS program and 

similar such projects. 
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The starting point of AUTOCLASS is a mixture model

dP x( ) = pkdPk x θ( )
k
∑ ; pk

k
∑ = 1
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dP x( ) = pkdPk x θ( )
k
∑

there is a variable 
number of classes

the probabilities of belonging to a 
given class are drawn from a 
multinomial distribution

the component distributions are 
taken from a set of predefined 
distributions

the parameters define the 
shape of the component 
distribution
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AUTOCLASS chooses a distribution and a parameter set 
for each class. Every data set determines a likelihood, and 
therefore a posterior distribution.

The class is selected by maximizing the posterior probability 
(MAP class estimate).
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The Infrared Astronomical Satellite (IRAS) was the 

first-ever space telescope to perform a survey of the 

entire night sky at infrared wavelengths (launch date: 

25 January 1983; mission end date: November 21, 

1983)

Infrared all-sky survey by IRAS (http://irsa.ipac.caltech.edu/Missions/iras.html)

http://irsa.ipac.caltech.edu/Missions/iras.html
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ABSTRACT

Recently, several theoretical and applied studies
have shown that unsupervised Bayesian classifica-
tion systems are of particular relevance for biologi-
cal studies. However, these systems have not yet
fully reached the biological community mainly
because there are few freely available dedicated
computer programs, and Bayesian clustering algo-
rithms are known to be time consuming, which
limits their usefulness when using personal compu-
ters. To overcome these limitations, we developed
AutoClass@IJM, a computational resource with a
web interface to AutoClass, a powerful unsuper-
vised Bayesian classification system developed by
the Ames Research Center at N.A.S.A. AutoClass
has many powerful features with broad applications
in biological sciences: (i) it determines the number
of classes automatically, (ii) it allows the user to
mix discrete and real valued data, (iii) it handles
missing values. End users upload their data sets
through our web interface; computations are then
queued in our cluster server. When the clustering
is completed, an URL to the results is sent back
to the user by e-mail. AutoClass@IJM is freely
available at: http://ytat2.ijm.univ-paris-diderot.fr/
AutoclassAtIJM.html.

INTRODUCTION

High throughput experiments, such as gene expression
microarrays in life sciences, result in very large data sets.
In the process of analyzing such large data sets, one of
the first steps most often used is to subdivide them into
smaller groups of items sharing a number of common
traits. Thus, clustering is frequently critical in the analysis
of those data sets.

Several clustering algorithms have been proposed,
including hierarchical clustering, k-means and S.O.M. as

well as several enhancements of these algorithms (1–5).
Several theoretical and applied studies have shown that
unsupervised Bayesian classification systems are of partic-
ular relevance for biological studies (6–15). Therefore,
these clustering algorithms are now increasingly being
used in biological studies.
AutoClass is a general purpose clustering algorithm

developed by the Bayesian Learning Group at the
N.A.S.A. Ames Research Center since the 1980s (16,17).
AutoClass is an unsupervised Bayesian classification
system based upon the finite mixture model supplemented
by a Bayesian method and an Expectation–Maximization
algorithm for determining the optimal classes. AutoClass
uses a maximum likelihood to find the class description
that best predicts the data (a summary of AutoClass
algorithm is presented in Supplementary Figure 1).
Similar approaches have been developed using infinite
mixture models and Gibbs sampling for parameters esti-
mation (6). Our 3-year experience, based on a collabora-
tion between a bioinformatics group and wet lab, and
supported by validation of the algorithm using both simu-
lated (see Supplementary Data) and experimental data
(see below), persuaded us that AutoClass has many pow-
erful characteristics well suited for biological data sets:
(i) the user does not need to specify the number of classes,
which makes this algorithm very attractive for overcoming
the difficult problem of cutting hierarchical trees and
selecting the correct number of clusters, (ii) AutoClass
allows the user to mix heterogeneous data (discrete and
real-valued) and (iii) AutoClass is able to handle missing
values. Moreover, it has been designed for handling
large dataset. AutoClass has been used for many years
in different fields (astrophysics, economic, etc.), but by
very few groups in biology (18–24).
However, as previously reported (7,10), Bayesian

clustering algorithms suffer a significant decrease in com-
puting performance as the data sets size becomes very
large. End users are therefore faced with the problem of
time limitation when using their personal computers.
Moreover, large data sets produced by high-throughput

*To whom correspondence should be addressed. Tel: +33 (0)157278055; Fax: +33 (0)157278101; Email: mestivier@ijm.jussieu.fr

! 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Naive Bayesian classifiers are part of the current toolbox of machine 
learning (see, e.g., Tom Mitchell’s introductory book ”Machine Learning”, 
http://www.cs.cmu.edu/~tom/)

1. Introduction
2. Concept Learning and the General-to-Specific Ordering
3. Decision Tree Learning
4. Artificial Neural Networks
5. Evaluating Hypotheses
6. Bayesian Learning
7. Computational Learning Theory
8. Instance-Based Learning
9. Genetic Algorithms
10. Learning Sets of Rules
11. Analytical Learning
12. Combining Inductive and Analytical Learning
13. Reinforcement Learning

http://www.cs.cmu.edu/~tom/
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On the nature of learning in Bayesian and MaxEnt Inference 
(from Cheeseman & Stutz, 2004)

here we consider these three problems: 

1. find the probabilities     of getting face i in a throw of a possibly biased 
die, given the frequencies ni of each face in a total of N throws; 

2. find the probabilities when only the mean                    , 

and the total number of throws N, are given;

3. analyze the kangaroo problem with a more complex contingency 
table

θi

M = ini
i=1

6

∑
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1. Find the probabilities     of getting face i in a throw of a 
possibly biased die, given the frequencies ni of each face in a 
total of N throws; 

likelihood is given by the multinomial probability

θi

0 ≤θi ≤1; θi
i=1

6

∑ = 1; 0 ≤ ni ≤ N; ni
i=1

6

∑ = N

L n1,…,n6{ } θ,N, I( ) = N!

nj !
j=1

6

∏
θi
ni

i=1

6

∏
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if, initially, we take a uniform prior, the posterior distribution 

from Bayes’ theorem is

and we obtain a Dirichlet distribution (conjugate posterior of 

the multinomial distribution, just as the Beta distribution is the 

conjugate posterior of the binomial distribution).

p θ n1,…,n6{ },N, I( ) =
θi
ni

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

θi
niδ θ j

j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθi

i=1

6

∏
0

1

∫

=
Γ N + 6( )
Γ nj +1( )

j=1

6

∏
θi
ni

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
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B m,n( ) = tm−1 1− t( )n−1 dt
0

1

∫ =
Γ m( )Γ n( )
Γ m + n( )

θ1
n1θ2

n2θ3
n3δ θ1 +θ2 +θ3 −1( )dθ1 dθ2 dθ3

0≤θi≤1
∫ = θ1

n1 dθ1 pn2
0

1−θ1

∫ 1−θ1( )− p⎡⎣ ⎤⎦
n3 dp

0≤θi≤1
∫

= θ1
n1 dθ1 1−θ1( )n2+n3+1 xn2

0

1

∫ 1− x( )n3 dx
0≤θi≤1
∫

= B n2 +1,n3 +1( ) θ1
n1 1−θ1( )n2+n3+1 dθ1

0

1

∫ = B n2 +1,n3 +1( )B n1 +1,n2 + n3 + 2( )

=
Γ n2 +1( )Γ n3 +1( )
Γ n2 + n3 + 2( ) ·

Γ n1 +1( )Γ n2 + n3 + 2( )
Γ n1 + n2 + n3 + 3( ) =

Γ n2 +1( )Γ n3 +1( )Γ n1 +1( )
Γ n1 + n2 + n3 + 3( )

θi
ni

i=1

M

∏ dθiδ θ j
j=1

M

∑ −1
⎛

⎝⎜
⎞

⎠⎟0≤θi≤1
∫ =

Γ ni +1( )
i=1

M

∏
Γ N +M( )

Mathematical note on the normalization of the Dirichlet distribution:

relationship between Beta and 
Gamma function

normalization factor
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thus, if we assume some prior information, we can start with 
a Dirichlet prior

and obtain the posterior distribution

p θ w, I( ) = Γ W( )
Γ wj( )

j=1

6

∏
θi
wj−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
with W = wj

j=1

6

∑

p θ n,w,N, I( ) =
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

θi
ni+wi−1δ θ j

j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθi

i=1

6

∏
0

1

∫
=

Γ N +W( )
Γ nj +wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

= N!

nj !
j=1

6

∏
·

Γ W( )
Γ wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
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The inferred distribution can be used to compute averages, 
and also for prediction. 

Indeed, the probability of observing ri occurrences of the i-th 
face in the future is 

P r n,N,R,w, I( ) = P r θ,N,R, I( ) p θ n,N,w, I( )dθ
θ
∫ =

= R!

rj !
j=1

6

∏
θi
ri

i=1

6

∏ Γ N +W( )
Γ nj +wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθ

θ
∫

= R!

rj !
j=1

6

∏
· Γ N +W( )

Γ nj +wj( )
j=1

6

∏
·

Γ nj + rj +wj( )
j=1

6

∏
Γ N + R +W( )
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so that we find, e.g., 

P r1 =1 n,N,R =1,w, I( ) = Γ N +W( )
Γ nj +wj( )

j=1

6

∏
·

Γ nj +wj +δ1 j( )
j=1

6

∏
Γ N +W +1( )

= n1 +w1
N +W
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2. Find the probabilities when only the total                    , and 
the total of throws N, are given

Let             be the set of vectors that satisfy the conditions, 

then the likelihood is

M = ini
i=1

6

∑

n NM

N = ni
i=1

6

∑ ; M = ini
i=1

6

∑

P M θ,N, I( ) = P n θ,N, I( )
n NM

∑ = N!

nj !
j=1

6

∏
θi
ni

i=1

6

∏
n NM

∑
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now notice that

P θ M,N,w, I( ) = P M θ,N, I( )P θ N,w, I( )
P M N, I( )

=
P n θ,N, I( )

n NM

∑ P θ N,w, I( )
P n θ,N, I( )P θ N,w, I( )dθ

θ
∫

n NM

∑

P n θ,N, I( )
n NM

∑ P θ N,w, I( ) = N!

nj !
j=1

6

∏
Γ W( )
Γ wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏
n NM

∑

P n θ,N, I( )P θ N,w, I( )dθ
θ
∫

n NM

∑ = N!

nj !
j=1

6

∏
Γ W( )
Γ wj( )

j=1

6

∏

Γ ni +wi( )
i=1

6

∏
Γ N +W( )n NM

∑

from these formulas we can calculate all marginals and any 
expectation, although it is quite difficult to manipulate them
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The figure, from C&S, shows that the probability mass is concentrated close to the 
subspace defined by constraints, and becomes increasingly so as N increases. 
Bayesian inference tells us nothing on the distribution inside the subspace. 
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3. The kangaroo problem with an extended contingency table

attributes (number of values):

• handedness (2)
• beer-drinking (2)
• state-of-origin (7)
• color (3)

4-dimensional contingency table
with 2x2x7x3 = 84 entries

The size of the contingency table increases exponentially 
as the number of attributes grows
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If we are given the number of occurrencies ni,j,k,l for each 
position in the contingency table, we fall back on the first 
example of dice throw

0 ≤θi, j,k,l ≤1; θi, j,k,l
l=1

3

∑
k=1

7

∑
j=1

2

∑
i=1

2

∑ =1

0 ≤ ni, j,k,l ≤ N; ni, j,k,l
l=1

3

∑
k=1

7

∑
j=1

2

∑
i=1

2

∑ = N

L n θ,N, I( ) = N!
ni, j,k,l

i, j,k,l
∏

θi, j,k,l
ni, j ,k ,l

i, j,k,l
∏

with the likelihood
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The ni,j,k,l‘s are sufficient statistics and we can estimate all the 
corresponding probabilities as in the first example.

However if we are only given a set of marginals, i.e., of constraints, we are 
in the same situation as example 2, the marginals define a subspace of the 
whole parameter space, and in this subspace the distribution is eventually 
determined by the prior information only.

With enough attributes, the contingency table becomes VERY large, and it 
becomes impossible to collect sufficient statistics, we are mostly limited to 
marginals.

The situation is very different if we assume independence: then the 
marginals are sufficient statistics. E.g., if probabilities factorize, then 
kangaroos have only (2+2+7+3)-(1+1+1+1) = 10 independent values (using 
normalization) instead of 84.
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Maximum entropy approach to the kangaroo problem, given 
marginals

ni, j,k,l
j,k,l
∑ = ni; ni = N

i
∑

θi, j,k,l
i, j,k,l
∑ =1; θi, j,k,l

j,k,l
∑ = ni

N

Example with two marginals: we maximize the constrained 
entropy

S = − θi, j,k,l logθi, j,k,l
i, j,k,l
∑ + λ0 θi, j,k,l

i, j,k,l
∑ −1

⎛

⎝⎜
⎞

⎠⎟
+ λ1 θ1, j,k,l

j,k,l
∑ − n1

N
⎛

⎝⎜
⎞

⎠⎟
+ λ2 θ2, j,k,l

i,k,l
∑ − n2

N
⎛
⎝⎜

⎞
⎠⎟
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in the original kangaroo problem

SV = pbl log
1
pbl

+ pbl log
1
pbl

+ pbl log
1
pbl

+ pbl log
1
pbl

⎛

⎝⎜
⎞

⎠⎟

+λ1 pbl + pbl + pbl + pbl −1( ) + λ2 pbl + pbl −1 3( ) + λ3 pbl + pbl −1 3( )

∂SV
∂pbl

= − log pbl −1+ λ1 + λ2 + λ3 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 + λ3 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 + λ2 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 = 0
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pbl = pbl exp λ3( )
pbl = pbl exp λ2( )
pbl = pbl exp λ2 + λ3( )

⎧

⎨
⎪

⎩
⎪

⇒ pbl pbl = pbl pbl

pbl + pbl + pbl + pbl = 1
pbl + pbl = 1 3
pbl + pbl = 1 3
pbl pbl = pbl pbl

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒

pbl = pbl = 1 3− pbl
pbl = 1 3+ pbl

1 3− pbl( )2 = pbl 3+ pbl
2

1 9 − 2pbl 3+ pbl
2 = pbl 3+ pbl

2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒ pbl =
1
9
; pbl = pbl =

2
9
; pbl =

4
9

this solution coincides 
with the independence 
hypothesis
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∂S
∂θm, j,k,l

= − logθm, j,k,l +1( )+ λ0 + λm = 0

θ1, j,k,l = exp λ0 + λ1 −1( )
θ2, j,k,l = exp λ0 + λ2 −1( )

thus we obtain again a multiplicative structure. 

Whatever the choice of marginals, probabilities factorize, and the 
MaxEnt solution corresponds to a set of independent probabilities. 

Thus independence is built-in the MaxEnt method, which is 
a sort of “generalized independence method”.

In the extended kangaroo problem we find
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A nice account of the history of 
Bayesian ideas by Sharon 
Bertsch (Yale Univ. Press, 2011)

(strongly bent towards history, 
no math)
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