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Example: a decision problem (Skilling 1998)

Let T be the temperature of a liquid which can be either water or
ethanol.

1. We suppose first that the liquid is water: then we take a
uniform prior distribution for T, between 0 °C and 100 °C

2. The experimental apparatus and the measurement process is
defined by the likelihood function
P(DIT,water,I). We assume that measurements are uniformly
distributed within a range =5 °C. Therefore
P(DIT,water,]) = 0.1 (°C)! in the interval [T-5°C, T+5°C], and
zero elsewhere.

3. We take a single measurement D = -3°C.



4. The evidence P(D) is

P(D|water,1) = JP(

T

2°C o\ (o )]
= | (f¢) (°0) dT (°C)=0.002(°C)”
J 10 100

1)P(T)dT

5. Using Bayes’ theorem we find

)P(T): 0.1(°C)”
0.002(°C)"
=05(°C)"  (0°C<T <2°C)

(T| D ,water I) ( O.Ol(OC)_1

P(D water I)



Now suppose that the liquid is ethanol, so that the temperature
range is -80°C<T<80°C

1. P(T)=(160°C)!in -80°C<T<80°C.

2. P(DIT,ethanol,]) = 0.1 (°C)! in [T-5°C, T+5°C], and zero elsewhere.
3. We take a single measurement D = -3°C.
4

The evidence P(D ethanol,l) is

o) (o) .
P(D,erhanol,l)zjP(D|T,erhanol,1)P(T)dT: j 0160 dT (°C)=0.00625(°C)
T

-8°C
5. Using Bayes’ theorem we find

P(D|T,ethanol,1)
P(D,ethanol,])

(-8°C <T <2°C)

P(T) = 0.1(°c)” 1

= °C)" =0.1(°C)"
0.00625(°C)" 160( ) °C)

P(T|D,ethanol,1):
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Assuming a prior for the water-ethanol choice, we can
discriminate between water and ethanol

P water — P ethanol — 05

Indeed,

P(D|water,1)
(D|water,I)P(water,I) + P(D|ethan01,I)P(ethanol,I)
B P(D|water,1)

B P(D|water,l) + P(D|ethanol,1)

P(water|D,I): I P(water,l)

and therefore the ratio of the posteriors is given by the Bayes’
factor
P(water|D,I) B P(D|water,1)

P(ethanol| D,I) - P(D|ethanol,l)




We have found earlier that

P(D water) = O.OO2(OC)_1

P(DJethanol)=0.00625(°C)"

therefore

P(ethan01|D,1) B P(D|ethan01,1) — 3125
P(water| D,I) B P(D|water 1) o

and we conclude that the observation favors the
hypothesis of liquid ethanol.



logig(B) B Evidence support

O0tol/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive

Interpretation of the Bayes factor B as evidence support
according to Jeffreys.

In the case of the water-ethanol problem, and according to
Jeffreys’ categories, the preference for ethanol is “not worth
more than a bare mention”, although it happens to be in the
upper part of the range.
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Example: analytical straight-line fit
y.=ax,+b+E&,

yi measured value

X. independent variable (“exactly” known)
l

Cl,b fit parametes: eventually we expect to find pdf’s for these parameters

Si statistical error

the statistical measurement
<3i> =0; <8.2> =0° = error has a Gaussian
distribution



setting up the likelihood

N2 1 <
p(y | a,b,x,a) — (271'(72) exp| — o 2(% — ax, —b)
| <20 o
prior angular distribution
y v
X X
uniform a uniform angle
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The uniform distribution of a introduces an angular bias.
The least informative choice corresponds to a uniform
angular distribution

1 T T

p(p(go) n_’ 2—§D<2

and we obtain the distribution of a with the transformation
method:

a=tan@

= D, (go)d(p =P, (a)da =P, (a)d(tango)z D, (a)sec2 odo

A B BN
Pa _nseczgo_n(1+tan2g0)_n(1+a2)
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prior distribution of b: improper uniform distribution, related to
the distribution of a
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1 1 cosp 1 1
bla=0)=—: p(bla)=—=5P_ 1.
p(bla=0)=70s plbla)=7m=" 2B V1142
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we obtain the posterior from Bayes’ theorem

la,b,x,0
pla,bly,x,0)=— Biooso p(y ) -p(a,b)
Jda J db p(yla,b,x,0)p(a,b)
—00 —B/cos@

where the prior is

p<a,b>=p<b|a>-p<a>:(2;- m](ﬂ(liaz)]

1
(1 +a’ )3/2

cC




finally we find

exp{— 21 . i(yi —ax, —b)z}
(O 1
p(d,b | y,X,G) - r+oo Blcos@ 1 N 1 \ (1 + 612 )3/2
2
3 ida_8;£08¢db exp{— P ;()’i —ax, — b) }(1 N a2)3/2 j

1 | — 2
32 €XP 5 2Z(yi_axi_b)

(1+a2)

+oo d +oo 1 N
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(e o]

-

N

(N
Q
Ti
S
SN—"
\®)
\I—IJ

—00

\

This expression has a partly Gaussian structure, and now we
rearrange the quadratic expression in the exponential



[ . —ax, —2b(yi—axl.)+b2}

.—ax —ZbZ .—ax +Nb2

1Y 1 R » (1 ’
=N b2—2b—2(y —axl)+(NZ(yl—axi)j +—z(yl—ax) —(—Z(yl—ax )j
i=1 i=1 i=1 i=1
1 Ty » (1 ’
= NA b—NZ(y —ax )) +—2(yl.—ax) —(—Z(y —ax )]
i=1 i=1 i=1
1 i 1Y, 1Y 1Y | 1YY
=N b——(y —ax SN2 Ny +a =S =N =Yy —a—Sx
N| b N;(y, axl) +N N;y' aNlZ:}xlyl+a N;xl] N[N;yl aN;xlj
N 2
=N b—%Z(yi—axi) +N(Vary—2acov(x,y)+azvarx)
i=1

therefore the normalization integral becomes

+oo i N 2
J —dcz )3/2 exp{ 2];] (Vary —2acov(x,y)+a’ Varx)]‘;db exp{— 2];[2 (b - %;()’i — )] ]
2+
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Approximate integration of the remaining integral

j: (1 Jj; )3/2 exp {— 2]22 (Vary —2acov(x,y)+a’ var x)}

We evaluate this integral by integrating about the peak of the
integrand, assuming that the peak is narrow.

We start with the logarithm of the integrand, we find its
maximum and we Taylor expand about the maximum

(I)(a) = —gln(l + az)— 2];]2 (Vary —2acov(x,y)+a’ Varx)
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N
20

(I)(a) = —Eln(l + az)—

5 (Vary —2acov(x,y)+a’ var x)

2

we find a from this
dd 3a N + cubic equation
— =———+—(cov(x,y)—avarx)=0
da l+a° o

cov(x,y)

note that when N>>1 the peak is at position a, =
var x

We use the Newton-Raphson method for the solution of the cubic
equation:

3a,
a,)=—
/(@) 1+a§
, l-a; N N
f (a,)=-3 % __ —-varx = ——varx

(1+a)) © o
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then

2 2

3 3
oa, = - aoz - a, =dy— a02 > (1)
l+a; Nvarx l+a; Nvarx
Now, to complete the expansion, we must evaluate the
second derivative at a;:
d? P 1 —a? N 1
— = —3 é12 — SVarr = —— (2)
da (1 +af) a 01

da 207

e

we find this by using equations (1) and (2)
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Now we complete the evaluation of the integral

N >
exp| — vary—2acov(x,y)+a” varx
3/2 p|: 202 ( y ( y) ):|

T da
J;,(1+ az)

z]:exp <I>(al)—(a_azl)2 da =270} exp[ ®(a,)]

and finally we find the posterior distribution.



Moreover

+Clz) 20 i=1
_ - _
a—a N 1 &
= eXp —@(al)_( 26121) exp _262 (b—N;(yi—alxi)

and thus we see that:

(a)=a;; vara=o0,;

1 ¢ o
(b)= NE(yi —a,x,); varb= N

i=1




Variable transformations and prior distributions

pe(2)dz = py (2(y)) j—j dy = py (y)dy
= py(y) = pe (2(¥)) j—“";

How can we "objectively" choose a prior distribution???
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Now, consider “coins” with different aspect ratio r

(aspect ratio = thickness/diameter)

r=0.05 r=0.25 r=0.5

How do these coins land on heads, tails, sides? When is the probability
of landing on the side equal to the probability of landing on heads or

tails?
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“Probability, physics, and the coin toss”,

figure from Mahadevan and Yong,
Phys. Today, July 2011, pp. 66-67

a. Von Neumann’s answer: consider solid angles subtended by heads, tails, sides

0o
27 X / sin 0df = 27 (1 — cos 6y) Oeads = Qtails = Qsides = 47‘(‘/3
0
= 27m(1 — cosfy) = 4n/3
h r

h Vi@ o1

= r=1/2v2
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“Probability, physics, and the coin toss”,

figure from Mahadevan and Yong,
Phys. Today, July 2011, pp. 66-67

b. alternative answer: consider angles subtended by heads, tails, sides (rotation
about axis through center of coin, and parallel to faces)

Hheads — 6)tauils — esides — 7T/3
= cosfy = 1/2
h r
Vh2 +d?2  ri+1 /

=r=1/V3
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“Probability, physics, and the coin toss”,

figure from Mahadevan and Yong,
Phys. Today, July 2011, pp. 66-67

In 1986 J. B. Keller analyzed the infinitely thin coin and found
that coin toss is not random for finite rotation speed and
vertical speed (rotation axis as in previous case b)
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Coin tossing machine (Diaconis, Holmes and Montgomery 2007)




Coin tossing machine (Diaconis, Holmes and Montgomery 2007)
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Coin tossing machine (P. Diaconis, S. Holmes and R. Montgomery 2007)




Coin tossing machine (Diaconis, Holmes and Montgomery 2007)




... Coin-tossing is a basic example of a random phenomenon.
However, naturally tossed coins obey the laws of mechanics
(we neglect air resistance) and their flight is determined by
their initial conditions. Figure 1 a-d shows a coin-tossing
machine. The coin is placed on a spring, the spring released
by a ratchet, the coin flips up doing a natural spin and lands in
the cup. With careful adjustment, the coin started heads up
always lands heads up — one hundred percent of the time. We
conclude that coin-tossing is ‘physics’ not ‘random’. ...

(Diaconis, Holmes and Montgomery, “Dynamical bias in the
coin toss”, SIAM Rev. 49 (2007) 211)



Therefore, the assumed randomness of coin toss — and in
general, of complex mechanical processes — is related to

t
t
t

ne difficulty in determining the outcome, both because of
he complex and often unknown dynamics, and because of

he uncertain initial conditions.

Thus — at least in this case — probabilities are a measure of
our own ignorance rather than an intrinsic property of the
physical system.
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Bertrand’s paradox and the ambiguities of
probability models

Bertrand’s paradox goes as follows:

“‘consider an equilateral triangle inscribed inside a circle, and
suppose that a chord is chosen at random. What is the
probability that the chord is longer than a side of the
triangle?”

(Bertrand, 1889)
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Solution: we take two random points on the circle (radius R), then we
rotate the circle so that one of the two points coincides with one of the
vertices of the inscribed triangle. Thus a random chord is equivalent to
taking the first point that defines the chord as one vertex of the triangle
while the other is taken “at random” on the circle. Here “at random” means
that it is uniformly distributed on the circumference. Then only those chords
that cross the opposite side of the triangle are actually longer than each
side. Since the subtended arc is 1/3 of the circumference, the probability of
drawing a random chord that is longer than one side of the triangle is 1/3.
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Solution 2: we take first a random radius, and next we choose a random
point on this random radius. Then, we take the chord through this point and
perpendicular to the radius. When we rotate the triangle so that the radius
is perpendicular to one of the sides, we see that half of the points give
chords longer than one side of the triangle, therefore the probability is 1/2.
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Solution 3: we take the chord midpoints located inside the circle inscribed
in the triangle, and we obtain chords that are longer than one side of the
triangle. Since the ratio of the areas of the two circles is 1/4, we find that

now the probability of drawing a long chord is just 1/4.

At least 3 different “solutions”: which one is correct, and why?
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Now we widen the scope of the problem and we consider the
distribution of chords in the plane
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Distribution 1: distribution of chords (left panel) and of midpoints (right
panel) in the first solution of Bertrand’s paradox (the left panel shows 400
chords, the right panel shows 100000 midpoints).
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Distribution 2: Distribution of chords (left panel) and of midpoints (right
panel) in the second solution of Bertrand’s paradox (the left panel shows
400 chords, the right panel shows 100000 midpoints).

In this case it is very easy to find the radial density function of chord
centers, since here we take first a random radius, and next we choose a
random point (the center) on this random radius.
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Distribution 3: Distribution of chords (left panel) and of midpoints (right
panel) in the third solution of Bertrand’s paradox (the left panel shows 400
chords, the right panel shows 100000 midpoints). Notice that while the
distribution of midpoints is uniform, the distribution of the resulting chords is

distinctly non-uniform.
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Hidden assumptions
(Jaynes):

rotational invariance
scale invariance

translational invariance

Now let

G 8 f(r,0)

be the probability density
of chord centers
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Rotational invariance

In a reference frame which is at an angle o with respect to the original
frame, i.e., the new angle ¢’ = 6 — «, the distribution of centers is
given by a different distribution function g(r,6") = g(r,0 — ) .
Since we require rotational invariance

f(r,0)=g(r,0 —a)

with the condition g(r, #)|a=0 = f(r, #), and this must hold for every
angle «, so the only possibility is that there is no dependence on 6,

and f(r,0) = g(r,0) = f(r).
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Scale invariance

When we consider a circle with radius R, the normalization of the distribution f(r) is
given by the integral

2r R R
/ / f(r)rdrd6 = 27r/ f(r)yrdr =1
o Jo 0

The same distribution induces a similar distribution /(r) on a smaller concentric
circle with radius aR (0 < a < 1), such that A(r) is proportional to f(r), i.e.,
h(r) = Kf(r), and

ak aR aR
1= 2m / h(u)udu = 2w / Kf (u)udu = 27K / f(u)udu
0 0 0

1.€., .
K'=2n / f(u)udu
0

and

aR
f(r) = 27Th(r)/0 f(u)udu

1NnSI : Edoardo Milotti - Bayesian Methods - April 2020
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Now we invoke the assumed scale invariance: the probability of
finding a center in an annulus with radii r and r + dr in the original
circle, must be equal to the probability of finding a center in the
scaled down annulus,

h(ar)(ar)d(ar) = f(r)rdr

and therefore

a*h(ar) = f(r)
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Equation
a*h(ar) = f(r)

can also be rewritten in the form
|
hr) = —f (=)

a a

and inserting this into equation

aR
filr) = 27rh(r)/0 f(u)udu

we find

aR
a*f(ar) = 27rf(r)/0 f(u)udu
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We solve equation
aR
a*f(ar) = 2nf(r) / f(u)udu
0

taking first its derivative with respect to a: the relation that we find must hold for all
a’s, and therefore also for ¢ = 1 (no scaling), and we find the differential equation

if'(r) = (27 (R) = 2) £(r)

1L.E.,

if' (r) = (g — 2)f(r)
where the constant ¢ = 27R*f(R) is unknown. However, we can still solve the
equation and find

f(r) =Ar"?

The constant A is easy to find from the normalization condition: A = ¢/27R?, and
therefore

qri’

2mRY

i
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Translational invariance

Geometrical construction for the discussion of translational invariance.
The original circle (black) is crossed by a straight line (red) which defines
the chord. The translated circle is shown in blue.
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This circle is displaced by the amount b, and the new radius and angle
that define the midpoint of the chord are

r' = |r — bcos 0|
0 =6 (ifr>bcosf) or ¢ =0+ (if r <bcosh)
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Now consider a region I surrounding the midpoint in the original
circle, which is transformed into a region I/ by the translation. The
probability of finding a chord with the midpoint in the region I" is

—1
/Ff(r)idrdﬁ—/r R drdf = R /Fr drdf

Likewise, the same probability for the translated circle is

2:Rq/(r’)q_ldr'de'— R /|r—bcos@|q Ldrdd  (3)
F/

where the Jacobian of the transformation is 1. Equating these
expressions, we see that the integrand must be a constant, and
therefore g = 1, and

f(r,0) =

|
2T7Rr

(r <.R; 0<0= 2n)
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Therefore

fr,0) = f(r)=C/r
= (normalization) 1 = / f(r)2nrdr = 27CR
C

1

= )= 21r R




Using this distribution, we find that the probability of finding a
midpoint inside the circle with radius R/2 — i.e., the probability of
finding a chord longer than the side of the triangle in Bertrand’s
paradox — is

2 R/2 R/2 1 1
df L0 )rdr =2 dr = —
/0 : f(r,0)rdr 71'/0 5 Tdr = 5
which corresponds to the second alternative in the previous discussion

of Bertrand’s paradox.

Lesson drawn from Bertrand’s paradox:

probability models depend on physical assumptions, they
are not God-given. We define the elementary events on the
basis of real-world constraints, derived from our own
experience.
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A way forward to "objective" priors: Jeffreys' priors

~ An invariant form for the prior probability in
estimation problems

By Harorp J EFFREYS, F.R.S.

(Recerved 23 November 1945)

It is shown that a certam differential form dependmg on the values of the parameters in a
law of chance is invariant for all transformations of the parameters when the law is differen-
tiable with regard to all parameters. For laws containing a location and a scale parameter
a form with a somewhat restricted type of invariance is found even when the law is not
everywhere differentiable with regard to the parameters This form has the properties
required to give a general rule for stating the prior probability in a large class of estimation
problems.



Starting remark: here we concentrate on a problem of
parametric statistics.

The different hypotheses (and therefore, the different
parameters) correspond to different pdf's

p(x|6)



Step 1: Bartlett identities for a parametric pdf family

E

Olnp(xz|d)

00

0% Inp(x|0)
062

(

Olnp(x|0

00

>>2'




Step 2: a parameter-dependent Likelihood is a family of
pdf's that represent the distribution of the data, given the
value of the parameter(s).

X 1 1
var|f(D)] >= —
o | (dmLD.60)\?| g InL(D.0)
00, 063

0o (D)



Step 3: definition of Fisher Information. A very concentrated
pdf is very informative. Therefore, the smaller the variance,
the greater the "information”.

A 1 1
var|f(D)] >= —
o | (9 LD, 6) | g9 I L(D, 6)
06, 005

B Olnp(x,0) 2] B 0% Inp(z, H)
](9)_E< 06 ) =BT




Step 4: it can be shown that the Fisher Information is a
local (and symmetrical) form of the Kullback-Leibler
divergence.

Icr (p(z]0), p(x|0 +€)) = —% {8 1%;;?\9)} € = %](9)62



Step 5: the KL divergence is invariant with respect to
parameter transformations. From the definition of KL
divergence, and from the transformation formula for pdf's

we find




Step 6: from the equation that relates KL divergence and
Fisher Information, we find a corresponding pdf:

Tt (p(elf).plal6 + ) =~ B P “lp(”““‘@)] & = L 1(0)¢

06?
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Example: a simple Gaussian Likelihood for n datapoints

H \/ﬁ exp (— (x”Q;QM )2>

In L(D|u) ~ (— lno — (5’7”2;2”)2>

il> n
»

L(D|p) =

2
I(p) =E {—8 lnal;(QDM)} ~ constant




Example: a simple Gaussian Likelihood for n datapoints (ctd.)

L(D|p) = H \/% exp (_ (xn2;2u)2>
> I(0) = E [_ o lnaigma)] o
> I(o) ~ %
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