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Bayesian estimates often require the evaluation of
complex integrals. Usually these integrals can only be
evaluated with numerical methods.

) enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap

4. Bayesian methods in a sampling-resampling
perspective

5. introduction to Markov chains and to the Metropolis
algorithm



1. The acceptance rejection method
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Example: random numbers with semi-Gaussian distribution
from exponentially distributed random numbers.
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Definition of contact point (to maximize efficiency)

f(x):\/%exp(—%zj £20

g(x)=exp(—x)
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- f(x)=cg(x) \/% "(ﬂpH
| f'(¥)=cg () x\/%exp(—%zj:cexp(—x)
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Exponentially distributed values
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A/R accepted values (10000 accepted sample pairs)
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Histogram of accepted x values
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Comparison with the original distributions
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Now notice that in this method we generate pairs of real
numbers (1,0) that are uniformly distributed between f(6)
and the x-axis, therefore we can use these pairs to estimate
the total area under the curve

(here the reference area is the area of the enclosing rectangle which
corresponds to a uniform distribution)
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In general, if h(x)=f(x)p(x),where pis a pdf

ih(X)dF?f(X)p(X)dFEp[f():\)]z;,nif(;n)

here the x are i.i.d with pdf p(x)

a

and we find that the variance of this estimate of the integral
IS

a5 LT |

n=1

We encounter a problem with this method when we
must sample functions that have many narrow peaks.
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2. Importance sampling

this pdf is troublesome ...

b
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:Eq

h(x)dx = jf(x)

'

p(x)dx

I

1

therefore we use this ...

gf(xn)

| N

7

'

g(x)dx

p(x,)

q(x,)

here the x are i.i.d with pdf g(x)

These methods are still not very efficient and there is a
better alternative, the Markov Chain Monte Carlo method
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3. Bootstrap (B. Efron, 1977) and the importance of edf’s

The bootstrap method is a
resampling technique that
helps calculate many
statistical estimators
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consider the distribution of a set of measurements
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the distribution of data is an approximation of the “true”
underlying distribution (in this case a mixture model)
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distribution of mean value obtained from 5000 sets of
data (sample size = 50)
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You can do this if you have large datasets ... but what if you
have only a handful of measurements?



example: single dataset (same size as before, 50
measurements)
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the distribution is a rough representation of the underlying
distribution ... and yet it can be used just as before ...



Bootstrap recipe:

If you want to find the distribution of the mean (or any other
statistical estimator) use the dataset itself to generate new

datasets

> resample from dataset (with replacement)



distribution of mean value
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true mean: -0.2

0.2

mean from repeated sampling (size = 250000): -0.200222 + 0.0813632

mean from resampling dataset (size = 50): -0.142699 =+ 0.0838678
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counts of CD4 limphocytes
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FiGc. 3. Histogram of 2,000 bootstrap correlation coefficients; bivariate normal sampling model.

B (Baseiine)

bootstrap estimate of correlation

FiG. 1. The cd4 data; cd4 counts in hundreds for 20 subjects, coefficient distribution
at baseline and after one year of treatment with an experimental
anti-viral drug; numerical values appear in Table 1.

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and
Efron, Statistics of Science 13 (1998) 95



4. Bayesian methods in a sampling-resampling perspective

(Smith & Gelfand, 1992)

Bayesian Statistics Without Tears:
A Sampling-Resampling Perspective
A. F. M. SMITH and A. E. GELFAND*

Even to the initiated, statistical calculations based on
Bayes’s Theorem can be daunting because of the nu-
merical integrations required in all but the simplest ap-
plications. Moreover, from a teaching perspective, in-
troductions to Bayesian statistics—if they are given at
all—are circumscribed by these apparent calculational
difficulties. Here we offer a straightforward sampling—
resampling perspective on Bayesian inference, which
has both pedagogic appeal and suggests easily imple-
mented calculation strategies.
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In Bayesian methods we have to evaluate many integrals,
like, e.q.,

[(6; x)p(0)
f 1(6; x)p(6) do 4— normalization (evidence)

p(6lx) =
p(dlx) = fp(d)a Y|x) dif. €—— marginalization
(statistical estimators)

Elm()x] = | m(o)p(el) do < *20°S
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except in simple cases, explicit
evaluation of such integrals will rarely be possible, and
realistic choices of likelihood and prior will necessitate
the use of sophisticated numerical integration or ana-
lytic approximation techniques (see, for example, Smith
et al. 1985, 1987; Tierney and Kadane, 1986). This can
pose problems for the applied practitioner seeking rou-
tine, easily implemented procedures. For the student,
who may already be puzzled and discomforted by the
intrusion of too much calculus into what ought surely
to be a simple, intuitive, statistical learning process, this
can be totally off-putting.
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Bayesian learning as a resampling procedure

p(0|z) o< £(x;0)p(0)

\

1. prior distribution defined
by the empirical distribution

2. the Likelihood of the initial samples
distorts the distribution

of initial samples

3. the posterior distribution ~ (corresponds to a
is represented by the sample acceptance
resampled empirical probability)
distribution



Example (McCullagh & Nelder): take two sets of binomially
distributed independent random variables X;; and X}, (i=1,2,3)

X, = Binomial(nil,el)
X, = Binomial(nl.z,ez)

The observed random variables are the sums

Y, =X, +X,
° n; Nn; : . . ,
likelihood = Z ( Zl) ( @2 . )9{1(1 _ Hl)nil_]iegi_]i(l L 92>n¢2—y¢—|—37;
i1 4, \Ji Yi — Ji

max (0, vy; — n2) < 75 < min(nit, ¥s)



Sample data
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Example of implementation in Mathematica

nl {5, 6, 4};
n2 {5, 4, 6};
?i = {7, 5, 6};

Clear[likelihood];
likelihood[thl_, th2 ] :=
Product [Sum [Binomial [l [[i]], j] *Binomial[n2[[4i]], yi[[4i]] -j]l ~thI™j » (1 - thI) *(nl[[i]] -3) *
th2” (yi[[i]] -3) » (1 - th2) *(n2[[i]] -yi[[i]] +3)., {j, Max[O, yi[[i]] -n2[[i]], Min[nl[[i]], yi[[4i]]]1]1}].
{i, 1, 3}];

ns = 10000 ;
th = Table[ {RandomReal[], RandomReal[]}, {ns}];
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Posterior as a resampled prior using acceptance-rejection

lt = Table[likelihood[th[[k, 1]], th[[k, 2111, {k, 1, n8}];
norm = Max [1t];l
w = 1t / norm;

thr = {}; ntot = 0;

For[kn =1, kn < ns,
If[w[[kn]] > RandomReal[], ntot ++; AppendTo[thr, th[[kn]]]];
kn ++]
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Posterior as a resampled prior using weighted bootstrap

1t = Table[likelihood[th[[k, 111, th[[k, 2111, {k, 1, ns}];
sum = Apply[Plus, 1lt];
w =1t / sum;

thr = Table[ {0, 0}, {n8}];
ntot = 0;
While[ntot < ns,

kn = RandomInteger[{l, ns}];

If [RandomReal[] <w[[kn]], ntot++; thr[[nteot]] =th[[kn]]];

: 1.0 m

0.8 I- . * e
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The resampled points are representative of the posterior
distribution and can be used to evaluate any sample estimate

20 o Marginalized distribution of 6,
300 it g Sample mean: 0.5640.002
200 il Mimn
" il I
OHTFW ,,,,, ]
0.2 04 0.6 0.8 1.0
s _ __
| e i Marginalized distribution of 0,
300} B 111111
il AT 1 Sample mean: 0.6130.002
" WH
ozfﬂﬁrﬁ-l e bbb b L L
0.2 0.4 0.6 0.8 10

Edoardo Milotti - Bayesian Methods - May 2020 31



5. Very short introduction to Markov chains

Consider a system such that
e the system can occupy a finite or countably infinite set of states S,;
e the system changes state randomly at discrete times t =1,2,...;

e if the system is in state S;, then the probability that the system goes into
state S; is

p;j:P[S(n+1):Sj]5(n):S;] i,j:1,2,...

i.e., this probability depends only on the previous state, and is independent
o all previous states (this is the Markov property);

e the transition probabilities p;; do not depend on time n.

Such a system is a special type of discrete time stochastic process, which is
called Markov chain.



Example:

in the Land of Oz they never have two nice days in a row, rather, after a sunny day
it either rains or snows.

If they have a nice day, they are just as likely to have snow as rain the next day. If they have
snow or rain, they have an even chance of having the same the next day. If there is change
from snow or rain, only half of the time is this a change to a nice day. When we denote the

three states with the symbols N (Nice), R (Rain), or S (Snow), the transition probabilities are:

pnny =0;  pnr=1/2; pns=1/2
prn =1/4; prr=1/2; prs=1/4
psy =1/4; psr=1/4; pss=1/2

1/2

(representation as
a directed graph)
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Matrix of transition probabilities (also called transition kernel)

PNN  PNR PNS 0 1/2 1/2
P=1| prv pPrrR prs | =| 1/4 1/2 1/4
PSN PSR PSS 1/4 1/4 1/2

This is a row stochastic matrix, where all rows are such that
> ipij =1

There are also column stochastic matrices, and doubly stochastic matrices that are
necessarily square:

ZZPU—Zl—m

j=1i=1



20j T T T T T T T T T T T T T T T T T T T T T i 60j ‘
ol 40}
-20; 20 |
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Discrete-time discrete-space random walks are an example of Markov
chains with infinite states.

Pii+1 =Py Pii-1=(
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Now let

71',(n) = P[S(n) = S]]

be the probability that at time n the system is in state S;, then:

r{" Y = ZP (n+1) = Sj|S(n) = Si]P[S(n) = 8i] =Y pyym"™

When we define the vector (™) = {7'('( )}and the matrix P = {p;; } we see
that the equation becomes

L(n+1) _ _(n)p

() _ (0pn

N

n-step transition kernel
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For example, the transition kernels for the weather in the Land of Oz are

0 0.0 0.5
P
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the transition kernels
seem to converge to
a fixed matrix ...
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Notice that if the transition kernel converges to a fixed matrix where all
rows are equal, then the distribution of states also converges to a fixed
distribution which does not depend on the initial distribution:

P" > P o (Poo)ij = fj

n— oo all rows equal

4

OO 0 0
o =" (Po)iy =Y O f =
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Persistent and transient states ...

Type of state

Definition of state (assuming, where applicable,
that the state is initially occupied)

Periodic

Aperiodic
Recurrent/Persistent
Transient

Ephemeral
Positive-recurrent

Null-recurrent
Ergodic

Return to state possible only at times t, 2t, 3t,
., Where t > 1

Not periodic

Eventual return to state certain

Eventual return to state uncertain

s a state j such that p;; = 0 for every i

Recurrent/persistent, finite mean recurrence

time

Recurrent, infinite mean recurrence time

Aperiodic, positive-recurrent




This graph represents the states and the transition probabilities of a finite Markov
chain with 6 states.

The arrows correspond to nonzero transition probabilities. If the chain starts with
any one of states A, B, C or D, it can loop around these four states until a
transition D to E occurs, then the system is locked in the E-F loop.

States A, B, C, and D are transient, while states E and F are persistent (and
periodic, with period 2). A Markov chain with just one class, such that all states
communicate, is said to be irreducible. This Markov chain is not irreducible.

VERY INTERESTING MATH ON PERSISTENT STATES, HOWEVER WE DO
NOT PURSUE IT FURTHER, WE DO NOT NEED IT NOW.
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Limiting probabilities and stationary distributions

Here we prove that the convergence that we saw in the Land of Oz
example is a general feature of Markov chains, under the assumption that
the chain is irreducible, and that for some N we have

mlnp,(J ) —§>0
iJ

Now let

rj(n) = mm p,(J"), R( ") _ max p,(J)

be the min and max of the j-the column vector in the n-step transition
matrix.



Recall the example:
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0.4\

0.4

0.4

we shall show that, in each
column, the min and the max
become closer and closer as
n grows and bracket a value
that is the asymptotic matrix
element (the same for all
rows in a given column)
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Then we find

J("+ ) — m|n p,(J 1) m|n P"Jrl = mln(PP”),J = mmZp,kp(n)
> miinZPikfj = fjn)
k
and

F\’J(-nJr ) — = max p,(J ntl) _ max P”le = max( P")i = mapr,kp(n)
< maxz R (m) _ R(n)
Pik
This means that, as n grows, the minimum and the maximum values in a

column vector get closer and closer (the components of the column vector
get closer and closer). But do they converge to the same value ???
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We must consider the difference

(n) (n) _ (1) .. (n) (n) (1)
R = k ik [p }

Then, shifting the difference by N, we find

R <) 7 ™) = s {3 o )|
’ l

Next we split the difference enclosed in braces into sums of negative and
positive contributions

(N) _ ()], (n)
> [p ~ Pri }plg

l

(N) n) (V) (N) (n)
— Py ng +Z — Py pl;

I

N)qp(n N N
_pl(d)R( )_|_Zp§l) pl(d) j)

Y
2.
(V)
p;
El: |



Now consider the structure of the positive sum, it must contain at least one term
where one subtracts the smallest element in the column, so that

_I_

Z[p(N) p/(cjl\[) ZP(N) Zpl(cfl\f)<zp(N)_5_1_5

l

Similarly, for the negative sum we find

N N N N
> i w1 = ZP( | ZPM)>5 ZP( '=—(1-9)
l
and therefore

_|_
(N) _(M)] () (N) _ (V)] pln) (N) _ (V) ()
Z{ Pk }pu <D i — IR +Z ~ Pl
l [

<(1-8R"™ -1~ 5)r<”> = (1-0)(R™ —ri™)

J

so that taking strides of N steps at a time, and recallingthat 0 <1 —0 <1

REN) _ p(BN) (1 gk [RW) _ r(-N)} N

J J J J s o0




Since

RUN) _ p(BN) (1 )k [R(.N) _ T(-N)} N

J J J J s o0

the matrix elements in the column converge to a single value PJ’-" , l.e.,

p;; = lim [P"];; = p;

n— 00

and

0 0
k k



This asymptotic distribution is stable, indeed from
7TJ(n) Zw(n 1)

we find

[T*Pl; = Tipkj = > _ PiPk;
k k

Zp;kkpk_j — p;; — pJ* — 7(-.7
k

or, in matrix form
™ =71"P

i.e., the asymptotic probability vector is the left eigenvector with eigenvalue 1 of
the transition probability matrix. The distribution expressed by the probability
vector m* is called invariant distribution or stationary distribution.
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Detailed balance

From the definition of conditional probabilities we find

P[S(n) = S; and S(n + 1) = S,] = P[S(n) = Si|S(n+ 1) = S;]P[S(n+ 1) = S;]
= P[S(n+ 1) = 5,|S(n) = S;|P[S(n) = S;

therefore, when a Markov chain is time reversed we find

P[S(n) = S,-|S(n + 1) = Sj]
P[5(n) = Si

= P[S(n+1) = 5j|S(n) = Sj] P[S(n+1) = S}

(n)
T
P[S(n) = S;\S(n + 1) = Sj] = p;jm
i
which shows that the reversed chain is time-dependent.



However if states are distributed according to the invariant distribution, we
have

*
7TI

PIS(n) = SilS(n+1) = S}] = pyj =

a*
J

which means that the backward transition probabilities are again time-
independent, and in particular they must coincide with the forward
transition probabilities, i.e.,

pjiT; = PijT;
a condition which is called detailed balance.

So if stationary distribution then detailed balance ... however the reverse
also holds

rmHD) Z (7) 274 ") pii = 7" )Z it = "



Physical aside: continuous-time Markov processes

The time-dependence of the reversed chain is a manifestation of the dissipative
character of the chain. Another important related result is the validity of the H-
theorem for Markov processes.

In the case of continuous-time processes we can write

P(Slk,tkyslk_lvtk—lv1510’t0) —
= P (S;k, tkIS,-k_l, tik—1,...; 5,'0, to) P (S;k_l, tk—1;---; Si(), tO)

Memoryless processes
P (Si., tk: Sip_y» tk—1; .- - Siy. to) = P (Si,, tk)
Markov processes

P (Sik, Ly, Sik—l' tk—1,...; 5,'0, to) =P (Sik, tk\S,-k_l, tk—l) P (S;k_l, tk—l)



For Markov processes the following equation also holds

P(S,, t+ At) = P(S,, t)+

+ Z [P (Sn, t+ At|S;, t) P(Sj, t) — P(S;, t + At|S,, t) P(Sp, t)]

(master equation).

When we assume that the transition probabilities are time-invariant and we
define the transition rates T

P(Sh t+ At|S;, t) =T, jAt

we find the differential form of the master equation

ditP(Sn' t) — ; [T,,JP(SJ', t) — Tj,n'D(Sm t)]



Using the previous notation for the probability distribution on states, we
can rewrite the master equation as follows

d7r
n S Z [TnJTrJ - nﬂn(t)]
Next, we assume that transmon probabilities are "reversible"
Tnj=Tjn

so that

FERPMIIUORLIC

and therefore, at equilibrium

all states are
Z Thj|m ( — T ) =0 » 7T v equally likely at

equilibrium
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Now consider the following sum

H = E Thlnm,
n

Using the master equation we find a differential equation for H

dH d dm,
dt 2 gl m) =2 (inm, +1)

= ZT”J (7Tj —7Tn) (In7rn+ 1)
n.j

Exchanging indexes ...

dH
n.J



Adding the two differential equations we find

dH 1
=5 ZT,,J (mp — ;) (In7j — In7p)
n,j

Since
(mp — 7)) (Inmj —Inm,) <0
we find
dH
< 0 Boltzmann's H-theorem
dt —

The derivative vanishes at equilibrium, and we find that it is a stable point for H.
Since H is essentially the negative of Gibbs' entropy, the theorem states that the

entropy of a Markov chain increases up to a maximum which is reached at
equilibrium.
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