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Bayesian estimates often require the evaluation of
complex integrals. Usually these integrals can only be
evaluated with numerical methods.

» enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. Importance sampling
3. statistical bootstrap

4. Bayesian methods in a sampling-resampling
perspective

5. introduction to Markov chains and to the Metropolis
algorithm

6. Markov Chain Monte Carlo (MCMC)
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To introduce the method, we consider the Traveling Salesman Problem
(TSP), where we want to find the shortest closed path that connects N

cities.
The problem was first stated by the Viennese mathematician Karl

Menger and is one of the most studied problems in combinatorial
optimization.

12 “cities” randomly distributed in the
(0,1) square: the path corresponds to
a random permutation of the
sequence of cities.

(path length L=1.93834)
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Paths are enumerated by permutations of “city names”, e.g., {9, 2, 7, 8, 1,
12,4, 5, 3, 10, 11, 6} (start at 9, step to 2, and so on until you reach 6 and
then return to 9).

The total number of configurations (undirected paths) is

1

—(n—1)!

2

The problem belongs to the class of NP-complete problems (Non-
Polynomial complexity, a class of particulary hard problems)

In such cases there is only one known exact solution: the full
enumeration of all paths.
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13 May 1983, Volume 220, Number 4598 SCI E NCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

Summary. There is a deep and useful connection between statistical mechanics
(the behavior of systems with many degrees of freedom in thermal equilibrium at a
finite temperature) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parameters). A detailed analogy with
annealing in solids provides a framework for optimization of the properties of very
large and complex systems. This connection to statistical mechanics exposes new
information and provides an unfamiliar perspective on traditional optimization prob-
lems and methods.




Approximate solution of the TSP with the Simulated Annealing algorithm

path length - energy of the system

exploration of the configuration space with the Metropolis algorithm
(Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE,

Equation of State Calculations by Fast Computing Machines

NicaoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AuGusTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwWARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

Edoardo Milotti - Bayesian Methods - May 2020

1953



Figure 8.14: Portrait of American computer scientists Nicholas Metropolis
(1915 - 1999) (seated) and James Henry Richardson (1918 - 1996) at Los

Alamos National Laboratory, Los Alamos, New Mexico, November 1953
(from http://www.life.com).
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1. We generate a new configuration C” from the present configuration C
2. We compute the energy of the new configuration, E’
3. We compute the energy difference AE=E" — E

4. The new configuration is accepted with probability p

(

p=1 AE <0

AE
=exp|l—| AE=20
; p( ij

\

Additional details

» the algorithm needs a slow cooling (it is common to choose an exponential
cooling schedule)

« if cooling is not gradual, the system can get stuck into a local minimum

 simple exchanges of pairs of cities are the individual moves in the SA solution of
the TSP

» the individual steps from one configuration to the next can be described by a
Markov chain
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50-cities problem
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Decrease of total path length in a realization of the SA solution of the
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Here we note that the transition probability can be written as follows

T(C— ()= min{l, exp[_ (E - E)ﬂ

kT

Moreover, it is easy to show that the algorithm preserves detailed
balance

P(C)T(C—>C)=P(C)T(C"—C)

where P(C) is the stationary probability of configuration C. Indeed at
equilibrium we find that, if E’ > E,

p(c)exp[_(E"E)j:p(c')

kT
P(C) _ exp(—(E,_ E)j Boltzmann’s

kT distribution



Finally, we can write:

This definition of the transition probability is the starting point
for an important further step, the Metropolis-Hastings

algorithm.
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6. MCMC — definition of the Metropolis-Hastings (M-H)
algorithm (1970)

» we define the transition probability
P(x—y)=qx y)ax,y)

and the target density T (X)

* we take state X

( n
* we choose randomly another state y and we accept it (y —> Xn+1)
with probability




If g is @ symmetrical function, then the acceptance probability
takes on the simpler form

Oc(x,y):miml, X > — min- 1,
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and it depends on the target density only.



The M-H algorithm defines a Markov chain and it is easy to show that
detailed balance holds. The transition probability is




Detailed balance holds in both cases and
therefore 7(x)is stationary
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The following figure shows a simulation with the MCMC algorithm and
the distribution

(a three-component mixture model)
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nrmax = 40 000;

xr = Table[0, {nrmax}];
xr[[1]] = -4;

nr=13;
While[nr < nrmax,
xtry = xr[[nr]] + RandomReal [NormalDistribution[0, 1]];
If[ pdf[xtry] /pdf[xr[[nr]]] > RandomReal[] , nr++; xr[[nr]] = xtry];

]
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MCMC simulation of a 2D three-component mixture model

fai)? + (Y — fyi)?

p(x,y)=z L exp [— i

i=1 V 20-7,2

20'1'

a; =0.9; pz1=0; py1=0; o1 =0.3;
az =035 pg2=1 pyo=1; o2 =0.5;
a3 — 0.2; Mz .3 = 2; My,3 = 0.1; 03 — 05,
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100000 steps
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100000 steps
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100 steps
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1000 steps
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4000 steps

25
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10000 steps
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Notice that when the peaks are very narrow, the random walker may have
problems visiting all of the peaks

(:C - ,ux,i)2 + (y — ,uy,z')2

3
87)
p(z,y) = ; 207 €Xp [ 20,

a; =0.5; pe1=0; py1=0; o1 =0.0725;
o — 03, Mz 2 = 1; Hy.2 = 1.; O9 = 0125,
3 — 02, Ha,3 — 2; Hy 3 = 01, 03 = 0125,

10000 steps 100000 steps

oot/ !
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Example of application of the MCMC technique in
radiobiology
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Survival curve for HeLa cells in culture exposed to x-rays. (From Puck TT, Markus
PI: Action of x-rays on mammalian cells. J Exp Med 103:653-666, 1956)
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Phenomenology: the linear-quadratic law
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Fig. 1. Clonogenic survival curves illustrating the higher efficiency of the

carbon ions compared with X-rays [10] (courtesy of the author, dr. Wilma
K. Weyrather).
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Target theory
Simple Poisson model:
Probability of hitting n times a given target, when the average number of

good hits is a:

a” _
P(n) = e

Probability missing the target: P(0) = e~

Average number of hits: a = D /Dy

S(D) = P(0,D) = e~ P/Po
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Multitarget model, asymptotic behavior and threshold effect.

If there are multiple targets, say n targets, all of which must be hit to kill a
cell, then the probability of missing at least one of them —i.e., the survival
probability — is

S(D)=1-(1- e_D/DO)”
then, for large dose
S(D) ~ ne~P/Po

l.e.,

InS(D) ~1Inn— D/Dy

which is a linear relation with intercept In n, and slope -1/D,,.



D/ D,
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Notice that

d 2 2
_6—ozD—BD _ (_& . QﬂD)e_aD_BD — oy
aD D—0 D=0
and that

d e_D/DO
Yl (1~ eD/Do n] _ | _ o—D/Doyn—1 _
5 { ( € ) o n D ( e ) . 0

The derivatives differ in the origin, and the multitarget model fails to
reproduce the observed linear-quadratic law.



The RCR (Repairable-Conditionally Repairable Damage) model

In this case the surviving fraction is

S =exp(—aD)+bDexp(—cD)

This is a 3-parameter expression, which is not easy to fit to data when the data
set is small.
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1a. Simple Gaussian likelihood for the LQ model

(Sk B S(aaﬁ))z

20,

L(Of,ﬁ)=l;[e><p -

1b. Chose exponential priors for the parameters

1c. Complete posterior pdf

{Sk},l)z l:[exp —(Sk_S(a’ﬁ)) exp(—0.1a )exp(—0.13)

p(o.p

20,

1d. Use MCMC to find the MAP estimate (and any moment of the pdf)
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2a. Simple Gaussian likelihood for the RCR model

2b. Chose exponential priors for the parameters

2c. Complete posterior pdf

0.2 —02b 02
e e e

{Sk}’l): Hexp -

p(a,b,c

2d. Use MCMC to find the MAP estimate (and any moment of the pdf)



Path in (a,b,c) space




Fit showing individual components: unsatisfactory result
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Revise priors to include constraint on derivative

(priors vanish where derivative in the origin is positive)

S = exp(—aD)+bDexp(—cD)

4 6 8 10
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“Straight line fit” with the MCMC

An example with Gaussian errors and exponential priors.
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model Yy = ax + b
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Convergence of the MCMC sequence to the asymptotic
distribution

Statistical Science
1992, Vol. 7, No. 4, 457-511

Inference from lterative Simulation
Using Multiple Sequences

Andrew Gelman and Donald B. Rubin

Abstract. The Gibbs sampler, the algorithm of Metropolis and similar
iterative simulation methods are potentially very helpful for summarizing
multivariate distributions. Used naively, however, iterative simulation
can give misleading answers. Qur methods are simple and generally
applicable to the output of any iterative simulation; they are designed
for researchers primarily interested in the science underlying the data
and models they are analyzing, rather than for researchers interested in
the probability theory underlying the iterative simulations themselves.
Our recommended strategy is to use several independent sequences, with
starting points sampled from an overdispersed distribution. At each step
of the iterative simulation, we obtain, for each univariate estimand of
interest, a distributional estimate and an estimate of how much sharper
the distributional estimate might become if the simulations were contin-
ued indefinitely. Because our focus is on applied inference for Bayesian
posterior distributions in real problems, which often tend toward normal-
ity after transformations and marginalization, we derive our results as
normal-theory approximations to exact Bayesian inference, conditional
on the observed simulations. The methods are illustrated on a random-
effects mixture model applied to experimental measurements of reaction
times of normal and schizophrenic patients.

Key words and phrases: Bayesian inference, convergence of stochastic
processes, EM, ECM, Gibbs sampler, importance sampling, Metropolis
algorithm, multiple imputation, random-effects model, SIR.



Our approach to iterative simulation has two major
parts: Creating an overdispersed approximate distribu-
tion from which to obtain multiple starting values, and
using multiple sequences to obtain inferences about
the target distribution.



MacMCMC (v1.4)

State-of-the-art Data Analysis for Mac OS X™

MacMCMC is a free and extremely powerful application for the analysis of data of any kind. It is one half of a two-part project. The other half
is a free ebook—a strongly recommended preliminary—available here.

To see MacMCMC in action, consider this famous example from the literature (Arnold and Libby, 1949):

Carbon-14 Dating

Input

Data

Model

Output
Report
Trace

Marginals

Given the MacMCMC report, any graphing software may be used to prepare a plot showing model versus data.
Note: The blue line in this plot uses mean estimates; the red line is the prior uncertainty for parameter A.

Principal Features

General

Complete, standalone Mac application

100% Bayesian inference
100% ensemble MCMC
Access to low-level options

Parallelized for maximum speed

https://causascientia.org/software/MacMCMC/MacMCMC.html




678 SCIENCE December 23, 1949, Vol. 110

Age Determinations by Radiocarbon Content:
Checks with Samples of Known Age

J. R. Arnold and W. F. Libby
Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

URTHER TESTS of the radiocarbon method 3y
- of age determination (1-3, 6, 8, 10) for archae-
ological and geological samples have been com-

AMPLES OF KNOWN A

pleted. All the samples used were wood dated 12
quite accurately by accepted methods. The measure-
ment technique consisted in the combustion of about 1
ounce of wood, the collection of the earbon dioxide, " §TREE RINGC 380 +50 A.0)
its reduetion to elementary carbon with hot mag- s
nesium metal, and the measurement of 8 grams of \E 0
this carbon spread uniformly over the 400-square- % +
centimeter surface of the sample eylinder in a sereen E OLEMYCZOO_'S(;&Q
wall counter (7, 9). The background count was re- Bl ol TAYINATC675 2 3080
duced during the latter part of the work to 7.5 counts < ReDWOOD (979 % 528.C)
per minute (epm), which is some 2 percent of the § P
unshielded background, by the use of 4 inches of .3 81~ cunve C’A’L’CULATED SESOSTRIS(1843 ¥ 3080)
iron inside 2 inches of lead shielding, plus 11 anti- 7 FROM PRE SENT DAY POINT
coincidence counters 2 inches in diameter and 18 ANDKNOWN HALF LIFE OF
inches long, placed symmetrically around the working = R?,'gf;"i?%’éms Z“::;f;-a,:gg
screen wall eounter inside the shielding. The screen
wall counter had a sensitive portion 8 inches in length, | [ V [ l |
so the long anticoincidence shielding counters afforded 6o 1000 2000 3000 4000 5000 6000
considerable protection on the ends. No end counters HisTORICAL AGE (YEARS)
were used. The data obtained are presented in Table F16. 1. Specific activities for samples of known age.

1 and Fig. 1. :



Test run with
MacMCMC

Data: Cl4.dat

# chains x sample/chain: 300 x 3334

log(marginal likelihood): -183.208

A

MAP, Mean, Median, Mode, G-R stat:
Credible Intervals:

h

MAP, Mean, Median, Mode, G-R stat: 5710.08 5708.23 5708.35 5707.39 1.013

Credible Intervals: 5587.2 5616.54 5630.98 5785.18 5800.11 5828.53

Model: Cl4.mcmc

Activity (min™' g7")

L Ll
o —
I |

o
L

12.6865 12.6952 12.6966 12.6817 1.003
12.4079 12.4877 12.5239 12.8679 12.9015 12.978

T T

LE ¥ By T
2000 3000
Age (years)

3 May 2020 at 19:48:53

1000200 (thinning = 10)
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