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1. The EM algorithm (Dempster, Laird & Rubin, 1977)

Recall the max. likelihood principle:

uniform distribution
(usually an improper prior)

pP(dle,rI) /

P(9|d,1)= P(d|1) °P(9|1) likelihood
evidence = f)((:;ii P(011)e<£(d,0)

in this (approximate) setting, the MAP estimate coincides with
the ML estimate.
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when data are independent and identically distributed (i.i.d.) we find the
following likelihood function

L (d,@) = Hp(di

and we estimate the parameters by maximizing the likelihood function

6)

0 = argmax £ (d,0)
6
or, equivalently, its logarithm

6 = argmax[log[ (d,G):I
0

(in real life, this procedure is often complex and almost invariably it requires
a numerical solution)



The EM algorithm is used to maximize likelihood with incomplete information,
and it has two main steps that are iterated until convergence:

E. expectation of the log-likelihood, averaged with respect to missing data:

parameters (with respect
to which we want to
maximize the expression

measured missing
data data previous parameter
|Ike|lh00d estimate (constant
values

Xenl

Q(9,9<"—1>)

E
102 p(x.¥16)]p ,e<"-”)dy
Y

M. maximization of the averaged log-likelihood with respect to parameters:
~1
o\ = arg maxQ(B,O(” ))
0
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Example: an experiment with an exponential model
(Flury and Zoppe)

Light bulbs fail following an exponential distribution with mean failure time 0
To estimate the mean two experiments are performed

1. n light bulbs are tested, all failure times u; are recorded
2. m light bulbs are tested, only the total number r of bulbs failed at time t are
recorded

( A
1 1 w) 1 2” 1 n(u)
- L = Eexp —— =Eexp g :Eexp 7
\ J

S

missing data!



combined likelihood

log-likelihood

—nln@ n(u) 2(ln9+ ﬁj
6 o 6

l




expected failure time for a bulb

that is still burning at time t t+06

expected failure time for a bulb O — texp(—t/@)
that is not burning at time t 1— exp(—t/@)




Note on mean failure time for a bulb that is not burning at time ¢

1
p(t')oc—e"° 0<¢t' <t
6
i e dt’
normalization = Jp(t')dt' S e L
0 0 9
fail t1 — J.t’ (t/)dt/ _ J’t, /o Al df,
mean failure time = | t'p —t/9

:1 —r/e[l o0 _ (t/e)e—t/e:l

¢ e—t/e

:6_1_e—t/0




g

average log-likelihood

=—(n+m)nf - ngﬁ —1(9— lt_ezig(__t/;g)j— (m; r)(9+t)

this ends the expectation step
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the max of the mean likelihood

1
Q——(n+m)1n9—5

n{u)+ r(@ — texp(—t/@)

can be found by maximizing the approximate expression

1

Q= —(n+ m)ln@—g n<u>+r(9(k)

a9 —(n+m)—+9— n<u>+r{9(k)

texp(—t/@“‘

B l—exp(—t/e

texp(—t/H(k))

(k)

- exp(—t/é’(k)

)}(m_r)(emt)

)))]+(mr>(e<k>+t)




dO 11
d—ez—(fl+n’Z)5+—2
1
6(k+1) — nlu
n+m < >

texp(—t/ 9("))

n<u>+r[9(k)

- exp(—t/G(k

© texp(—t/é?(k))
+r[9k l—exp(—t/é?(k)

)]Hm_r)(emt)

iterate this until convergence ...

))]+(m—r)(9(k)+t) =0




Example with mean failure time = 2 (a.u.), and randomly
generated data (n = 100; m = 100). In this example r = 36.
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Important application of the EM method: parameters of “mixture
models”.

Example: a Gaussian
mixture model (M=2)




direct maximization of log likelihood

9) = Zlogp(xn

—_ M " —_

— Zlog Zaipi ('xn
n =1

log £(x,0)=log] | p(x, 0)

0)

difficult numerical treatment ... however we can manage
with a reinterpretation of the mixture model parameters ...

K

. = probability of drawing the k-th component of the mixture model

new (hidden) variable: y = index of component (integer values only)

thus we must redefine data and parameters
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new likelihood which includes the hidden variables

log £(x,y,0) = logp(x,y 9)
— IOng(‘xn’yn

= log| p(x,

= Ylog| o, p, (x,

6)

v,.0)p(>,

0.}

( 0. are the parameters restricted to the i-th component)

0)

The structure is simpler now, there is no sum in the argument
of the logarithm, however there is a new hidden variable y.



Now we proceed by averaging the likelihood
(Expectation step)

new parameter previous parameter
estimate estimate

vV /

olo.6)

:logp(x,y‘e)‘x,e(i_l)}

Ey
[[1og p(x.y]6)] p(y‘x,ea-l)) dy
- Z[IOgP(Xa)’\e)]p(y‘x,e("‘”)

\

sum instead of integral, because the
y variate is discrete




prior probabilities in the expression of the averaged log-
likelihood

0(6.6"")= X [log p(x.v/6) ] p(v[x.6"")

y
and now we use Bayes:

ynae)]?()’n 9) o, p, (xn gyn)
M
p(x,|6) Y 0,p, (x,]6,)
k=1
voo, p, (x,0
Hp(yn\xn,e):n My” yn( yn)
N o,p, (Xn Gk)
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Therefore, using log £’(x,y,0)= zlog[aynpyn (x"‘ey”)}

N
and p(y|X,9) — Hp(yn‘xn’e)
n=1

we find

0(6.6"") =Y [logp(x.y/8) | p(v[x.68"")

y

ilog[ayk p, (xk ‘Hyk )}ﬁp(yj ‘xj ,9(1'—1))
-

i . i ilOg[OCyk P, (xk ‘Byk )}ﬁp()’j ‘Xj aG(i—l))

=ly,=1  yy=lk=l

2
>

=



Q(9a9 ): ii Egalog[aykpyk(

y=1y,=1 yy=l1 1

=33 3 Y8, Joe[ p (56,

y=ly,=1 yy=1 k=1 ¥=1 J=1

:2
S

—
=

=
D
=

to decouple the variables, we add one sum and one Kronecker’s delta...

after the decoupling, we can use the normalization of
conditional probabilities



0" >p(€‘xk ,G(i_l))

J
\ these sums all add to 1 (normalization

J
M N ] |
= Zzl"g[“em (xk |6€):|p(€‘xk ’e(l_l)) of conditional probabilities)
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M N
Q (9, 9@'—1)) = 37N I [aep(tlzg, 0)] pe(ar, 647V
(=1 k=1
M N
:ZZlnag pe( xk,H( +ZZlnp Uz, 0) pg(a:k,ﬂ(i_l))
(=1 k=1 (=1 k=1
this depends only on the O parameters this term depends on the parameters of

the component distributions

Thus there are two terms that can be maximized separately.
Moreover, the first term must be maximized with the normalization
constraint, i.e.

iaip(m‘xk,e(i_l))+ A=0

k=1 %m
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This is as far as we can go without introducing an explicit form for the
component distributions: to evaluate the other term we explicitly consider the
1D Gaussian mixture model:

2
1 X —
pf(x‘:uwgg): 5 exp —( ‘uj)

N
8# Zzlnpe zK, 0) p(l|zy e(z’—l)) _ _ZZ (T — pm) p(m|zy 7%(7@% 1)7 7(72—1)) —0

Edoardo Milotti - Bayesian Methods - May 2020 23



Edoardo Milotti -

Bayesian Methods - May 2020

(i—1)

1
7n|3j s Mgy, 75 7(73 )) =0
(zk — pue)? (i-1) _(i-1)
20? p(€| s, ks Hy ey, )
(i—l))

24



Mz

7271 1 7 71—
[7 5 xkz —Mm)2] p(m]a: aﬂgn 1)7 7(n 1)) =0

86 ZZlnpg Tk, 0) p(l|xk, o'~ 1)

(=1 k=1 k=1

N
> p(mlx.uli 04
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Finally we find the following set of recursive formulas, that
combine the E and M steps:

1 —u, 2
pm(x|um,am):mexp[_(x2:2 ) ]

m

= %Ep(m\xk ui ol
S (i-1) (- )) N ] _
‘ufn) _ ;ka(m‘xk U, 1 o, 1 (G,(n))z ] ;(xk _‘u’(n))zp(m‘xk ‘u’(n ) G’(n 1))




We remark that the probabilities

x”,e): gynpyn (xn eyn)

Z U D ('xn 0, )
k=1

p(y,

are an estimate of the frequencies of the y,, using the observed
data x,, and this amounts to a classification (selection of one of
the component distributions).
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Example: classification of response of DNA microarrays.
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Microarray image

from:http://www.wormbook.org/chapters/www germlinegenomics/germlinegenomics.html



Microarray: lab on a chip

29



DNA gene in genome I
Transcription
Pre-mRNA —

In vivo

Intron splicing
Mature mRNA

Reverse transcription

ds-cDNA — labelled target (sample)
fixed probes b

Fragmentation

ds-cONA frrgments [N [ [ [ -

Fluorescent labelling #
Labelled fragments _ * .|

Array binding

In vitro

different features
(e.g. bind different genes)

Ordered microarray Fully complementary Partially complementary

strands bind strongly strands bind weakly
Array fluorescence intensity [h

Gene 1234

In silico

Within the organisms, genes are transcribed and spliced (in eukaryotes) to produce mature mRNA transcripts (red). The mRNA is
extracted from the organism and reverse transcriptase is used to copy the mRNA into stable cDNA (blue). In microarrays, the
cDNA is fragmented and fluorescently labelled (orange). The labelled fragments bind to an ordered array of complementary
oligonucleotides and measurement of fluorescent intensity across the array indicates the abundance of a predetermined set of
sequences. These sequences are typically specifically chosen to report on genes of interest within the organism’s genome.

(from https://en.wikipedia.org/wiki/File:Summary_of RNA_Microarray.svg)
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Cancer Cells Normal Cells

RNA Isolation
v v
mRNA mRNA
Reverse
Transcriptase
Labeling
v v
"Red Fluorescent"” Targets "Green Fluorescent" Targets
Combine Targets
Hybridize to

Microarray

Microarray image from:http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomics.html

Further informations on DNA microarrays:http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html
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Easy-to-understand example: waiting times between eruptions of the Old
Faithful Geiser (Yellowstone National Park — Wyoming)

25¢

20¢

15¢

Gaussian mixture model for
waiting time distribution
(R example)

GU
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In this case, the mixture model has two Gaussian components

p(w‘e) — Cd\f(w;:ulaa-l) + (1 o CV)N(ZU; :UJ270-2)

where the vector of parameters is 6 — (a, Wi, u2,01, 02)

The resulting log likelihood with n waiting times w; is

In£ =" In[aN(wpu,o1)+ (1 — a)N(w; pz, 02)]
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Again, we substitute the likelihood with the new one
L=]]a¥ 1 —a) YN (wip1,00)V [N(wi; p2, 02)]
)

where the new, unobserved data y; are indicator variables that select
extraction from the first (y; = 1) or the second (y; = 0) Gaussian.

Then

)2
InL = Z [yz Ina+ (1 —y;)In(l —a) +y; (—; In(27o) — (wi = )

202

)



The probability that a given
time interval belongs to the
first Gaussian is

this probability is also equal to the mean
l value of the indicator variable

a X N(w;; p1,01)
a X N(wg;pr,01) + (1 — a) X N(w;; pa, 02)

k k k
a®) exp[—(w; — pi)2/2(a)2) /1 /27 (0172

i =

a®) exp[—(w; — p{)2/2(0")2] /\ 21012 + (1 — a®) expl[—(w; — u§")2 /2(5)2) /27 (012
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Now, averaging the log likelihood with respect to the missing data we find

1 = )2
Q(0, H(k)) — Z [p§k> Ina+ (1 — pgk)) In(1 — «) +p§k) (—5 1n(27m%) — (wi = pa) )

202
; 1

+(1 i) (—%m(zmg) - (wi2_52)2)]

09

(the mean value of the indicator variable is equal to the current estimate
probability o)

Next we maximize with respect to all the remaining parameters, and we

find:
ok +1) Zp(k)
2 (k)\2

(k+1)\" _ Zipz ( —py ) , (k4+1) _ Z Pz wz

91 - (k) ’ 1 (%)
> b > i D
k

<G<k+1>)2 St p (wi — my)? (i) _ 21— pM)w

; _

zi<1—p§’”> R T )



Finally we have the following set of equations:

k k k
o8 a®) expl—(w; — p{)2/2(6)2] /y/ 2 (0))2

a® expl—(w; — p$)2/2(0 2] 11/ 27 (0)2 + (1 — @) expl—(w; — )2 /2(08)2) /12 (05))2

ok +1) Z p®)

k k
(0(k+1))2 _ Zip' ( ( ))2, M(k+1) Yy p( )
1 - (k> ’ 1 - (k:)
> P > D
) RGN O L
(o441)" = > (1= )(wi = py)” ) _ 2 Jw;
i Zz(]‘ _pz('k)) | i Zz(]‘ _pz('k))
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Comparison of the original data with the mixture model obtained with the EM
algorithm

50 60 70 80 90

Waiting time (min)
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2. Neutron star mass range
(Finn, PRL 73 (1994) 1878)

Neutron stars:

- The densest objects this side of an event horizon, with a mean density ~ 10'> ¢ cm™3. Four teaspons contain as
much mass as the Moon.

« The largest surface gravity, about 10'* cm s2, or 100 billion times Earth’s gravity.

« The fastest spinning macroscopic objects. A pulsar, PSR J1748-2446ad in the globular cluster Terzan 5, has a
spin rate of 714 Hz [1], so that its surface velocity at the equator is about ¢ /4.

« The larges magnetic field strength, of order 10'° G.

« The highest temperature superconductor, with a critical temperature of a few billion K, has been deduced for the
core superfluid neuitrons in the remnant of the Cassiopeia A supernova [2, 3].

« The highest temperatures, outside the Big Bang, exist at birth or in merging neutron stars, about 700 billion K.

« The pulsar PSR B1508+55 has a spatial velocity in excess of 1100 km s~! [4].

« Neutron stars at birth or in matter from merging neutron stars are the only places in the universe, apart from the
Big Bang, where neutrinos become trapped and must diffuse through high density matter to eventually escape.

from J. Lattimer: "Introduction to neutron stars", AIP Conference
Proceedings 1645, 61 (2015); https://doi.org/10.1063/1.4909560
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Some important milestones concerning discoveries about neutron stars include:

1920 Rutherford predicts existence of the neutron.

1931 Landau anticipates single-nucleus stars (not precisely neutron stars).

1932 Chadwick discovers the neutron.

1934 W. Baade and F. Zwicky [5] suggest that neutron stars are the end product of supernovae.

1939 Oppenheimer and Volkoff [6] find that general relativity predicts a maximum mass for neutron stars.

1964 Hoyle, Narlikar and Wheeler [7] predict that neutron stars rotate rapidly.

1965 Hewish and Okoye [8] discover an intense radio source in the Crab nebulae, later shown to be a neutron star.
1966 Colgate and White [9] perform simulations of core-collapse supernovae resulting in formation of neutron stars.

1967 C. Schisler discovers a dozen pulsing radio sources, including the Crab, using classified military radar. He
revealed his discoveries in 2007. Later in 1967 Hewish, Bell, Pilkington, Scott and Collins [10] discover PSR
1919+21 (Hewish receives 1974 Nobel Prize).

1968 Crab pulsar discovered [11] and pulse period found to be increasing, characteristic of spinning stars but not
binaries or vibrating stars. This also clinched the connection with supernovae. The term ’pulsar’ first appears in
print in the Daily Telgraph.

1969 "Glitches" observed [12], providing evidence for superfluidity in the neutron star crust [13].
1971 Accretion powered X-ray pulsars discovered by the Uhuru satellite [14].

1974 The first binary pulsar, PSR 1913+16, discovered by Hulse and Taylor [15] (Nobel Prize 1993). It’s orbital
decay is the first observation [16] proving existence of gravitational radiation. Lattimer and Schramm [17] suggest
decompressing neutron star matter from merging compact binaries leads to synthesis of r-process elements.

1982 The first millisecond pulsar, PSR B1937+21, discovered by Backer et al. [18]
1996 Discovery of the closest neutron star RX J1856-3754 by Walter et al. [19].
1998 Kouveliotou discovers the first magnetar [20].

from J. Lattimer: "Introduction to neutron stars", AIP Conference
Proceedings 1645, 61 (2015); https://doi.org/10.1063/1.4909560
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Neutron Star RX J185635-3754
Hubble Space Telescope e WFPC2

NASA and F. Walter (State University of New York at Stony Brook) ® STScl-PRC00-35

The Motion of RX J185635-3754 - The Nearest Neutron Star to Earth

This photograph is the sum of three Hubble Space Telescope images. North is down, east is to the right. The image, taken by the
Wide Field and Planetary Camera 2, is 8.8 arc seconds across (west to east), and 6.6 arc seconds top-to-bottom (south to
north).

All stars line up in this composite picture, except the neutron star, which moves across the image in a direction 10 degrees south
of east. The three images of the neutron star are labeled by date. The proper motion is 1/3 of an arc second per year. The small
wobble caused by parallax (not visible in the image) has a size of 0.016 arc seconds, giving a distance of 200 light-years.



DENSE MATTER

Neutron stars get denser with depth. Although researchers have a good sense of the
composition of the outer layers, the ultra-dense inner core remains a mystery.

Atomic nuclei
and free electrons

Inner crust

Free neutrons and
electrons, heavier
atomic nuclei

Outer core
Neutron-rich
quantum liquid

Inner core
Unknown, ultra-dense
matter

Core scenarios

A number of possibilities have been suggested for
the inner core, including these three options.

0O 0 0 O
O 0 0 OO
0O 0 0 0
O 0 0 0 O
O 06 0 O

Quarks

The constituents of protons
and neutrons — up and
down quarks — roam freely.

060 00
06 06 00
06 00

Bose-Einstein condensate
Particles such as pions containing
an up quark and an anti-down
quark combine to form a single
quantum-mechanical entity.

Atmosphere
Mostly hydrogen

‘ and helium

@ Up quark £ Strange quark
) Down quark ) Anti-down quark

Hyperons

Particles called hyperons form.
Like protons and neutrons,
they contain three quarks but
include 'strange' quarks.

SOURCE: ADAPTED FROM NASA GODDARD SVS
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Simple exercise: derive the Newtonian version of the Tolman-Oppenheimer-Volkov
equation for pressure and mass of a neutron star

dp _ Gp(r)M(r)  Ge(r)M(r)

2

dr T
M(r) = 47T/ p(r\r2dr’ = = | e(r)r"?dr’
0

energy density



p(r+dr) = F(r+dr)/A

A
dp  GpIM(r)  Ge(r)M(r) “
dr r2 - c2r?
M(r) = 47‘(‘/ p(rr'2dr’ = Zi_;r e(r"r'?dr’ A
0 0

The complete, relativistic equation, contains corrections that involve the mass-
energy density (the energy density and pressure are connected by the Equation
Of State, EOS).

dp G (m+4rnrip/c®)(e+p) dm _

dr ¢ r(r—2GM/c%) dr c?




The Harrison—Wheeler Equation of State for Cold, Dead
Matter

RESISTANCE to COMPRESSION
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from K. S. Thorne: "Black Holes and Time Warps", Norton (1994)



Death of Sirius

/MASS of SUN
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CIRCUMFERENCE, in KILOMETER.S
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from K. S. Thorne: "Black Holes and Time Warps", Norton (1994)



quark stars?
exotic stars?
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Mass (Mg)

6 3 10 12 14
Radius (km)

Fig. 2. Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM)
equations of state [for definitions of the labels, see (27)]. Regions excluded by general relativity
(GR), causality, and rotation constraints are indicated. Contours of radiation radii R are given by
the orange curves. The dashed line labeled A//I = 0.014 is a radius limit estimated from Vela pulsar
glitches (27).

from J. M. Lattimer and M. Prakash: "The Physics of Neutron Stars",
Science 304 (2004) 536
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The mass-radius relation is important to pin down the
EOS, and hence the composition of the neutron star
nucleus.

The NICER (Neutron star Interior Composition ExploreR)

mission is expected to provide crucial information in the
very near future (resolution obtained on radius ~ 0.5 km)
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Sunshades and X-Ray
Concentrators (56)

Possible TMD Locations
XTI Detector Radiator

(structure is 10B) —

Focal Plane Modules
(MIT/Amptek/GSFC)
with SDD Shields (56)

GPS Antenna Bracket
Star Tracker (DTU)
Electronics (MBR, MIT, DTU)
Electronics Radiator (not shown)

DAPS — Az/El/Deploy/Latching

Gimbal Bracket Actuators (Moog)

HiPoS Box ===
Contamination Shield

Frangibolt Launch Lock Mounts

(x4, 3-2-2-1 constraints) AFRAM

Adapter Plate

The NICER instrument onboard the ISS

The X-ray Timing Instrument (XTI) consists of an
array of 56 X-ray “concentrator” optics and matching
silicon detectors, which record the times of arrival
(100 ns resolution) and energies of individual X-ray
photons (0.2-12 keV). The payload uses an on-board
GPS receiver to register photon detections to precise
GPS time and position, while a star-tracker camera
guides the pointing system, which uses gimbaled
actuators to track targets with the XTI.



J0030+0451, is an isolated pulsar that spins roughly 200 times per second and is
337 parsecs (1,100 light years) from Earth, in the constellation Pisces. M = 1.3 —
1.4 Mo; radius = 13 km

Hotspots rotate in two scenarios for the pulsar JO030+0451, based on analysis of NICER
data.Credit: NASA's Goddard Space Flight Center/CI Lab



VOLUME 73, NUMBER 14 PHYSICAL REVIEW LETTERS 3 OCTOBER 1994

Observational Constraints on the Neutron Star Mass Distribution

LLee Samuel Finn

Department of Physics and Astronomy, Northwestern University, Evanston, lllinois 60208-3112
(Received 7 April 1994)

Radio observations of neutron star binary pulsar systems have constrained strongly the masses of
eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper
bounds m; and m,, the observations determine with 95% confidence that 1.01 < m;/M, << 1.34 and
143 < m,/Ms < 1.64. These limits give observational support to neutron star formation scenarios
that suggest that masses should fall predominantly in the range 1.3 < m/My < 1.6, and will also be
important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-
wave Observatory.



Two sets of data

TABLE [. The values adopted for the total mass M, the
companion mass m,, and the standard error of each (o and
o, ) of PSR1913+16 and PSR1534+12 [7,8].

System M/M@ (TM/MO m(‘/Mo U'm(\/Mo
1913+16 2.82827 4 X 1073 1.442 0.003
1534+12 2.679 0.003 1.36 0.03

TABLE II. The values adopted for the mass function f, the
total mass M, and the standard error of each (o, and o) of
PSRs 2127+11C and 2303+46 [2,9,17].

PSR2127+11C 0.15285 1.8 X 107* 2706 3.6 X 107°
PSR2303+46  0.246287 6.7 X 107 2.57 0.08

mass function

f=

(g sin)3

(m1 4 mg)?



f, M, m. — f, M, 1,
/ IT ‘ | ,

mass Of_ measured values
companion

total mass

Gaussian likelihoods:

1 — )%
P(x|z,I) = exp Clnt)

€T -

/ 2702 20

anyone of the
variables listed
above
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Our target: determine the upper and lower bound for the NS mass
distribution.

The prior distribution is determined from very general considerations

M, > m, > m; > M,

/ \
Mu ~ BM@ Ml ~ OlM@

from causality and from our understanding
general relativity of the EOS



3.0f . .o

Uniform prior distribution
for the mass bounds

gob ot i .- 2
T A e ] P " J) =
b L | P =G

Moy 1_5:_ L

0505

ooL—— o v v o -
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Posterior distribution for the mass bounds

P(D\|\my,my, I)

P(my,my|D,I) = P(D|T)

P(my, my|I)
Thanks to the independence of individual measurements

P(Dlmy, muy, I) = | [ P(Dplmy, my, 1)

Next we have to evaluate the different contributions to the
Individual likelihoods



P (e, M|my,my, I) = /P(mC,M]mC,M, I)P(me, M|my, my, Idm.dM

we assume that the masses in the binary are independent

|:> P(mcaM‘mlamU7I) — P(mC,M_mc‘ml,mual) - (m —ml)Q

Similarly
P<f7M|ml7muaI) :/P(f7M’f7Mal)P(faM‘mlymual)dfdM
however, here

P(faM‘mlamual) :P(f|M7ml7mual)P<M‘mlamu7I)



P(f7M|ml7mu7[) :P(f|M7ml7mual)P(M|mlamu7I)

The two distributions on the r.h.s. can be evaluated separately

P(Mlmls my, I)

max[0, min(M — m;,m,) — max(M — m,, m))]
(mu - m1)2

P(flM,m;,mu,I)

(arcsin x; — arcsin xo) (M /f)*/>

1
3 min(M — m;,m,) — max(M — m,,m;)

where
(FR12)2/3
min[m,, max(M — m,, m;)]? .

x§ = maX[O,l —

iy
max[m;, min(M — m;, m,)]*

x{ = max [0,1 -



Results
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FIG. 1. Assuming ns masses are uniformly distributed be-
tween m; and m,, observations of PSRs 1534+12, 1913+16,
2127+11C, and 2303+46 determine the joint probability dis-
tribution for m; and m,. Shown here are contours enclosing
regions of 68% (dotted) and 95% (solid) of this distribution.
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FIG. 2. As in Fig. I, except that the contours are based on
the constraints provided by observations of PSRs 1534+ 12 and
1913+16.
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FIG. 3. As in Fig. 1, except that the contours are based on the
constraints provided by observations of PSRs 2127+11C and
2303 +46.
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