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If your experiment needs statistics,
you ought to have done a better
experiment.

Question:
Why do we use statistics in science?

Answer?
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1. Example of Bayesian inference: estimate of the (probability) parameter of the
binomial distribution
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final result is a beta distribution
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Mathematical digression: relationship between gamma and beta function
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Figure 1. Posterior probability density function of the binomial parameter #, having observed n
successes in N trials.
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From the knowledge of the posterior pdf we obtain all the
momenta of the distribution
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What happens if we try a different prior?

Let’s try with a linear prior 5 OF
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Taking few coin throws, the posterior from the linear prior is considerably
biased. The bias disappears when the number of coin throws is large.
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Now we try with a very non-uniform prior

We take ‘ ‘ ‘ ‘
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In this case, initial bias due to the prior is very large.
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Note on posterior distributions:

the relationship between binomial distribution and beta function is quite
important and common, and leads to the formal definition of the Beta
distribution:

F(a+b)

['(a)l'(b)

0 (1-6)"

B(G‘a,b) =

There are other important dualities between distributions. This topic is discussed
in depth in

J. M. Bernardo: “Reference Posterior Distributions for Bayesian Inference”, J. R.
Statist. Soc. B 41 (1979), 113



Lessons learned:

1.

The prior information is not neutral, a careful choice of the prior
distribution is a necessity.

Question: how do we choose a prior?

If we want to keep all possibilities alive, we must heed the Cromwell’s
rule: “Prior probabilities 0 and 1 should be avoided” (Lindley, 1991)

The reference is to Oliver Cromwell’s phrase:
| beseech you, in the bowels of Christ, think it possible that you may
be mistaken.

Convergence as the dataset size grows seems to be granted,
however it may be very slow with a bad choice of prior distribution

Question: is convergence really granted???



The Bernstein-VVon Mises theorem

« Convergence can only be defined with respect to a frequentist
approach.

* The theorem that grants convergence under very weak hypotheses is
the Bernstein-Von Mises theorem.

« ltis interesting to note that even here we can find inconsistencies.
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Maximum a posteriori (MAP) estimate — MAP is not
mean value!

Consider the case with a uniform prior: from the posterior distribution

N +1)! N—n nn
p(@ln,N)zn(!(N_zl)!(l—Q) 0

we easily find that the posterior pdf is maximized by the parameter value

0 =n/N

which is the unbiased estimate of the parameter (unlike the mean value!)



Credible intervals (case of initial uniform prior),
Bayesian analog of confidence intervals.
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Example: a decision problem (Skilling 1998)

Let T be the temperature of a liquid which can be either water or
ethanol.

1. We suppose first that the liquid is water: then we take a
uniform prior distribution for T, between 0 °C and 100 °C

2. The experimental apparatus and the measurement process is
defined by the likelihood function
P(DIT,water,I). We assume that measurements are uniformly
distributed within a range =5 °C. Therefore
P(DIT,water,]) = 0.1 (°C)1in the interval [T-5°C, T+5°C], and
zero elsewhere.

3. We take a single measurement D = -3°C.



4. The evidence p(D) is*

p(D\Water,I):/p(D\T,Water,I)p(T)dT
T
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5. Using Bayes’ theorem we find

p(D|T, water, I)
p(D, water, I)
=0.5(°C)"'  (0°C < T <2°C)

0.1(°C)~!

p(T|D,water, I) = 0.002(°C) 1

0.01(°C)~ !

p(T|water, I) =




Now suppose that the liquid is ethanol, so that the temperature
range is -80°C<T<80°C

1. p(T)=(160°C)"!in -80°C < T < 80°C.

2. p(DIT ethanol,/) = 0.1 (°C)!in [T-5°C, T+5°C], and zero elsewhere.
3. We take a single measurement D = -3°C.
4

The evidence p(D ethanol,]) is

dT(°C) = 0.00625(°C)~*

200 o —1 10 -1
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e 10160

T

5. Using Bayes’ theorem we find

p(D|T, ethanol, I)
p(D, ethanol, I)
=0.1(°C)"'  (=8°C < T < 2°C)

0.1°C)"' 1 .,
Tethanol, ) = 0
p(Tlethanol, 1) = G G 160

p(T|D, ethanol, I') =
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Assuming a prior for the water-ethanol choice, we can
discriminate between water and ethanol

P = Pethanol =0.5

water

With this prior assumption we find,

p(D|water, I)
p(D|water, I) P(water|I) + p(D|ethanol, I) P(ethanol|I)
B p(D|water, I)
~ p(D|water, I) + p(D]|ethanol, I)

P(water|D,I) = P(water|I)

and therefore the ratio of the posteriors is given by the Bayes’
factor

P(water|D,I)  p(D|water,I)

P(ethanol|D,I)  p(Dl|ethanol, I)




We have found earlier that

p(D|water, I) = 0.002(°C))~*
p(D|ethanol, I) = 0.00625(°C))~*

therefore the Bayes factor is

B P(water|D,I)  p(D|water,I) 5 195
~ P(ethanol|D,I) p(D|ethanol,I)

and we conclude that the observation favors the
hypothesis of liquid ethanal.
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log1o(B) B Evidence support

0tol/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to 10 Substantial

1to 2 10 to 100 Strong

> 2 > 100 Decisive

Interpretation of the Bayes factor B as evidence support according to Jeffreys (1961), in half
units on a scale of logo.

In the case of the water-ethanol problem, and according to Jeffreys’ categories, the
preference for ethanol is “not worth more than a bare mention”, although it happens to be in
the upper part of the range.

In 1995, Kass and Raftery noted that it can be useful to consider twice the natural logarithm
of the Bayes factor, which is on the same scale as the familiar deviance and likelihood ratio
test statistics and therefore proposed a different interpretation

2 log.(B10) (B1o) Evidence against H P(D|Hy)
0to2 1to3 Not worth more than a bare BlO — P(D‘H())
mention
2to 6 3to 20 Positive

Here 1 denotes the
alternative hypothesis
and 0 the null hypothesis

6 to 10 20 to 150 Strong
>10 >150 Very strong
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Example of Bayesian parameter estimation:
analytical straight-line fit

y,=ax,+b+¢€,

yi measured value

X. independent variable (“exactly” known)
l

a,b

81‘ statistical error

fit parametes: eventually we expect to find pdf’'s for these parameters

the statistical measurement
<8l.> =0; <8.2> =0° = error has a Gaussian
distribution



setting up the likelihood

)—N/2

p(yla,b,x,cr)z(zﬂa2 exp

prior angular distribution

uniform a uniform angle
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The uniform distribution of a introduces an angular bias.
The least informative choice corresponds to a uniform
angular distribution

1 T T

pgo(go) n_’ 2—¢<2

and we obtain the distribution of a with the transformation
method:

a = tan@

= P, (qo)dgo =P, (a)da =D, (a)d(tan(p) =D, (a)sec2 Qdo

el
Pa _n'seczgo_n(1+tan2g0)_7t(1+a2)
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prior distribution of b: improper uniform distribution, related to
the distribution of a
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we obtain the posterior from Bayes’ theorem

la,b,X,0
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finally we find

1 N
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This expression has a partly Gaussian structure, and we shall
rearrange the quadratic expression in the exponential.



To Be Continued ...
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