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At the end of the last lesson we found the following expression for
the "Bayesian line fit"
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This expression has a partly Gaussian structure, and now we
rearrange the quadratic expression in the exponential
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For the next step we use Laplace's method (this is the saddle-point method — also
called the method of steepest descent — in the real domain) for the evaluation of
the integral of a unimodal function
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Approximate integration of the remaining integral

Ji (1 _:laz )3/2 exp [— 2122 (Vary —2acov(x,y)+a’ var x)}

We evaluate this integral using Laplace's method.

As usual in this method, we start with the logarithm of the

integrand, we find its maximum and we Taylor expand about the
maximum
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we find a from this

dd 3a N + cubic equation
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note that when N>>1 the peak is at position a, =
var x

We use the Newton-Raphson method for the solution of the cubic equation:
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then

2 2
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Now, to complete the expansion, we must evaluate the
second derivative at a:
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we find this by using equations (1) and (2)

Edoardo Milotti - Bayesian Methods - May 2021 7



Now we complete the evaluation of the integral
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and finally we find the posterior distribution.



Moreover
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Prior distributions

The choice of prior distribution is an important aspect of Bayesian
inference

* prior distributions are one of the main targets of frequentists: how

much do posteriors differ when we choose different priors?

* there are two main “objective” methods for the choice of priors

1. Jeffreys' method
2. The Maximum Entropy Method
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Random variable transformations and prior distributions

dx

Pe(z)dr = py (2(y)) au dy = py(y)dy

dx

= py(y) = pz (2(y)) n

How can we "objectively" choose a prior distribution???
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Bertrand’s paradox and the ambiguities of probability
models

Bertrand’s paradox goes as follows:
“consider an equilateral triangle inscribed inside a circle, and
suppose that a chord is chosen at random. What is the probability

that the chord is longer than a side of the triangle?”

(Bertrand, 1889)
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Solution: we take two random points on the circle (radius R), then we rotate the
circle so that one of the two points coincides with one of the vertices of the
inscribed triangle. Thus a random chord is equivalent to taking the first point that
defines the chord as one vertex of the triangle while the other is taken “at
random” on the circle. Here “at random” means that it is uniformly distributed on
the circumference. Then only those chords that cross the opposite side of the
triangle are actually longer than each side. Since the subtended arc is 1/3 of the
circumference, the probability of drawing a random chord that is longer than one
side of the triangle is 1/3.
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Solution 2: we take first a random radius, and next we choose a random point on
this random radius. Then, we take the chord through this point and perpendicular
to the radius. When we rotate the triangle so that the radius is perpendicular to
one of the sides, we see that half of the points give chords longer than one side of
the triangle, therefore the probability is 1/2.
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Solution 3: we take the chord midpoints located inside the circle inscribed in the
triangle, and we obtain chords that are longer than one side of the triangle. Since
the ratio of the areas of the two circles is 1/4, we find that now the probability of
drawing a long chord is just 1/4.

At least 3 different “solutions”: which one is correct, and why?
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Now we widen the scope of the problem and we consider the
distribution of chords in the plane
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Distribution 1: distribution of chords (left panel) and of midpoints (right panel) in
the first solution of Bertrand’s paradox (the left panel shows 400 chords, the right
panel shows 100000 midpoints).

Edoardo Milotti - Bayesian Methods - May 2021 17



Distribution 2: Distribution of chords (left panel) and of midpoints (right panel) in
the second solution of Bertrand’s paradox (the left panel shows 400 chords, the
right panel shows 100000 midpoints).

In this case it is very easy to find the radial density function of chord centers,

since here we take first a random radius, and next we choose a random point (the
center) on this random radius.
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Distribution 3: Distribution of chords (left panel) and of midpoints (right panel) in
the third solution of Bertrand’s paradox (the left panel shows 400 chords, the
right panel shows 100000 midpoints). Notice that while the distribution of
midpoints is uniform, the distribution of the resulting chords is distinctly non-
uniform.
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Hidden assumptions
(Jaynes):
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be the probability density
of chord centers
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Rotational invariance

In a reference frame which is at an angle o with respect to the original
frame, i.e., the new angle ¢’ = # — «, the distribution of centers is
given by a different distribution function g(r,6") = g(r,0 — ) .
Since we require rotational invariance

f(r.0) =g(r,0 —a)

with the condition g(r, 8)|a=0 = f(r, #), and this must hold for every
angle «, so the only possibility is that there is no dependence on 6,

and f(r,0) = g(r,0) = f(r).

Edoardo Milotti - Bayesian Methods - May 2021 22



Scale invariance

When we consider a circle with radius R, the normalization of the distribution f(r) is

given by the integral
27 R R
/ / f(r)rdrdf = 271'/ f(r)yrdr =1
o Jo 0

The same distribution induces a similar distribution /(r) on a smaller concentric
circle with radius aR (0 < a < 1), such that h(r) is proportional to f(r), i.e.,
h(r) = Kf(r), and

aR ak aR
fie— 27r/ h(u)udu = 27r/ Kf (u)udu = 27rK/ f(u)udu
0 0 0

1.6: o
K ' = 27r/ f(u)udu
0

and

f(r) = 2mwh(r) /OaRf(u)udu
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Now we invoke the assumed scale invariance: the probability of
finding a center in an annulus with radii r and r 4 dr in the original
circle, must be equal to the probability of finding a center in the
scaled down annulus,

h(ar)(ar)d(ar) = f(r)rdr

and therefore

a*h(ar) = f(r)
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Equation
a*h(ar) = f(r)

can also be rewritten in the form

) =57 ()

a a

and inserting this into equation

aR
Ar) = 27rh(r)/0 f(u)udu

we find

aR
a*f(ar) = 27rf(r)/ fu)udu
0
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We solve equation
ak
a*f(ar) = 2xf(r) / f(u)udu
0

taking first its derivative with respect to a: the relation that we find must hold for all
a’s, and therefore also for ¢ = 1 (no scaling), and we find the differential equation

if'(r) = (27R°F(R) = 2) £ (1)
1.€.,
if (r) = (g —2)f(r)
where the constant ¢ = 27wR*f(R) is unknown. However, we can still solve the

equation and find
flr) =Ar""

The constant A is easy to find from the normalization condition: A = ¢/27R?, and
therefore
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Translational invariance
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b
Geometrical construction for the discussion of translational invariance. The

original circle (black) is crossed by a straight line (red) which defines the chord.
The translated circle is shown in blue.

Edoardo Milotti - Bayesian Methods - May 2021 27



This circle is displaced by the amount b, and the new radius and angle
that define the midpoint of the chord are

r' = |r —bcosd|
¢ =0 (ifr >bcosf) or 0 =60+mx (if r <bcosh)
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Now consider a region I' surrounding the midpoint in the original
circle, which is transformed into a region I/ by the translation. The
probability of finding a chord with the midpoint in the region I is

f F(r)rdrd§ = / 4" g = 9 [ 11 arag
r - r 27T'Rq i 27T'Rq r

Likewise, the same probability for the translated circle is

q ng—1 3.0 00 4 L g—1
= /F,(r) dr'df = 27«‘Rq/p|’ bcosB|T drdd  (3)

where the Jacobian of the transformation is 1. Equating these
expressions, we see that the integrand must be a constant, and
therefore ¢ = 1, and

1
f(r,0) =

27Rr

(r < R: 0= 0< 2n)
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Therefore

r.0) = ) = Or
= (normalization) 1= / f(r)2nrdr =27CR
C
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= f(r)



Using this distribution, we find that the probability of finding a
midpoint inside the circle with radius R/2 — i.e., the probability of
finding a chord longer than the side of the triangle in Bertrand’s
paradox — is

2w R/2 R/2 1 l
/0 df ! f(r,0)rdr = 27r/0 27‘_Rrrdr ot

which corresponds to the second alternative in the previous discussion
of Bertrand’s paradox.

Lesson drawn from Bertrand’s paradox:
probability models depend on physical assumptions, they are not

God-given. We define the elementary events on the basis of real-
world constraints, derived from our own experience.
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A way forward to "objective" priors: Jeffreys' priors

~ An invariant form for the prior probability in
estimation problems

By HAroLD J EFFREYS, F.R.S.

(Recerved 23 November 1945)

It is shown that a certain differential form depending on the values of the parameters in a
law of chance is invariant for all transformations of the parameters when the law is differen-
tiable with regard to all parameters. For laws containing a location and a scale parameter
a form with a somewhat restricted type of invariance is found even when the law is not
everywhere differentiable with regard to the parameters. This form has the properties
required to give a general rule for stating the prior probability in a large class of estimation
problems.



Starting remark: here we concentrate on a problem of
parametric statistics.

The different hypotheses (and therefore, the different
parameters) correspond to different pdf's

p(x|0)



Step 1: Bartlett identities for a parametric pdf family
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Step 2: a parameter-dependent Likelihood is a family of pdf's
that represent the distribution of the data, given the value of the
parameter(s).
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Step 3: definition of Fisher Information. A very concentrated pdf
is very informative. Therefore, the smaller the variance, the
greater the "information".
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Step 4: it can be shown that the Fisher Information is a local (and
symmetrical) form of the Kullback-Leibler divergence (see below)

Lt (p(a16), plal6 + ) =~ 3B [T | & = Lp0)e



Step 5: the KL divergence is invariant with respect to random
variable transformations, and therefore also to parameter
transformations. From the definition of KL divergence, and from
the transformation formula for pdf's we find
dx
(px(a?) )

o a (2D~ [T dy| |
[ (28 ay = [ o e %)d

= [ o (25 ) s

Therefore, the Fisher Information is also invariant with respect to
parameter transformations.
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Step 6: from the equation that relates KL divergence and Fisher
Information, we find a corresponding pdf:

0°Inp(z(0)] 5 1 2
502 ] € = 5](9)6

Lt (p(a16). p(al6 + ) =~ B |

this means that for small fluctuations of the parameter, Fisher's
information changes quadratically. Then, we recover linear changes
when we take the square root.

Finally, by defining the pdf

f(0) ~/1(6)

we obtain a pdf that is invariant with respect to parameter

transformations. We apply this to likelihoods, that define parametric
pdf families
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Example: a simple Gaussian Likelihood for n datapoints

»
»

L(Dlp) = H \/W exp <_ ($n2;2u)2)

In L(D|p) ~ 3 (_ma ) <%2;2H>2)

n

0% 1n L(D|u)
ou?

I(p) =E [— ] ~ constant
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Example: a simple Gaussian Likelihood for n datapoints (ctd.)

(xn T ,LL)2
L(D|u) = H Tm? exp (— 53 )
0? lnL(Dla)] N i

» I(0)=E [— o
»

o
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Example: Poisson distribution
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A lesson learned from Jeffreys priors

Jeffreys priors are tuned to the Likelihood, but
doesn't this sound strange? Shouldn't the prior
information be tied to the prior distribution
alone?

NO, the Likelihood is also constructed using

prior information (obviously!). So, in a sense,
Likelihood and the selected priors are related.
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Harold Jeffreys
(1891-1989)
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A short refresher on (Boltzmann’s) entropy in statistical mechanics

* consider a system where states n are occupied by N, identical particles
(n, n=1, ..., M).

* the number of ways to fill these states is given by

N!
N,IN,!...N,,!
* then Boltzmann’s entropy is
k,lnQ 1 N 1
S, =k, InQ=k, an!Nz!...NMINkB (NlnN—N)—;(Nn nN,—N,)

= kB(NlnN—Zan (Inp, +lnN)j =k, ). D, In-
n n pn



1
Sp = kBZpi In—
P;

/ |
\ probability of physical states

Boltzmann’s entropy is just like
Shannon’s entropy

this logarithmic function is

the information carried by
the i-th symbol

1
SI — Epi 10g2 T
i Pi
\ probability of source symbols

/

Shannon’s entropy is the average
information output by a source of
symbols
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Examples:

* just two symbols, 0 and 1, same source probability

1 1
S]:—2 —1Og2§ — 1 bit

/ f the result is given in

there are 2 pseudounit “bits” (for

equal terms average information . "
conveyed by each natural logarithms this is
symbol “nats”)
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* just two symbols, 0 and 1, probabilities 2 and % , respectively

1 1 3 3 .
512—110&4 4log21%0.81 bit

* 8 symbols, equal probabilities

1 1 .
SI:—Z§IOg2§:10g28:3blt
1



The Shannon entropy is additive for independent sources.

If symbols are emitted simultaneously and independently by two sources, the joint
probability distribution is

p(j, k) = pi(j)p2(k)

and therefore the joint entropy is

Zp J, k) logy p(4, k) = = > p1(j)pa(k) loga[p1 (j)pa2 (k)]
7,k
= — > p1(j)loga p1(j) — > p2(k)log, pa(k)

J k



The Shannon entropy is at a maximum for the uniform distribution.

This is an easy result that follows using one Lagrange multiplier to keep probability
normalization into account

N N N
S+AY pe=—) prlogepk+A>  ps
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all probabilities have
the same value

pj =exp(Aln2—-1)=1/N



