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Edwin T. Jaynes (1922-1998), introduced
the method of maximum entropy in
statistical mechanics: when we start from
the informational entropy (Shannon’s
entropy) and we use it introduce
Boltzmann’s entropy we reobtain the
whole of statistical mechanics by
maximizing entropy.

In a sense, statistical mechanics also
arises from a comprehensive “principle of
maximum entropy”.

http://bayes.wustl.edu/etj/etj.html
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Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.
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In these papers Jaynes argues that information theory provides a constructive
criterion for setting up probability distributions on the basis of partial
knowledge, and leads to a type of statistical inference which is called the
maximum-entropy estimate.

It is the least biased estimate possible on the given information; i.e., it is
maximally noncommittal with regard to missing information.

If one considers statistical mechanics as a form of statistical inference rather
than as a physical theory, it is found that the usual computational rules, starting
with the determination of the partition function, are an immediate consequence
of the maximum-entropy principle.



In the resulting "subjective statistical mechanics," the usual rules are justified
independently of any physical argument, and in particular independently of
experimental verification; whether or not the results agree with experiment, they
still represent the best estimates that could have been made on the basis of the
information available.

Jaynes concludes that statistical mechanics need not be regarded as a physical
theory dependent for its validity on additional assumptions not contained in the
laws of mechanics (such as ergodicity, metric transitivity, equal a priori
probabilities, etc.).

Furthermore, it is possible to maintain a sharp distinction between physical and

statistical aspects. The former consists only of the correct enumeration of the
states of a system; the latter is a straightforward example of statistical inference.
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Now let’s move on and maximize entropy in order to solve problemﬁ,
and find prior distributions ..

The kangaroo problem (Jaynes)

left | ~left left | ~left left | ~left
blue 1/9 2/9 blue 0 1/3 blue 1/3 0
~blue | 2/9 4/9 ~blue | 1/3 1/3 ~blue 0 2/3

no correlation

maximum negative correlation

maximum positive correlation



probabilities D, Py, Py; Py

entropy (proportional to Shannon’s entropy)

1 1 1 |
S=p,In—+p- In—+p In—+p_In—

P Py Pyt Prr
constraints (3 constraints, 4 unknowns)
Pyt Pyt Pt P7=1
Py TPy = 1/3
Py T Py = 1/3
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1 1 1 1
Sy, = [sz In—+p. In—+p - In—+p_ ln—]
Py Py Pyr DPyr

+/ll(pbl TP T Pyr T Por — 1)+ A, (pbl TPy — 1/3)+ ;L3(pbl TPy~ 1/3)

Dy = exp(—1+2~1 +A, +/13)
Py = exp(—1+7t1 +7L3)
p,r =exp(—1+4, +12)
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| 1/9=2p, /34 py =pu/3+p;

this solution coincides
4 with the least
s Ppyr == | informative distribution
9 (no correlation)



Solution of underdetermined systems of equations

In this problem there are fewer equations than unknowns; the
system of equations is underdetermined, and in general there is no
unique solution.

The maximum entropy method helps us find a reasonable solution,
the least informative one (least correlations between variables)

Example:

3x+5y+1.1z=10

% 9 O
D1x+44y—10z=1 (x.3,2>0)



3x+5y+1.1z=10
—2.1x+44y—-10z=1

this ratio can be taken to be a
“probability”

X X y y Z Z
S:—( In + In + In j
X+y+2Z Xt+y+Z Xty+Z Xt+y+Z X+y+2Z X+y+Z

(x,y,z > O)

—_ I [xlnx+ylny+zlnz—(x+)’+Z)ln(x+y+z):|
X+ y+z

Q=S+2A(3x+5y+1.1z—10)+ p(-2.1x+44y-10z—1)

a_Q__lnX—hl(X+y+Z)+xlnx+ylny+zlnz—(x+y+z)ln(x+y+z)

+31-2.1
0x xX+y+z (x+y+z)2 H

_ OJFZ)}I;;;?Z)};LZIHZ+3l_2'1'u:0
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00 _ (y+z)lnx-|—yln);+zlnz+3l_2.1u:()
dx (x+y+2z)
E)Q:xlnx+(x+z)ln)22+zlnz+5&+4.4‘u20
dy (x+y+2)

Inx+ylny+(x+vy)l
00 _ xInx+ylny+(x+y)Inz 415 00

07 (x+y+z)2
10=3x+35y+1.1z
1=-2.1x+44y-10z

9

x =0.606275; y=1.53742; z= 0.449148;
A =0.0218739; u=-0.017793
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this is an example of an “ill-posed” problem

the solution that we found is a kind of regularization of

the ill-posed problem



Finding priors with the maximum entropy method

1
S = Zpk lnp— = —2 p,Inp, Shannon entropy
k k k

entropy maximization when all information is missing
and normalization is the only constraint:

i _Zpklnpk—kﬂ,(ipk—lj :—(lnpk+1)+ﬂ,:0
apk_ k k

p.=e*"; Zpk:ZeHzNeH:l = p,=1/N
k k
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entropy maximization when the mean is known p

0T
~ _Zpk Inp,+ 4, (Zpk — lj + 4, (Z'xkpk — .uj
k k k

apk_
=—(Inp, +1)+ A, + 4x, =0

incomplete

/ solution...

e;LO +llxk -1 .

9

Pr =

We must satisfy two constraints now ...
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p — eﬂ,o +A«1xk—1
k

Zpk 26/10+/11xk—1 lo—lzeﬂ.lxk —1
k
Exkpk Exk Do+Ax =1 _ AO—IZXkellxk = u
k

no analytic solution,
X
2)6166/14 k / only numerical

Ao =1 _ 1 : k _

€ = —
VI W
k




Example : the biased die

(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy Formalism;
Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

%(1+2+3+4+5+6)=%=35

mean value for a biased die

35(1+¢)

Problem: for a given mean value of the biased die, what is the

probability distribution of each value?
The mean value is insufficient information, and we use the maximum

entropy method to find the most likely distribution (the least
informative one).
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entropy maximization with the biased die:

) 6 6 6 7
B _Epk Inp, + 4, (zpk _lj'l'ﬂ‘l(z/kpk __(1_'_8)]
| k=l k=1 k=1 2

op;
=—(Inp,+1)+ A, +kA, =0

p, = eﬂo+/11k—1
k

2 D, = ¢! 2 Mt =1

k=1,6 k=1,6

D kp =Y ket = 1+e we still have to satisfy the
o e constraints ...

1 2 kp,

k=1,6

A1 _ .
D YAl Wl

k=1,6 k=1,6

1+g)

Edoardo Milotti - Bayesian Methods - May 2021 18



Z ke’
=L ——ln 2 oMk ——ln e’ 2 e’k
S 42

1 k=1,6 k=0,5

k=1,6

=2 [ +1n(1- ) n(1- ¢ )]

1

6, 2
_po b e =%(1+8)

the Lagrange multipliers are obtained from nonlinear equations
and we must use numerical methods
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numerical solution

media

4 A

V(7

pP3-

Pa"

Ps”

Pé6”

3.0=

0.246782 1

0.20724 =

0.174034 4

0.146148

0.122731:

0.103065 =

3.1=n

0.22929 =

0.199582:

017371235

0.151214+

0.131622:

0.114568 =

3.2=n

0.212566 1

0.191659:

0.172808 1

0.155811 1

0.140487 1

0.126669 =

33~

0.196574 4

0.183509

0.171313 4

0.159928 4

0.149299:

0.139377 =

3.4n

0.181282:

0.175168

0.16926 =

0.163551 4

0.158035+

0.152704 =

3.5=n

0.166667 -

0.166667 1

0.166667 :

0.166667

0.166666 *

0.166666 =

3.6=

0.152704 4

0.158035

0.163551 1

0.16926 =

0.175168 4

0.181282 =

3.7x

0.1393774

0.149299+

0.159928 4

0.171313 4

0.183509+

0.196574 =

3.8=

0.126669:

0.140487:

0.155811 1

0.172808 1

0.191659:

0.212566 =

3.9=n

0.114568

0.131622

0.151214 4

0.173723 4

0.199582 4

0.22929 =

4.0=

0.103065+

0122731+

0.146148

0.174034 4

0.20724 =

0.246782 1

with a biased die we obtain skewed distributions.

These are examples of UNINFORMATIVE PRIORS
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Example: mean =4

0.30,
0.25}
0.20}
0.15}
0.10}
0.05}
0.00!
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Entropy with continuous probability distributions
(relative entropy, Kullback-Leibler divergence)

S— —}[p(x)dx]ln[p(x)dx] this diverges!

Splm = —2 D, ln& relative entropy
k mk
" p(x)
S oim = —Ip(x)ln dx this does not diverge!
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Mathematical aside on the Kullback-Leibler divergence

The obvious extension of the Shannon entropy to continuous distributions

+ 00
— |
S /OO p(x)dx log, o(2)dz

does not work, because it diverges.

A solution is suggested again by statistical mechanics ...



Boltzmann entropy with degeneracy number attached to each
level

Y/

N' N1 N5 N g
~ NN Ny 10 92 9

M M
» In Q2 = In N! —ZlnNk!—l—ZNklngk
k=1

k=1
M
(Nk/N) Kullback-Leibler
=N Z(Nk/N) In g divergence
k=1
M =z Pk
N W Ik =Y omn
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Properties of the Kullback-Leibler divergence

* extremal value when p, = g,.
Indeed, using again a Lagrange multiplier we must consider the
auxiliary function

Irr + )\Zpk
k

and we find the extremum at

P = gre™ "t = gi

(homework!) normalization



* the KL divergence is a measure of the number of excess bits that
we must use when we take a distribution of symbols which is
different from the reference distribution

Pk
P In —
gk

- 1
P In Zpk In —
—1 Pk

-

Ikt

2
|
ol

-

gk

2
|
ol
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e the KL divergence for continuous distributions does not diverge
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* the KL divergence is non-negative

Notice first that when we define gb(t) =tInt wefind

8(t) = B(1) + ' (1)t — 1)+ 58" (W)t ~1)* = (t 1) + 5 (¢ — 1)?

where t < h < 1 andtherefore

Ixr = /j p(z)1n 28 g — /+Oo P(2) 22D o — /;OO & (1@) g(z)dz

g9(x) oo 9(x)  g(T) g9(x)

LG ) () Joowe= [ (55 o
_ /+°° 21h <p<x>gz;;<x>>2 iz > 0

— OO



The KL divergence is a quasi-metric (however a local version of the KL
divergence is the Fisher information, which is a true metric)

The KL divergence can be used to measure the “distance” between
two distributions.

Example: the KL divergence

—+ o0

X
IKL(p,Q)=/ p(fv)hﬂ]&dﬂj
o Lo q(x)
for the distributions
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Now consider a family of parametric distributions and evaluate the KL divergence between

two close elements of the family
0
/ p(z,9)
(:U 0+ ¢€)
E (Inp(x

,0) —Inp(x,0+¢))

Iy (p(x,0),p(z,0 +¢€))

Since
Olnp(x,0) 19%Inp(z,0) ,

Inp(x,0+¢€) ~Inp(x,0)+ Y e+§ 902 €

we find, using the first Bartlett identity,

B Olnp(x,0) 10%Inp(x,0) ,
IKL<p<a:,e>,p<x,e+e>>——E( P00y T REED),

B 0?Inp(x,0)] , 1 5

i.e., locally the KL divergence is just the Fisher information




Homework: go back to the estimate of the parameter of the
binomial distribution and find the KL divergence of successive

estimates

End of mathematical aside

Edoardo Milotti - Bayesian Methods - May 2021
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Entropy extremization with additional conditions (partial
knowledge of moments of the prior distribution)

function (functional) that must be extremized

b e

0| p|= —jp(x)ln p(x) dx+Y A<

: m(x) \

x“p(x)dx—M,

Qt—.W‘




variation

-

5Q=—}5p< In

\

p((x) +1—Zlkxk -dx =0
k

mx)

J

lnp(x)+1—2)ukxk=0
k

m(x)

p(x)= m(x)exp(;lkxk _1j



p(x)=mlx)exp| T -1

p(x) is determined by the choice of m(x) and by the constraints

The constraints can be the moments themselves:
b
M, = Jka(x)exp(Z)Lnx” — ljdx
a n

Edoardo Milotti - Bayesian Methods - May 2021
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1. no moment is known, normalization is the only constraint,
and p(x) is defined in the interval (a,b)

b
M, = Jm(x)exp(ﬂ,o —1)dx=1

we take a reference distribution which is uniform on (a,b), i.e.,

1 b
M, = - ‘c’:exp(/lo —1)dx=exp(A,—1)=1
0
= A=k p(x):m(x)eXp(zlnxn_l): 1
n=0 b—a



2. only the first moment is known, i.e, the mean, and p(x) is
defined on (a,b)

b
: Jexp (A, + A x—1)dx=1

b a’
b
xexp (A, + Ax—1)dx
A, —1) A, —1 Ab)—exp(A,
M():l:epr(_a );’:exp(llx)dx:e)(pb(_a ).exp( )/llexp( d)
Ay —1) 1 A-1)] 1 1
Ml_epr(_a )Jxexp(llx)dx:eXpb(_a ){Z(bexp(llb)—aexp(lla))—;L—lz(exp(llb)—exp(lla))

in general these equations can only be solved numerically...

|



special case:

exp (4, — 1)_exp(ﬂ,1L/2) —exp(—A,L/2)

L Z
exp(4, —
p(LO ) [ il (gexp(llL/Z) + %exp(—llL/Z)j - %f(exp(ﬂ’ll’/z) - CXP(_%L/Z))} =0

exp(A, — 1).exp(/llL/2) —exp(-A,L/2)
L A

~(exp(AL/2)+ exp(~AL/2)) = 5-(exp(AL/2) - exp(-AL/2)) =0

1



exp(2, —1) Sm}/ll(i“l/Lz/ 2)_,
1

Lcosh(A,L/2)- %sinh(/llL/2) =0

1

= (AL/2)=tanh(AL/2) = A,=0; A,=1

p(x)= m(X)eXp(kZIS/Ikx" _ 1) _

4
L



nonzero mean

L L '
a—>—-——; b—>—; M, =
2 2

exp (4, — 1)_exp(ﬂ,1L/2) —exp(-A,L/2)

L Z
exp (}jz— 1) E(exp(,llL/z) +exp(-A,L/2))- %(eXP(AL/Z) —exp(-A,L/ 2))} =€
exp(ﬂ.o — 1). , B
(2,1)2) sinh(A,L/2) =1

tanh(A,L/2) A,

L 1 1
2
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tanh(A,L/2)= [ : 28]

+
AL/2 L

we find an approximate solution




another special case

M, = myexp(2, —1)

a=0;, b—




then

myexp(A, —1)=-1, = —
and we obtain the exponential distribution

px)=m{exp| Lax' 1)

= m, exp(/lo — l)exp(/ll)C) = éexp(_&j



3. both mean and variance are known, and the interval is the

whole real axis

=
I
S

=
||

||
m*—.w Q'——.W Q*—,w

exp(ﬂ,o +Ax+A,x° — 1) = exp

= exp

xexp(l + A x+ Ax° —1)d

p(lo +Ax+A,x° — l)dx =1

x> exp( Ay + Ax + 2,x% —1)dx




AT 1 A [z
M,=m,exp| A,—1--— -wexp[—m£x+l—;j }dx:moexp(%—l——‘] -~ =1

00

: 1 A Y N 7 ( 2
1 mo CXp 0 2,2 ] XGXPI: 2(_1/212)£X+ Azj ] X mo €Xp( 0 /lzj /12 [ Azj ‘Lt

00

FERR 1 A Y N z( 1 22
M, = A—1-=21| | x° - x+ | |dx= —-1-"2 | -—| —+2 =0+’
2 mo exp 0 212 j X CXPI: 2(_1/212) [X lz ) ] X l’l’lo exp[ 0 AZ j Az ( 212 122 ] (o) [,L

—o0

R
3]
+

A s

M,=m exp()t — ——1) ——=1

0 0 0 }‘2 ),2

A

M =1 _

T H
M, = —L+—12 =o’+u’

? 20, A




p(x)=m, exp()to +Ax+A,x° — 1)

22 1 A
- 2o =121 |exp| - A
mOeXp( . l)exp 2(_1/212)()&&2)
1 1 2
) ZGZneXP[ZGZ(X_H)}

... in this case where mean and variance are known, the
entropic prior is Gaussian
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An alternative form of entropy that incorporates the normalization
constraint

Q[p;m] = —)J;dx p(x)In :;(();)) + ),U;dxp(x)— 3[dxm(x))

= de(—p(x)ln px) +Ap(x)— /lm(x)]
X m(x)

00 = JSpdx[—ln px) —1+/’L]:O
X m(x)

p(x)=m(x)exp(A—1)
jdx p(x)= de m(x)exp(A—1)=exp(A- 1)de m(x)=exp(A-1)=1

= A=1

Olp;m]= }j{dX(—p(X)ln nlz (();)) + p(x)— m(x))



Until now we have emphasized the role of the momenta of the
distribution, however other information can be incorporated in the
same way in the entropic prior.

A “crystallographic” example (Jaynes, 1968)

Consider a simple version of a crystallographic problem, where a 1-
D crystal has atoms at the positions

and such that these positions may be occupied by impurities.



From X-ray experiments it has been determined that impurity atoms
prefer sites where

cos(kxj)>0
so that

which means that we have the constraint

<cos(kxj)> = g{pj cos(kxj) =0.3

where p; is the probability that an impurity atom is at site j.



Then the constrained entropy that must be maximized is

O = —ij Inp, + 4, (ij —1]+7Ll[2pj cos(kxj)—0.3]
j=1 Jj=1 J=1

from which we find the maximization condition

g—fj:—(lnpj+1)+ito +/'Llcos(kxj):()

p;= exp[l— A, — A, cos(kxjﬂ

The rest of the solution proceeds either by approximation or by
numerical calculation.



Example of MaxEnt in action:
unconstrained problem in image restoration

J. Skilling, Nature 309 (1984) 748
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Car movement introduces linear correlations among pixels. The model of linear corrections does
not allow direct inversion to find the corrected image because the number of variables is larger
than the number of equations. The MaxEnt methods regularizes the problem and finds a
reasonable solution.

L’

J. Skilling, Nature 309 (1984) 748
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Reconstruction of missing data
(from http://www.maxent.co.uk )

50%

95%

99%
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http://www.maxent.co.uk/

low resolution (MEM enhanced)

low resolution

D high resolution
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Mﬂ‘t Maximum Entropy Data Consultants Ltd.

John Skilling: Biographical information

John is Scientific Director of MEDC. He did his Ph.D. (on cosmic rays) in

About MEDC the Department of Physics at Cambridge University, and went on to
become a Lecturer in the Department of Applied Mathematics and
Applications Theoretical Physics, and a Fellow of St Johns College.

!

In the late 1870s, another radio astronomer, Steve Gull, introduced him to
the power of the Maximum Entropy Method. John wrote what was to
become the first MemSys kernel system, and helped lay the Bayesian
foundations for MEM. In 1881 he and Steve founded MEDC to exploit
opportunities to apply MEM in other fields.

g
3

rices

Documents John resigned his Lectureship in 1990 in order to go fullime with MSL and

MEDC. Thanks to the wonders of modern technology John is able to
telecommute from his new home in the West of Ireland, and he makes
Search MEDC regular visits to clients both in the UK and further afield.

g
.

Quick Search:

Home | Applications | Products | Prices | Documents | About MEDC |
Contact Us | Full search

@MEDC Ltd. Last revised Wed Sep 19 22:19:39 2007

http://www.maxent.co.uk/
(the company still exists but the website has disappeared from the web)
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1 ] 1 T e | =i 1 L ] ] 1 1 | | 1 | I 1 N
s | | -
- &

[ ® ACISI[0.3-8 ke - ;
Example of LensEnt usage ; ’;‘;31:1(11103;8"6"1 . 9 . ' GMOSNR
. °40' I—— -~~~ W€ CNS1Ik
(Bridle et al, 1998): 31°40 B A g_ % 3 T ' ]
' = ///’—‘:‘_:\\.\o\ = g- 4 d
reconstruction of mass ; L LT g oa. s, P : P 4
. . ] ™= o N T e T Ny =8
density from lensing data, 39K ,/ ///./ //_~——\\_\e~\'-\\\ >
. 8 = - 4 / '//—‘~.\\\‘. \ ’
using Max Ent S L 8T 1l /5 i8N
) b Va | I°.7/7 7" il NN\ QN AR
ot g /M ) RN\ O\ Ve
8 38 - (| ([ € (GO N\ ) —
g L A% L ATUR Sy L)) B |
£ o/ Lo AN NGNS SN IR L
3 [\ VN NN N S pdf 1) TR ]
A L\ N NN A Y .
ﬂ_ g A, N TR N el AT W -
v G By B /.,/
reconstructed mass 54 '\\_\ N Nt /b . |
denSity /_ : . .\\\\ ‘—""’/// - . 1
. . v_ ’ : ; o 1
X-ray emission data 36' [5, $ / S . 5
— .1 [ | | ! l .1 | r 1 l | [ % 1 1. il | 1 l-
7h32m3(s 258 208 158 108

Right Ascension (J2000)

GMOS image of the central region of Abell 586 with logarithmically spaced X-ray isophotes (solid lines) and
weak-lensing reconstructed mass density (dashed lines) superposed. The X-ray point source near the
southwest corner is the Seyfert 1 galaxy C171_3650.

(from Cypriano et al., ApJ, 630 (2005) 38-49)
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A few Bayesian examples

1.
2.
3.

Miscalibrated Gaussian measurement errors
Search for weak signals in spectra

The statistical link between smoking and lung cancer

Edoardo Milotti - Bayesian Methods - May 2021
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2. Miscalibrated Gaussian measurement errors, a Bayesian
estimate using objective priors

Here, we consider the case where we must find the mean value with given
measurement errors, and where the errors are Gaussian and they are
systematically multiplied by an unknown scale factor.
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The likelihood has a Gaussian structure
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we must rearrange the exponent as usual ...

— 2 2
i(dk 0 :i—k—zﬂiﬂﬂtzil ND_, NM o N

k=1 0'13 k=1 (713 k=1 (713 k=1 G;f 61%4 61%4 6134
N
=—2(D—2/,LM+/,L2)
M
1 11 Nd/Nl Ndz/Nl
dove = ; M = k. — D = "k _
o TWEor ML) 2o P/ 2

therefore the likelihood is

P(dl,u,cr,oc):(z Vi (]ﬁ[é] { ]ZVL(D—MMHLQ)}

Py 200°0
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Now we estimate the scale factor from Bayes’ theorem

o p(d‘O&,O‘)
plald, o) = T p(d’a,’a)p(&,)da,p(a)

however we need first to marginalize the likelihood with respect to the mean,
which in this case is a nuisance parameter

we take a uniform prior for the mean

P(dlo.a)=[P(dlu.c.0)P(uo.a)du
u
1 Himax

= _[ P(dlp,o,0)du
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as usual ...

D-2uM+u =y’ -2uM +M*+D—-M"
=(u-M) +D—-M?*

... therefore the likelihood is:

1 1
W (271_)N/2 OCN

P(dlo,x)=

—00

1 exp[_ N(D- MZ)]\/zmxza;

20°0;, N

Texp{— 2050]%4 (u—M) +D- Mﬂ}du




P(a)e<

Lo (_N(D — M2)>

N—1 2 2
Q! 20 Oaf

: Jo Oﬂi_l exp <—N(D n ]2\42)> p(a’)da

o

/2
20 Oy

for the standard deviation we
take again the Jeffreys prior
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1 exp( N(D—MQ)) 1
— o 2 N oAr2
p(ald, o) — alN-1 2a2aM2 o) _—t N(D 2M)
f 1 exp _N(D—M) 1do/ 209,
o a’N_l 204’20‘]2\4 o'
1 ( N(D — M2)>
N 2 2
plald, o) - —° 2070
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Plald, o) = ¢

AP(«a)

0.4}

0.3f

0.2}

0.1}

0.0}

2AN=1 /aN) exp(—A?/a?)

LNV =1)/2)]

N =2 |

o}
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we take the MAP estimate of the scale parameter from the pdf

2AN—1 A2
oty

e

d N A®) 247 A’
—P(o1d,0) o< — exp(——j+ exp(——ij

dOC aN+1 aZ

D-M*
‘ No® =24° ‘ aMAP:\/zA: ( 2 )
N Oy
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2. Search of signals in binned spectra: Bayesian analysis in the

GERDA experiment
(Caldwell and Kroninger, PRD 74 (2006) 092003)

Consider the search for sparse signals in a spectrum where

 The spectrum is confined to a certain region of interest.

 The spectral shape of a possible signal is known.

 The spectral shape of the background is known.

* The spectrum is divided into bins and the event numbers in the bins follow
Poisson distributions.



The work of Caldwell and Kroninger has been carried out in the context of GERDA
(GERmanium Detector Array), an experiment that aims to detect weak signals from
neutrinoless beta decay in germanium detectors kept in a very low background
environment.

Electron @ @ Electron

3 Neutrino =
AR Antineutrino
./ ‘I -~ —
W -
| ]

¥/\} e— 2 i ? ; 2D,
~ [ J ( %3}* Nuclear @ 3\3
p & ‘/' process W 5
(Z,A) (Z+2, A)

>
00C
\
cocC
©

®
Q.

(A
(®

-
C OO
Y
COocC

Y

Feynman diagram of neutrinoless double-beta decay, with two neutrons decaying to two protons. The
only emitted products in this process are two electrons, which can occur if the neutrino and
antineutrino are the same particle (i.e. Majorana neutrinos) so the same neutrino can be emitted and
absorbed within the nucleus.

In conventional double-beta decay, two antineutrinos - one arising from each W vertex - are emitted
from the nucleus, in addition to the two electrons. The detection of neutrinoless double-beta decay is
thus a sensitive test of whether neutrinos are Majorana particles. (from Wikipedia)
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http://www.mpi-hd.mpg.de/gerda/
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We introduce the normalized spectral shapes of background and signal

f(E): f5(E):

(flat spectrum, known signal shape). Then we find the average number of events in each
bin

E~+AE, E~+AE,
v.(B.S)=v,(E.AE,.B.S)=B | f,(E)dE+S | f/(E)dE
E. E;

1

An observed spectrum is defined by the numbers of counts in each bin: {n;}i-; , and since
we assume a Poisson statistics in each bin, we find the following likelihoods for a given

spectral observation
v [v.(B,0)]"

p(spectrum| B,1)= 11 ' exp| —v,(B.0) |
i=1 h; .

p(spectrum| B,S,I)= ﬂ v.(B.S)|

i=1 i*

exp| -Vv,(B.,S) |
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A specific spectral shape depends on the average number of background (B) and
signal (S) events, and we can write

distribution for the
average B

Y/

/p(spectrum|B,I)pB(B)dB

p (spectrum|Hypkg, I) =
B
I) =

p (spectrum|Hyg, / p (spectrum|B, S, I) pg(B)ps(S)dBdS

B,S \
/ distribution for the
the possible spectra are the results of average S
many possibile choices of the background
and of the signal rates, and therefore of
the average number of background and

signal events; here we marginalize over
these dependencies
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The competing hypotheses (observation of binned energy spectra) are

Hyy = background only
H,. = background + signal

then
p spectrum| H, I
p (H bkg‘ spectrum, | ) = (p (spectrumﬁg) ) p (H bkg| I )
— Bayes
plspectrum H, ,1
P(Hbs Spectrum,l) = (p(spectrum|bl) )p(Hbs I)

1)

p(spectmm| I) = p(spectmm| kug,l)p(kug| I)+ p(spectrum| H, ,I)p(HbS

Evidence
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Then we find the complete likelihood functions:

p(spectrum| H,,, I) J.p(spectmm|B I)pB(B)dB

B

— JH[V :l exp| -v,(B.0) | p,(B)dB

B i=1

p(spectrum| H, ,I) = Jp(spectrum| B,S,I)pB (B)pS (S)dB

B

= jﬁ[ [v"(z’f)]ni exp| ~v,(B.S)]p,(B) ps(S)dB



The final, complete expressions are:

p(spectrum\ kug,l)

p(kug‘spectrum,I): p(spectrum\l) p(kug|I)
Jﬁ[vl(i’?)] exp[ BO :IpB B
i=1 it
BT B v, (B5)] Pl
JIT- 7 exp[v.(B.0)]py (B)aB p(H, [ 1)+ [TT= " exp[v.(B.5)]p, (B) py($)dB p(H,,|1)
B =l i B =l it

p(spectrum\ H, I ) ( | )
P (spectmm\ 1 ) P

p(H,| spectrum.I)=

j f{Wexp[—v,(B,s)]pB(B)ps<s>dB

fﬂ[Vi(B’,o)]n exp[-v,(B,0)]p,(B)dB p(kug|I)+Jf1[ a exp[ (B.5)]pu(B) ps(S)dB p(H,,|1)

One can use these expressions to test hypotheses (by means of Bayes factors),
and find values for B and S.
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3. The statistical link between smoking and lung cancer

Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.
Died: September 17, 1979, in Herndon, Virginia.

A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA.
APPLICATIONS TO CANCER OF THE
LUNG, BREAST, AND CERVIX!

JeroME CosNFIELD, Nolionai Cancer Instilule, Nalional
i{u;tﬂuta of Health, U. S. Public Health Service, Betheada,

1 Recslved for publication February 23, 1081,
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Fisher developed four lines of argument in questioning the
causal relation of lung cancer to smoking.

1) If Ais associated with B, then not only is it possible that
A causes B, but it is also possible that B is the cause of A.
In other words, smoking may cause lung cancer, but it is
a logical possibility that lung cancer causes smoking.

2) There may be a genetic predisposition to smoke (and
that genetic predisposition is presumably also linked to
lung cancer).

3) Smoking is unlikely to cause lung cancer because secular

trend and other ecologic data do not support this
relation.

4) Smoking does not cause lung cancer because inhalers
are less likely to develop lung cancer than are
noninhalers

FIGURE 1. Passport photograph of Ronald Ayimer
Fisher at age 34. Reprinted from Box JF. RA Fisher:

the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.
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Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

Having cancer | Healthy Total
of the lung

Smokers 0.119-103 0.579910 0.580025
Nonsmokers  0.036-10-3 0.419935 0.419971
Total 0.155-103 0.999845 1.000000

what is the proportion having cancer of the lung in each population?

Smokers: 0.119-103/0.580025 = 2.05164-10*

Nonsmokers: 0.036:103/0.419971 = 8.57202:10°
And the prevalence of lung cancer in smokers with respect to nonsmokers is

Smokers/Nonsmokers = 2.4
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We can also write an easy Bayesian equation that leads to some
information as to the causation of cancer of the lung

P(Smoker|Cancer) P(Smoker)

P(Cancer|Smoker) =

P(Cancer)
P(Cancer|Nonsmoker) = P(Nonsmoker|Cancer) P(Nonsmoker)
P(Cancer)
Therefore
P(Cancer|Smoker) P(Smoker|Cancer) P(Smoker)

P(Cancer|Nonsmoker)  P(Nonsmoker|Cancer)P(Nonsmoker)

and with the numbers in the table one finds that this ratio is
about 3.5.



According to Jeffreys, a Bayes ratio of 3.5 is already substantial

support in favor of the hypothesys that smoking does cause lung
cancer.

logo(B) B Evidence support

O0to1l/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to10 Substantial

L fior 2 10 to 100 Strong

> 2 > 100 Decisive
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In 1954 Richard Doll and Bradford Hill published evidence in the British Medical
Journal showing a strong link between smoking and lung cancer. They published
further evidence in 1956.

Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He did not
think the statistical evidence for a link was convincing.

Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following an
operation for colon cancer.

With bitter irony, we now know that the likelihood of getting this disease increases in
smokers.

Ronald Fisher was cremated and his ashes interred in St. Peter’s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017
<www.famousscientists.org/ronald-fisher/>.)
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Trends in Tobacco Use and Lung Cancer Death Rates in the U.S.
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Death rates source: US Mortality Data, 1960-2010, US Mortality Volumes, 1930-1959, National Center for Health Statistics, Centers

for Disease Control and Prevention.

Cigarette consumption source: US Department of Agriculture, 1900-2007.
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From 1948 to his death 31 years later, Corn-
field devoted the major portion of his career to
the development and application of statistical the-
ory and methods to the biomedical sciences. His
contributions were diverse both in the nature of his
statistical interests and in the areas of biostatisti-
cal applications. He was involved in and touched
upon every major public health issue that arose in
that period — the polio vaccines [23], smoking and
lung cancer (see Smoking and Health) [22, 29],
risk factors for cardiovascular disease [5, 30], and the
difficult statistical issues of estimating the low-dose
carcinogenic effects in humans (see Extrapolation,
Low Dose) of a food additive that becomes suspect

because it produces cancer in animals at much higher
doses [14, 20].
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