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Bayesian estimates often require the evaluation of complex
integrals. Usually these integrals can only be evaluated with
numerical methods.

> enter the Monte Carlo methods!

1. acceptance-rejection sampling

2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling perspective



1. The acceptance rejection method
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Example: generation of beta-distributed random numbers
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Example: random numbers with semi-Gaussian distribution from
exponentially distributed random numbers.
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Definition of contact point (to maximize efficiency)

f(x)z\/%exp[—%zj £20

¢(x)= exp(~x)

-

sgmaty | Vet

| S(x)= g () X\E exp(—xgjzcexp(—x)

\

2
- x=1 cz\/zexp(—x—+szl.31549
T 2




Exponentially distributed values
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A/R accepted values (10000 accepted sample pairs)
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Histogram of accepted x values

800
600
400

200

Edoardo Milotti - Bayesian Methods -

May 2021

10



Comparison with the original distributions
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Short summary:

1. we create a data set by randomly sampling from the
exponential distribution

2. we use the acceptance-rejection algorithm to resample the
data set with the target distribution (the half-Gaussian)

This is a sampling — resampling technique (see later ... )
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Now notice that in this method we generate pairs of real numbers
that are uniformly distributed between f(x) and the x-axis,

therefore we can use these pairs to estimate the total area under
the curve

(here the reference area is the area of the enclosing rectangle which corresponds to a
uniform distribution)
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In general, if h(x) = f(x)p(x), where p is a pdf

b

Jn(x)dx = Jf x)dx=E,[ f(x ]z%gf(;n

here the x are i.i.d with pdf p(x)

and we find that the variance of this estimate of the integral is
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We encounter a problem with this method when we must
sample functions that have many narrow peaks.



2. Importance sampling

this pdf is troublesome ... therefore we use this ...
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here the x are i.i.d with pdf g(x)

These methods are still not very efficient and there is a better
alternative, the Markov Chain Monte Carlo method
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3. Bootstrap (B. Efron, 1977)

The bootstrap method is a
resampling technique that

helps calculate many statistical
estimators
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consider the distribution of a set of measurements
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the distribution of data is an approximation of the “true”
underlying distribution (in this case a mixture model)
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distribution of mean value obtained from 5000 sets of data
(sample size = 50)
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You can do this if you have large datasets ... but what if you have
only a handful of measurements?



example: single dataset (same size as before, 50
measurements)

the distribution is a rough representation of the underlying
distribution ... and yet it can be used just as before ...



Bootstrap recipe:

if you want to find the distribution of the mean (or any other
statistical estimator) use the dataset itself to generate new
datasets

> resample from dataset (with replacement)



distribution of mean value
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counts of CD4 limphocytes
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FiG. 3. Histogram of 2,000 bootstrap correlation coefficients; bivariate normal sampling model.

B (Baseiine)
bootstrap estimate of correlation

Fi1G. 1. The cd4 data; cd4 counts in hundreds for 20 subjects, coefficient distribution
at baseline and after one year of treatment with an experimental
anti-viral drug; numerical values appear in Table 1.

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and Efron,
Statistics of Science 13 (1998) 95



4. Bayesian methods in a sampling-resampling perspective (Smith
& Gelfand, 1992)

Bayesian Statistics Without Tears:
A Sampling—-Resampling Perspective
A. F. M. SMITH and A. E. GELFAND*

Even to the initiated, statistical calculations based on
Bayes’s Theorem can be daunting because of the nu-
merical integrations required in all but the simplest ap-
plications. Moreover, from a teaching perspective, in-
troductions to Bayesian statistics—if they are given at
all—are circumscribed by these apparent calculational
difficulties. Here we offer a straightforward sampling—-
resampling perspective on Bayesian inference, which
has both pedagogic appeal and suggests easily imple-
mented calculation strategies.
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In Bayesian methods we have to evaluate many integrals, like, e.q.,

1(6; x)p(6)
f 1(9‘ x)p(g) do € normalization (evidence)

p(6lx) =

p(plx) = fp((ba Ylx) dp. €—— marginalization

averages (statistical estimators)
E[m(6)|x] = f m(0)p(6lx) do €
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except in simple cases, explicit
evaluation of such integrals will rarely be possible, and
realistic choices of likelthood and prior will necessitate
the use of sophisticated numerical integration or ana-
lytic approximation techniques (see, for example, Smith
et al. 1985, 1987; Tierney and Kadane, 1986). This can
pose problems for the applied practitioner seeking rou-

tine, easily implemented procedures. For the student,
who may already be puzzled and discomforted by the
intrusion of too much calculus into what ought surely
to be a simple, intuitive, statistical learning process, this
can be totally off-putting.
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Bayesian learning as a resampling procedure (importance sampling-
like scheme)

p(0]z) o< £(x;0)p(0)

\

1. prior distribution defined
by the empirical distribution
2. the Likelihood distorts of the initial samples
the distribution of initial
samples (corresponds to (sampling)
3. the posterior distribution is @ sample acceptance

represented by the resampled Probability)

empirical distribution
(resampling))
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Example (McCullagh & Nelder): take two sets of binomially
distributed independent random variables X;; and X, (i=1,2,3)

X, = Binomial(nil,el)
X,, = Binomial(n,,,6, )
The observed random variables are the sums
Y, =X, + X,

3
likelihood = [ [ ) (”1> ( e )9{1 (1 — 0y)" 7205775 (1 — fg)mi2—vits

i1 57\ Ji ) \Yi— Ji

max (0, y; — ni2) < 7; < min(n;1, y;)



Sample data
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Example of implementation in Mathematica

nl
n2

vi

{5, 6, 4};
{5, 4, 6};

{7, 5, B};

Clear[likelihood];
likelihood[thl_, th2 ] :=
Product [Sum [Binomial [nl[[i]], j] *Binomial[n2[[i]], Yi[[i]] -jl#thli"j » (1 - thl)* (nl[[i]]-3) =

ns = 10000;
th = Table[ {RandomReal [] , RandomReal[]}, {ns}];
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Posterior as a resampled prior using acceptance-rejection

1t = Table[likelihood[th[[k, 111, th[[k, 2111, {k, 1, ns}];

norm = Max [1t] ;|
w = 1t / norm;

thr = {}; ntot = 0;
For[kn =1, kn < ns,

If[w[[kn]] > RandomReal[], ntot ++; AppendTo[thr, th[[kn]]]];

kn ++]
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Posterior as a resampled prior using weighted bootstrap

1t = Table[likelihood[th[[k, 1]], th[[k, 2]1], {k, 1, n8}];
sum = Apply[Plus, 1lt];
w =1t / sum;

thr = Table[ {0, 0}, {n8}];
ntot = 0;
While[ntot < ns,
kn = RandomInteger[{1l, ns}];
If [RandomReal[] <w[[kn]], ntot++; thr[[ntot]] =th[[kn]]];
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The resampled points are representative of the posterior
distribution and can be used to evaluate any sample estimate
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... these calculational methodologies have also had an
impact on theory. By freeing statisticians from dealing with

complicated calculations, the statistical aspects of a
problem can become the main focus.

Casella & George, 1n their description of the Gibbs sampler.
Am. Stat. 46 (1992) 167



