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Bayesian estimates often require the evaluation of complex
integrals. Usually these integrals can only be evaluated with
numerical methods.

» enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling
. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective

v B W N =

. introduction to Markov chains and to the Metropolis
algorithm

6. Markov Chain Monte Carlo (MCMC(C)
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5. Very short introduction to Markov chains

Consider a system such that
e the system can occupy a finite or countably infinite set of states S,;
e the system changes state randomly at discrete times t =1, 2, .. .;

e if the system is in state S;, then the probability that the system goes into
state S; is

pij=P[S(n+1)=S]S(n)=S] ij=12,...

i.e., this probability depends only on the previous state, and is independent
o all previous states (this is the Markov property);

e the transition probabilities p;; do not depend on time n.

Such a system is a special type of discrete time stochastic process, which is
called Markov chain.



Example:

in the Land of Oz they never have two nice days in a row, rather, after a sunny day it either
rains or SsNnows.

If they have a nice day, they are just as likely to have snow as rain the next day. If they have snow or
rain, they have an even chance of having the same the next day. If there is change from snow or rain,
only half of the time is this a change to a nice day. When we denote the three states with the symbols
N (Nice), R (Rain), or S (Snow), the transition probabilities are:

pvy =0;  pvr=1/2; pys=1/2
prn = 1/4; prr=1/2; prs =1/4
psy =1/4; pspr=1/4; pss=1/2

1/2

(representation as a
directed graph)
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Matrix of transition probabilities (also called transition kernel)

PNN PNR PNS 0 1/2 1/2
P=1| prv pPrr prs | =| 1/4 1/2 1/4
PSN PSR PSS 1/4 1/4 1/2

This is a row stochastic matrix, where all rows are such that
> jpij =1

There are also column stochastic matrices, and doubly stochastic matrices that are
necessarily square:

EEn-tie
j‘> m = n

m n m
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Discrete-time discrete-space random walks are an example of Markov chains with
infinite states.

Pi.i+1 = P: Pii—-1 = (g

Edoardo Milotti - Bayesian Methods - May 2021 6



Now let

71',(”) = P[S(n) = §i]

be the probability that at time n the system is in state S;, then:

m = 2 PIStn 1) = SiIS(n) = SIPIS() = §i) = 3 _pim”

When we define the vector W(n) = {Wﬁn)} and the matrix P = {pij} we see that
the equation becomes

~(nt1) _ () p

~(n) _ (0)pn

N

n-step transition kernel
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For example, the transition kernels for the weather in the Land of Oz are

0 0.0 0.9
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the transition kernels
seem to converge to
a fixed matrix ...
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Notice that if the transition kernel converges to a fixed matrix where all rows are
equal, then the distribution of states also converges to a fixed distribution which
does not depend on the initial distribution:

P" > P oo (Poo)ij = [

n—r OO all rows equal

4

e 0 0
) =3 "m0 Pu)iy = =1
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Persistent and transient states ...

Type of state

Definition of state (assuming, where applicable,
that the state is initially occupied)

Periodic

Aperiodic
Recurrent/Persistent
Transient

Ephemeral
Positive-recurrent

Null-recurrent
Ergodic

Return to state possible only at times t, 2t, 3t,
..., Where t > 1

Not periodic

Eventual return to state certain

Eventual return to state uncertain

s a state j such that p;; = 0 for every |
Recurrent/persistent, finite mean recurrence
time

Recurrent, infinite mean recurrence time
Aperiodic, positive-recurrent




This graph represents the states and the transition probabilities of a finite Markov chain
with 6 states.

The arrows correspond to nonzero transition probabilities. If the chain starts with any
one of states A, B, Cor D, it can loop around these four states until a transition D to E
occurs, then the system is locked in the E-F loop.

States A, B, C, and D are transient, while states E and F are persistent (and periodic, with

period 2). A Markov chain with just one class, such that all states communicate, is said to
be irreducible. This Markov chain is not irreducible.

VERY INTERESTING MATH ON PERSISTENT STATES, HOWEVER WE DO NOT PURSUE IT
FURTHER, WE DO NOT NEED IT NOW.
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Limiting probabilities and stationary distributions

Here we prove that the convergence that we saw in the Land of Oz example is a
general feature of Markov chains, under the assumption that the chain is
irreducible, and that for some N we have

min pij) =0 >0
iJj

Now let

/" — min p
/

(n). (n) (n)
J Rj

ij — Maxpij

be the min and max of the j-the column vector in the n-step transition matrix.



Recall the example:

0.25 0375 0.375 we shall show that, in each
P2 — 01875 04375 0375 column, the min and the max
0.1875 0.375 0.4375 become closer and closer as n

grows and bracket a value that is

p5 (géggiég 8188331 8;‘882?1 the asymptotic matrix element
— ' ' ' (the same for all rows in a given
0.200195 0.399414 0.400391 column)
0.200001 0.4 0.4
PO — 0.2 0400001 0.4
0.2 0.4 0.400001
0.2 04 04
P = | 02 04 04
0.2 04 04
0.2 04 04
PO — [ 02 04 04
0.2 04 04
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Then we find

_|_
J(n ) — m|n p,(Jn D _ m|n P"Jrl = mln(PP”),J = manp,kp(n)
Z ml_in;p,-krj — Gn)
and

Rt _ max p,(J 1) _ = max P”+1 = max(PP”),J = mapr,kp(n)
< mapr,kR(n) R(n)
This means that, as n grows, the minimum and the maximum values in a column

vector get closer and closer (the components of the column vector get closer
and closer). But do they converge to the same value ???
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We must consider the difference

(n) (n) _ (n) _ (n ) (n) (1)
Rj _Tj 1 k 1,k {p }

Then, shifting the difference by N, we find

(n+N) (n+N) _ (n+N) (n+N)| _ (N) (N)| .(n)
Ry o = ma [ - }—I?,%X{E[pu -’ | v }

Next we split the difference enclosed in braces into sums of negative and
positive contributions

+
N) (N)q, . (n) N) (N)q,.(n)
Z[p( ~ D }ply = i = loyy +Z 0 =k

l l
- (N)7 p(n) (N) ()
szz — Ppy R +szz pkl j
l

IA



Now consider the structure of the positive sum, it must contain at least one term where
one subtracts the smallest element in the column, so that

4
Z[p(N) pkl Zp Zpkl)<zp(N) 5=1-35

l

Similarly, for the negative sum we find

N N N
Z[sz ) pk:l ZP Zpl(cl ) >0 — ZP( ) = —0)
l
and therefore

_|_
(N) (V) (N) (N)1 p(n) (N) (N) ()
Z [pzl — Py }plj szl — Ppy R +szz — Py j
z l

(1-0)R" — (1~ 5)r<.”> = (1 8)(R™ — ")

J

IA

so that taking strides of N steps at a time, and recalling that 0<1l—-90<1

BRI —r M0 < (1= a)F [RY) M —— 0

J J k— o0
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Since

RPN (kN) (1—6)F [R§N) — T(-N)} — 0

J J J k— 00

the matrix elements in the column converge to a single value P, i.e.,

le = lim [Pn]’J — p}k

n— o0

and

- Zﬂlﬁ )pZJ Zﬂl& )pJ* —
k



This asymptotic distribution is stable, indeed from
7TJ(n) Zﬂ(n 1)

we find

[T*Pl; = > Tipkj = > PiPkj
k k

*

> Pikbkj = Pl = p} =]
k

or, in matrix form

™ = 71*P

i.e., the asymptotic probability vector is the left eigenvector with eigenvalue 1 of
the transition probability matrix. The distribution expressed by the probability
vector 7* is called invariant distribution or stationary distribution.
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Detailed balance

From the definition of conditional probabilities we find

P[S(n)=S5;and S(n+1) =5,] = P[S(n) = Si|S(n+1) = S,]P[S(n+1) = 5j]
= P[S(n+1) = 5,|S(n) = S;]P[S(n) = S;

therefore, when a Markov chain is time reversed we find

P[S(n) — S,-|5(n -+ 1) — Sj]
P[5(n) = Si]
P[S(n+1) = 5j]

= P[S(n+1) = 5;|5(n) = S/

()
i
P[S(n) = Si|S(n+1) = 5] = pjj (,;+1)
T
J
which shows that the reversed chain is time-dependent.



However if states are distributed according to the invariant distribution, we have

*
ﬂ.l

PIS(n) = Si|S(n+1) = Sj] = pyj

*
J

which means that the backward transition probabilities are again time-
independent, and in particular they must coincide with the forward transition
probabilities, i.e.,

pjiT; = PijT
a condition which is called detailed balance.
So if stationary distribution then detailed balance ... however the reverse also
holds R4 _ o (M, _ () (1)
n n n n
Zﬂ' Pij = Zﬂ' Pji = j iji — 7TJ'
i

i.e., a distribution is stat/onary if and only if it satisfies the condition of detailed
balance



Physical aside: continuous-time Markov processes

The time-dependence of the reversed chain is a manifestation of the dissipative character
of the chain. Another important related result is the validity of the H-theorem for Markov

processes.

In the case of continuous-time processes we can write

P (Sik' tk1 Sik—l’ tk_]_, . 5,‘0, tO) =
— P (Sik1 tk‘Sik_l, Ci—1;...; 5,‘0, l’o) P (Sik_l, Cik—1;...; 5,-0, to)

Memoryless processes

P (Sik, Ly, Sik_l, te—1:...; S,'O, to) =P (Sik, tk)

Markov processes

P (S/k, Lk, S/k_l, te—1;...; 5,'0, to) =P (S;k, tk\S,-k_l, tk—l) P (S/k_l, tk—l)



For Markov processes the following equation also holds

P(S,, t+ At) = P(S,, t)+

+ > [P(Sn t+ At]S), t) P(Sj. t) — P(S), t + At|Sy, t) P(Sh, t)]

(master equation).

When we assume that the transition probabilities are time-invariant and we
define the transition rates T

P(Sh t+ At|S;, t) =T, jAt

we find the differential form of the master equation

d
P(Sn.t) = ; [TnjP(Sj, t) — TjnP(Sh, t)]



Using the previous notation for the probability distribution on states, we can
rewrite the master equation as follows

I =S [Tami(t) — Timma(t)]

dt

Next, we assume that transition probabilities are "reversible"

Tnj=Tjn
so that

dm,
Gt = 3 Tt = w0

and therefore, at equilibrium

all states are

E Tn,j (717 — W:) =0 » 7'('}|< — 7T;'; equally likely at
J

equilibrium
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Now consider the following sum

H = E Thln T,
n

Using the master equation we find a differential equation for H

dH d dm,
E — ; E(ﬂ-n In 7Tn) — Z F(ln Th -+ 1)

n
= ZT”J (7Tj — 7Tn) (In7rn + 1)
n,j
Exchanging indexes ...

dH
n,J



Adding the two differential equations we find

dH 1
=5 ZTM- (mp — ;) (In7; — In7p)
n,j

Since
(mp — ;) (Inm; —Inm,) <O
we find
dH
dt S O Boltzmann's H-theorem

The derivative vanishes at equilibrium, and we find that it is a stable point for H. Since H
is essentially the negative of Gibbs' entropy, the theorem states that the entropy of a
Markov chain increases up to a maximum which is reached at equilibrium.
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5.1 From Markov Chains to Markov Chain Monte Carlo programs

To introduce the method, we consider the Traveling Salesman Problem (TSP),
where we want to find the shortest closed path that connects N cities.

The problem was first stated by the Viennese mathematician Karl Menger and
in 1930 is one of the most studied problems in combinatorial optimization.

For many up to date links, see
http://www.math.uwaterloo.ca/tsp/index.html

In particular see the history page
http://www.math.uwaterloo.ca/tsp/history/index.html
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12 “cities” randomly distributed in the (0,1) square: the path corresponds to a
random permutation of the sequence of cities.

(path length L=1.93834)
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Paths are enumerated by permutations of “city names”, e.g., {9, 2,7, 8,1, 12,4, 5,

3,10, 11, 6} (start at 9, step to 2, and so on until you reach 6 and then return to 9).

The total number of configurations (undirected paths) is

1

—(n—l)!

2

The problem belongs to the class of NP-complete problems (Non-Polynomial

complexity, a class of particulary hard problems)

In such cases there is only one known exact solution: the full

enumeration of all paths.
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13 May 1983, Volume 220, Number 4598 SCI E NCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

Summary. There is a deep and useful connection between statistical mechanics
(the behavior of systems with many degrees of freedom in thermal equilibrium at a
finite temperature) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parameters). A detailed analogy with
annealing in solids provides a framework for optimization of the properties of very
large and complex systems. This connection to statistical mechanics exposes new
information and provides an unfamiliar perspective on traditional optimization prob-
lems and methods.
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Approximate solution of the TSP with the Simulated Annealing algorithm

path length ‘ energy of the system

exploration of the configuration space with the Metropolis algorithm
(Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE,

1953
Equation of State Calculations by Fast Computing Machines
NicaoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AuGUSTA H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico
AND
EpwWARD TELLER,* Depariment of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared

to the free volume equation of state and to a four-term virial coefficient expansion.
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Figure 8.14: Portrait of American computer scientists Nicholas Metropolis
(1915 - 1999) (seated) and James Henry Richardson (1918 - 1996) at Los

Alamos National Laboratory, Los Alamos, New Mexico, November 1953
(from http://www.life.com).
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1. We generate a new configuration C” from the present configuration C
2. We compute the energy of the new configuration, £’
3. We compute the energy difference AE = E'— E

4. The new configuration is accepted with probability p

e

p=1 AE <0

AE
=exp| —| AE =20
; p( kT)

/\

.

Additional details

the algorithm needs a slow cooling (it is common to choose an exponential cooling
schedule)

if cooling is not gradual, the system can get stuck into a local minimum

simple exchanges of pairs of cities are the individual moves in the SA solution of the
TSP

the individual steps from one configuration to the next can be described by a Markov
chain




10
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Decrease of total path length in a realization of the SA solution of a 50-cities

problem

L sl
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oo 1000
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Here we note that the transition probability can be written as follows

T<C+c»:mm{l,exp(_(E'—E)ﬂ

kT

Moreover, it is easy to show that the algorithm preserves detailed
balance

P(C)T(C—>C')=P(C')T(C'>C)

where P(C) is the stationary probability of configuration C. Indeed at
equilibrium we find that, if E* > E,

kT

P(C’) _ (E'_ E) Boltzmann’s
= CXpP| — . .
kT distribution

P(C)exp(—(E,_E)sz(C’)




Finally, we can write:

This definition of the transition probability is the starting point for

an important further step, the Metropolis-Hastings algorithm.
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6. MCMC — definition of the Metropolis-Hastings (M-H) algorithm
(1970)

» we define the transition probability
P(x —y)=q(xy)a(x,y)

and the target density

7T (x
v
* we take state X=X

( n
* we choose randomly another state y and we accept it (y —> Xn+1) with
probability

o(x,y)=min1, >
X




Note that if the proposal function g is symmetrical, then the
acceptance probability takes on the simpler form

5
~—~
‘!
~—
AN
—~~

b
~—

S|
~—~
‘<
~—

O((X,y)zmiml, X > — min- 1,

5
—~~
s
S~
!
—~~
~—
5
—~—~
W
~—

and it depends on the target density only.



The M-H algorithm defines a Markov chain and it is easy to show that detailed
balance holds. The transition probability is




Detailed balance holds in both cases and
therefore n(x) is stationary
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The following figure shows a simulation with the MCMC algorithm and the
distribution

p(x) = \(}% exp (-%) 1 \(;% exp (_ (x —23)2> N \/% exp (_ (x (;51)2)

(a three-component mixture model)

0.253-
0.203-
0.153-
0.103-

0.05}

0.00fF— T
_4 -2 0 2 4 6
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nrmax = 40 000;

xr = Table[0, {nrmax}];
xr[[1]] = -4;

nr =13
While[nr < nrmax,
xtry = xr[[nr] ] + RandomReal [NormalDistribution[0, 1]];
If[ pdf[xtry] /pdf[xr[[nr]]] > RandomReal[] , nr++; xr[[nr]] = xtry];

]

0.30} n=1000 | 0.25|
0.25}

0.20}
0.20}

0.15}
0.15}

0.10}
0.10}
0.05} 0.05¢
0.00 0.00
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MCMC simulation of a 2D three-component mixture model

3 2 2
Z Q; T — fai)” + (Y — My
p(xay) — eXp [_( ) ( ? )
i=1

V20?2 20;

ar =095 pe1 =05 py1=0; o1 =0.3;
az=0.3; pr2=1 py2=1; o02=0.9;
a3 =0.2; pr3z=2; py3=0.1; o3 =0.5;
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100000 steps
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100000 steps
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100 steps

2.0

1.5
1.0
0.5

0.0
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1000 steps

2.0

1.5

1.0

0.5

0.0

-1.0

T

1
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4000 steps
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10000 steps

|

I

L

L
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Notice that when the peaks are very narrow, the random walker may have
problems visiting all of the peaks

o (2 — pzi)® + (y — pyi)?
plz,y) = —— P [— 50, -
=1 7

3

a; = 0.9 pe1=0; py1=0; o1 =0.0725;
g = 03, Mz 2 = 1; Hy 2 = 1.; 09 = 0125,
a3 =0.2; pz3=2; py3=0.1; o3=0.125;
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With isolated, narrow peaks, increasing the number of steps may
not suffice

3 , 3 :
10000 steps 100000 steps
2 21
1f 1t
Ot ot
_1 ................... - .
-1 0 1 2 3 -1 0 1 2
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100000 steps, subdivided into 10 parallel chains with random starting
points -
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The starting points of the chains are uniformly
distributed in the plot region, however the "regions
of influence" of each peak vary considerably.

This leads to more chains being attracted into the 2 —
lower peaks, with the result that the distribution is I -
somewhat deformed (wrong alpha's in the mixture i
( =i O MCMLC result (deformed)
model) |
. 600 | ©
| ) ' ]
original ~ |
7 0%
. -1

Many techniques have been developed
to avoid these pitfalls
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Convergence of the MCMC sequence to the asymptotic

distribution

Statistical Science
1992, Vol. 7, No. 4, 457-511

Inference from Iterative Simulation
Using Multiple Sequences

Andrew Gelman and Donald B. Rubin

Abstract. The Gibbs sampler, the algorithm of Metropolis and similar
iterative simulation methods are potentially very helpful for summarizing
multivariate distributions. Used naively, however, iterative simulation
can give misleading answers. Our methods are simple and generally
applicable to the output of any iterative simulation; they are designed
for researchers primarily interested in the science underlying the data
and models they are analyzing, rather than for researchers interested in
the probability theory underlying the iterative simulations themselves.
Our recommended strategy is to use several independent sequences, with
starting points sampled from an overdispersed distribution. At each step
of the iterative simulation, we obtain, for each univariate estimand of
interest, a distributional estimate and an estimate of how much sharper
the distributional estimate might become if the simulations were contin-
ued indefinitely. Because our focus is on applied inference for Bayesian
posterior distributions in real problems, which often tend toward normal-
ity after transformations and marginalization, we derive our results as
normal-theory approximations to exact Bayesian inference, conditional
on the observed simulations. The methods are illustrated on a random-
effects mixture model applied to experimental measurements of reaction
times of normal and schizophrenic patients.

Key words and phrases: Bayesian inference, convergence of stochastic
processes, EM, ECM, Gibbs sampler, importance sampling, Metropolis
algorithm, multiple imputation, random-effects model, SIR.
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1.3 Our Approach

Our method is composed of two major steps. First, an
estimate of the target distribution is created, centered
about its mode (or modes, which are typically found
by an optimization algorithm) and “overdispersed” in
the sense of being more variable than the target distri-
bution. The approximate distribution is then used to
start several independent sequences of the iterative
simulation. The second major step is to analyze the
multiple sequences to form a distributional estimate
of what is known about the target random variable,
given the simulations thus far. This distributional esti-
mate, which is in the form of a Student’s ¢ distribution
for each scalar estimand, is somewhere between its
starting and target distributions and provides the ba-
sis for an estimate of how close the simulation process
is to convergence —that is, how much sharper the distri-
butional estimate might become if the simulations were
run longer.

Edoardo Milotti - Bayesian Methods - May 2021
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Example of application of the MCMC technique in radiobiology

0.05p~

0.02

SURVIVING FRACTION

0.0l

0.005~

0.002

0.001
DOSE (R)

Survival curve for Hela cells in culture exposed to x-rays. (From Puck TT, Markus PI: Action of
x-rays on mammalian cells. J Exp Med 103:653-666, 1956)
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Phenomenology: the linear-quadratic law

CHO-K1
1 -
; RBE = dose,.rq,/d0Sepert. ]
[ for the same level of effect |
05 BBEs; = 5.4
0.2}
'\
-~ \
g RBEyg = 42 &,
> 01 @
a | .
[ \
0.05} \
“
LR
\
L
0.02 — Carbon 11MeV/u \
\
\
RBE, = 3.4 3
0.01 N
: L A A A \.
0 2 4 b & 10
Dose [Gy]

Fig. 1. Clonogenic survival curves illustrating the higher efficiency of the

carbon ions compared with X-rays [10] (courtesy of the author, dr. Wilma
K. Weyrather).
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Target theory
Simple Poisson model:

Probability of hitting n times a given target, when the average number of good
hits is a:

P(n) = Fe_a

Probability missing the target: P(O) = ¢

Average number of hits: a = D/DO

S(D) = P(0,D) = ¢ P/Po
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Multitarget model, asymptotic behavior and threshold effect.

If there are multiple targets, say n targets, all of which must be hit to kill a cell,
then the probability of missing at least one of them —i.e., the survival
probability —is

S(D)=1—(1— e P/Poyn

then, for large dose

S(D) ~ ne~P/Po

InS(D) ~Inn— D/Dy

which is a linear relation with intercept In n, and slope -1/D,.



D/D
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Notice that

d 2 2
_e—ozD—BD _ (—Oé . QBD)Q_QD_BD — — o
dD D—0 D=0
and that

d e_D/DO
Y 11 _(1_eD/Do n} _ | _ o—D/Doyn—1 _ 0
dD { (I—e ) D=0 " Dy (1—e ) D=0

The derivatives differ in the origin, and the multitarget model fails to reproduce
the observed linear-quadratic law.



The RCR (Repairable-Conditionally Repairable Damage) model

In this case the surviving fraction is

S =exp(—aD)+bDexp(—cD)

This is a 3-parameter expression, which is not easy to fit to data when the data set is
small.

1.014
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0.2}
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1a. Simple Gaussian likelihood for the LQ model

L(Of,ﬁ)=l:[eXp -

(Sk B S(aaﬁ))z

1b. Chose exponential priors for the parameters

1c. Complete posterior pdf

p(oc,ﬁ {Sk},l) = IZIeXp —

(Sk B S(a,ﬂ))z

20

20,

2
k

exp(—0.1a )exp(—0.183)

1d. Use MCMC to find the MAP estimate (and any moment of the pdf)
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2a. Simple Gaussian likelihood for the RCR model

2b. Chose exponential priors for the parameters

2c. Complete posterior pdf

—02a —02b -02c¢
(4 (4 (4

{Sk},l)z Hexp —

p(a,b,c

2d. Use MCMC to find the MAP estimate (and any moment of the pdf)



Path in (a,b,c) space




Fit showing individual components: unsatisfactory result
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Revise priors to include constraint on derivative

(priors vanish where derivative in the origin is positive)

S =exp(—aD)+bDexp(—cD) -

4 6 8 10
D (Gy)
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“Straight line fit” with the MCMC

An example with Gaussian errors and exponential priors.

10}

40|
30}

20}
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model Yy = ax + b
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MacMCMC (v1.5)

State-of-the-art Data Analysis for Mac OS X™

MacMCMC is a free and extremely powerful application for the analysis of data of any kind. It is one half of a two-part project. The other half is a free ebook—a strongly recommended preliminary—available here.

To see MacMCMC in action, consider this famous example from the literature (Arnold and Libby, 1949):

Carbon-14 Dating

Input Output
Data Report
Model Trace
Marginals

Given the MacMCMC report, any graphing software may be used to prepare a plot showing model versus data.
Note: The blue line in this plot uses mean estimates; the red line shows the prior uncertainty for parameter A.

Principal Features
General

Complete, standalone Mac application
100% Bayesian inference

100% ensemble MCMC

Access to low-level options
Parallelized for maximum speed

e ° o 0 0

https://causascientia.org/software/MacMCMC/MacMCMC.html




678 SCIENCE

December 23, 1949, Vol. 110

Age Determinations by Radiocarbon Content:
Checks with Samples of Known Age

J. R. Arnold and W. F. Libby

Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

URTHER TESTS of the radiocarbon method
. of age determination (1-3, 6, 8, 10) for archae-
ological and geological samples have been com-
pleted. All the samples used were wood dated
quite accurately by accepted methods. The measure-
ment technique consisted in the combustion of about 1
ounce of wood, the collection of the carbon dioxide,
its reduction to elementary carbon with hot mag-
nesium metal, and the measurement of 8 grams of
this carbon spread uniformly over the 400-square-
centimeter surface of the sample cylinder in a screen
wall counter (7, 9). The background count was re-
duced during the latter part of the work to 7.5 counts
per minute (cpm), which is some 2 percent of the
unshielded background, by the use of 4 inches of
iron inside 2 inches of lead shielding, plus 11 anti-
coincidence counters 2 inches in diameter and 18
inches long, placed symmetrically around the working
secreen wall counter inside the shielding. The screen
wall counter had a sensitive portion 8 inches in length,
so the long anticoincidence shielding counters afforded
considerable protection on the ends. No end eounters
were used. The data obtained are presented in Table
1 and Fig. 1. ’

3
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Test run with 12

MacMCMC Ik

9]

Activity (min~' g7")

Age (years)

Data: Cl4.dat Model: Cl4.mcmc 3 May 2020 at 19:48:53

# chains x sample/chain: 300 x 3334 = 1000200 (thinning = 10)
log(marginal likelihood): -183.208

A

MAP, Mean, Median, Mode, G-R stat: 12.6865 12.6952 12.6966 12.6817 1.003
Credible Intervals: 12.4079 12.4877 12.5239 12.8679 12.9015 12.978

h

MAP, Mean, Median, Mode, G-R stat: 5710.08 5708.23 5708.35 5707.39 1.013
Credible Intervals: 5587.2 5616.54 5630.98 5785.18 5800.11 5828.53
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https://docs.pymc.io

& PYMC3 Tutorials Examples Books + Videos API Developer Guide About PyMC3 Q O

Probabilistic Programming in Python

. ) pytest pass'ing coverage |8 powered by NumFOCUS | € launch binder | docker build automated

import pymc3 as pm

X, y = linear training data()

with pm.Model() as linear model:

PyMC3 allows you to write down models using an intuitive syntax to describe a data We}ghts = Pm-Normfl('_'weights", mu=0, sigma=1)

generating process. noise = pm.Gamma('noise", alpha=2, beta=1)
y_observed = pm.Normal (

"y_observed",

mu=X @ weights,

sigma=noise,

observed=y,

Friendly modelling API

Cutting edge algorithms and model building blocks

Fit your model using gradient-based MCMC algorithms like NUTS, using ADVI for fast
approximate inference — including minibatch-ADVI for scaling to large datasets — or
using Gaussian processes to build Bayesian nonparametric models. prior = pm.sample prior predictive()

posterior = pm.sample()
posterior pred = pm.sample posterior predictive(posterior)

)
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