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1. Bayesian classification

this likelihood is defined by
training data

4

P(x|C)
P(X)

data X, classes C

P(C|X)= P(C)

the prior is also defined by
training data

we canh use the prior learning to assign a class to new data

o P(X\Ck)
, = argmax
C, P(X) c,

P(Ck) = argmaXP(X\Ck)P(Ck)



Consider a vector of N attributes given as Boolean variables
X = {x;} and classify the data vectors with a single Boolean variable.

The learning procedure must yield:

it is easy to obtain it as an empirical distribution from
an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N+!
different values, and we must estimate 2(2N-1)
parameters ... for instance, with N = 30 there are more
than 2 billion parameters!
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How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,’s:
naive Bayesian learning

for instance, with just two attributes

P(x,.3,]y) = P(x]x%,.) P(x,|y) = P(x]y) P(x,]y)

conditional independence assumption

with more than 2 attributes

P(xly) = T1P(x])

k=1



Therefore:

_ P(lek)P(yk) P(x|yk)

) Z‘P(XM)P()’;)PUR)
HP(xn|yk)

= = P(yk)

EP(yJ)HP(x”|yJ)

J n=1

and we assign the class according to the rule (MAP)

y = arg max = P(y,)

L)) L8




More general discrete inputs

If any of the N x variables has J different values, e if there are K
classes, then we must estimate in all NK(J-1) free parameters with
the Naive Bayes Classifier (this includes normalization) (compare

this with the K(JN-1) parameters needed by a complete classifier)
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Continuous inputs and discrete classes — the Gaussian case

2
1 X, = i,
P('xn yk): 2%62 eXp _( 262kk)
nk | n _

here we must estimate 2NK parameters + the shape of the

distribution P(y) (this adds up to another K-1 parameters)
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Gaussian special case with class-independent variance and Boolean
classification (two classes only):

P(X|y = O)P(y = O)
X|y = O)P(y = O)+P(X|y = I)P(y = 1)

P()’=0|X): P(

1 ('xn _ aLLnO )2
P(x|y=0)= -
(%[y=0) 2no? exp_ 20, |
1 _ ('xn _ ILLnl )2 —
P(x,|y=1)= -
(xn y ) Zyralf eXp_ - _




vesp{n{ P70 ) ()

(y= “ :
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logistic shape

N
W, + anxnj

exp(
P(y=1x)=1-P(y=0|x)= —
1+ exp(w0 + anxnj
n=1
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Finally an input vector belongs to class y = 0 if

P(y=0|x)
P(y=1[x)

-

N
1+ exp(wo + Zannj

n=1

N
exp(w0 + anxnj
n=1
N
1+ exp(wo + anxnj

n=1

N
» w, + anxn <0
n=1
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P(y=0[x)=

N
» exp(wo + Ewnxn
n=1

P(y: 1|X):

J<

11



2. Logistic regression (logit regression)

The odds ratio
P(y = 1]x) p

Ply=0x) 1-p

with the exponential expansion that we just found (the logistic expression for p) gives

N
lnlp :w0+anxn
- P n=1

For a given set of K class determinations where the fraction of assignments to class 1
is p(k) for a parameter vector of {z{®)},_; x this log odds ratio becomes

p(k) N (5
In 1 _p(k) :wo—l—z_:lwnﬂfn




The expression

In

is the basis for a generalized linear regression, to determine the w parameters.

(k)

N
| _ )~ Wot D Wy
R n=1

This can be done with the least squares method, where one minizes

k=1 L

I

N
1—p(k)

N
wo + Z wnxg“)
n=1

This logit regression is often used in classification problem:s.




3. Model selection

The generic purpose of a model selection statistic is to set up a tension between the
predictiveness of a model (for instance indicated by the number of free parameters)
and its ability to fit observational data. Oversimplistic models offering a poor fit
should of course be thrown out, but so should more complex models that offer poor
predictive power.

There are two main types of model selection statistic that have been used in the
literature so far. Information criteria look at the best-fitting parameter values and
attach a penalty for the number of parameters; they are essentially a technical
formulation of “chi-squared per degrees of freedom” arguments. By contrast, the
Bayesian evidence applies the same type of likelihood analysis familiar from
parameter estimation, but at the level of models rather than parameters. It
depends on goodness of fit across the entire model parameter space.

(Liddle & al., 2006)
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Akaike Information Criterion (AIC).

This was derived by Hirotugu Akaike in 1974, and takes the form

AIC = —2In Lax + 2k

where k is the number of parameters in the model. The subscript “max” indicates that one
should find the parameter values yielding the highest possible likelihood within the model.
This second term acts as a kind of “Occam factor”; initially, as parameters are added, the
fit to data improves rapidly until a reasonable fit is achieved, but further parameters
then add little and the penalty term 2k takes over. The generic shape of the AIC as a

function of number of parameters is a rapid fall, a minimum, and then a rise. The preferred
model sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an
approximate minimization of the Kullback—Leibler information entropy which measures

the distance between two probability distributions.

(Liddle & al., 2006)
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Bayesian Information Criterion (BIC).

This was derived by Gideon Schwarz in 1978, and strongly resembles the AIC. It is given by

BIC=-2InLy.x +kIn N

where N is the number of datapoints. Since a typical dataset will have InN > 2, the BIC
imposes a stricter penalty against extra parameters than the AlC.

It was derived as an approximation to the Bayesian evidence, to be discussed next, but
the assumptions required are very restrictive and unlikely to hold in practice, rendering

the approximation quite crude.

(Liddle & al., 2006)
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible
given some data, without necessarily considering preferred values of model
parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing
models using Bayes' theorem:

~ P(D|M;, T)P(M;|I)
P(M;|D,I) = S, P(D| My, I)P(M|I)

and select the best model using the odds ratio

P(M;|D,I)  P(D|M;, I)P(M;|I)

"= P(M;|[D,T) ~ P(D[M;, T)P(M;|T)

or the Bayes factor, if we assume equal prior probabilities for the different models:

o P(D|M37])
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Thus we see that the Bayes factor is a ratio of evidences

" P(D|Mj, 1)

As usual, each evidence is obtained by marginalizing the likelihood with respect to the
(potentially different) parameters:

O;



The evidence of a model is thus the average likelihood of the model in the prior.

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model, but
asks “of all the parameter values you thought were viable before the data came along,
how well on average did they fit the data?”. Literally, it is the likelihood of the model

given the data.

The evidence rewards predictability of models, provided they give a good fit to the data,
and hence gives an axiomatic realization of Occam'’s razor.

A model with little parameter freedom is likely to fit data over much of its parameter
space, whereas a model that could match pretty much any data that might have cropped

up will give a better fit to the actual data but only in a small region of its larger
parameter space, pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using — wherever possible — the Bayesian evidence,
which is a full implementation of Bayesian inference and can be directly interpreted in terms
of model probabilities. It is computationally challenging to compute, being a highly peaked
multidimensional integral, but recent algorithm development has made it feasible in
cosmological contexts.

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is
much simpler to compute as one need only find the point of maximum likelihood for each
model. However, interpreting it can be difficult. Its main usefulness is as an approximation
to the evidence, but this holds only for gaussian likelihoods and provided the datapoints
are independent and identically distributed. The latter condition holds poorly for the current
global cosmological dataset, though it can potentially be improved by binning of the data,
hence decreasing the N in the penalty term.

The AIC has been widely used outside astrophysics, but is of debatable utility. It has been
shown to be “dimensionally inconsistent”, meaning that it is not guaranteed to give the
right result even in the limit of infinite unbiased data. It may be useful for checking the
robustness of conclusions drawn using the BIC. The evidence and BIC are dimensionally
consistent.

(Liddle & al., 2006)

Edoardo Milotti - Bayesian Methods - May 2021 20



4. The EM algorithm (Dempster, Laird & Rubin, 1977)

Recall the max. likelihood principle:

uniform distribution
(usually an improper prior)

p(dle,I) /

P(9|d,1)= P(d|1) ‘P(9|I) likelihood
evidence N }f((;l;ii P(G | I) o l(d’e)

in this (approximate) setting, the MAP estimate coincides with
the ML estimate.
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when data are independent and identically distributed (i.i.d.) we find the following
likelihood function

0)

£(d.0)= Hp(di

and we estimate the parameters by maximizing the likelihood function
0 = argmax £(d,0)
(7]
or, equivalently, its logarithm

0 = argmax| log £ (d,0) |
7]

(in real life, this procedure is often complex and almost invariably it requires a
numerical solution)



The EM algorithm is used to maximize likelihood with incomplete information, and it
has two main steps that are iterated until convergence:

E. expectation of the log-likelihood, averaged with respect to missing data:

parameters (with respect to
which we want to maximize

the expression
measured  missing

data data previous parameter

likelihood estimate (constant
values

logp X y\O

ofo.0")

E,
j  log p(x,y|8) |p y‘x@”l) y
Y

M. maximization of the averaged log-likelihood with respect to parameters:

0" = arg maxQ(B, 9(”_1))
0
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Example: an experiment with an exponential model
(Flury and Zoppe)

Light bulbs fail following an exponential distribution with mean failure time @
To estimate the mean two experiments are performed
1. n light bulbs are tested, all failure times u; are recorded

2. m light bulbs are tested, only the total number r of bulbs failed at time t are
recorded

( )

1 1 U, 1 zi‘ui 1 n{u)
: lzngexp ) :Eexp 5 =§exp 5

\ J

missing data!




combined likelihood
1 n(u) 1 ( vl.)
—exp| — | | —exp| ——
g " ( 0 jne Pl7d

log-likelihood

n(u) L V.
—nln@ In@ + —+
ing- "4 z(n 9)

l




expected failure time for a bulb that
is still burning at time t t+0

expected failure time for a bulb that O_ texp(—t/@)
is not burning at time t 1 — 6Xp(—t/9)



Note on mean failure time for a bulb that is not burning at time t

P(l")‘x%e_t'/e 0<t <t
normalization = j p(t')dt' — jd_t, o0 —1— /0
0 0 9
| dt
mean failure time = _[t’p(t’)dt’ — _t/e j o110 20

— - —z/e |:1 e—t/O (t/a)e—t/eil

t e—t/e

1 . e—t/@

—0—



—~—

average log-likelihood

Q=E{—nln9—néu>+i(—ln0—%ﬂ
n<u>_1(9_ feXP(—f/H))]_(m;”)(eﬂ)

=— In6—
(n-+m)ln 0 1—exp(—1/6

this ends the expectation step
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the max of the mean likelihood

Q:—(n+m)ln0—% n<u>+r(9— teXp(_t/e)))+(m—r)(9+t)

1—exp(—1/6

can be found by maximizing the approximate expression

Q=—(n+m)lnf——
Z—gz—(n+m)%+i2

1

7 _n<u>+ r[Q(k) T exp(—t/H(k))]—l_(m_ r)(Q(k) +t)_

texp(—t/é?(k))

0 texp(—t/G(k))

n<u>+r[9 — 1_eXp(_t/e(k))]+(m—r)(0(k) +t)




d 11 o texp(=1/6" k
d—gz—(n+m)5+§ n<u>+r(9()—1_6X$(_t/0(kz)]+(m—r)(9()+t) =0

0
CU.. (0 _ rexp(~1/6")
o' = n{u)+r| 0" l—exp(—t/O(k))

+(m— r)(G(k) + t)

this formula summarizes expectation
and maximization: therefore, the recipe
is to iterate this until convergence ...
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Example with mean failure time = 2 (a.u.), and randomly generated

data (n = 100; m = 100). In this example r = 36.

20 e g e e e e e e e e e e e .
0" 1o

0.5

005 5 10 15 20
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The EM method is often used to estimate the parameters of
“mixture models”.

Example: a Gaussian
mixture model (M=2)




Easy-to-understand example: waiting times between eruptions of the Old Faithful
Geiser (Yellowstone National Park — Wyoming)

Here we analyze the waiting times
assuming a 2-Gaussian mixture

model for the waiting time

distribution
(data taken from an R example)
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In this case, the mixture model has two Gaussian components

p(w‘e) — CMN(UJ; ,u1,0'1) + (1 - a)N(w;M% 0-2)

where the vector of parameters is 0 = (()47 Wi, 1u2,01, (72)

The resulting log likelihood with n waiting times w; is

InL = Zln l[aN(w;; p1,01) + (1 — )N (w;; o, 02)]
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We substitute the likelihood with the new one, containing unobserved data:
i 1—y; : i : 1—y;
C=]]o" (1 —a) ¥ IN(wi; p,00)]Y [N (wi; p2, 02)]
)

where the new, unobserved data y; are indicator variables that select extraction
from the first (y; = 1) or the second (y; = 0) Gaussian (i.e., two classes).

Then

1 (wi — p1)?

Inl = z; [yz na+ (1 —y;)In(l —a) +y; (—5 In(2moq1) — 202

2
202

)



The probability that a given
time interval belongs to the
first Gaussian is

this probability is also equal to the mean
K value of the indicator variable

o X N (wy; iy, 01)
a X N(wg; p1,01) + (1 —a) X N(wg; pi2, 02)

oM exp[—(wi — ")/ 201"/ 2m(07")?

Dbi =

a® expl—(w; — )2 /2(a")2] /)21 (07)2 + (1 — a®) exp[—(w; — p§”)2/2(a57)2] /1) 27 (05")?
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Now, averaging the log likelihood with respect to the unobserved data we find

Q(0,0W) =3" [ o+ (1-pMm@1 - a) +p™ ( ;m(zm%) _ i _5‘1)2>

20
; 1

+1-p) (—5 nizno) - L2l )]

205

(the mean value of the indicator variable is equal to the current estimate of the
probability o)

Next we maximize with respect to all the remaining parameters, and we find:

Q1) — Zp(k)

k
(U(k+1))2 _ Zz’pi N(w; — pi?)?

. (k1) _ 2 ptF
1 ’ 1
Zipz('k) Z p(k)
k k k
G2 2, (1= i) (wi — p$)? ey 30,1 —pFu,
02 - ’ U2 -

S, (1= i) > (1)




Finally we have the following set of equations:

k k k
a® expl—(w; — i§")2/2(0\")?) /1) 27 (o{"))2

(k)
p;, =
a® exp|—(w; — p$)2/2(68)2] /27 (07)2 4 (1 — a®) expl—(w; — )2 /2(08)2] /1 /2 (052
o+ — Zp(k)
k
(0§k+1)>2 _ Z,L-p- ( ( ))2, Mgkﬂ) _ Zzp( ) Wy
Z p(k) Z p(k)

e L B 505

sy P (1 p)
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Comparison of the original data with the mixture model obtained with the EM

algorithm
14} =
12f 1L
| a4
10} AL 1IN
: g \
8l Alll T
- \
W N \
N A N
60 70 80 90

Waiting time (min)
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Notes:

1. the approach outlined in this 2-component Gaussian mixture model can be
generalized to more than two components

2. the assignment to different components (hidden index variable) amounts to the
solution of a classification problem



5. Neutron star mass range
(Finn, PRL 73 (1994) 1878)

Neutron stars:

- The densest objects this side of an event horizon, with a mean density ~ 10> g cm™3. Four teaspons contain as
much mass as the Moon.

« The largest surface gravity, about 10'* cm s=2, or 100 billion times Earth’s gravity.

- The fastest spinning macroscopic objects. A pulsar, PSR J1748-2446ad in the globular cluster Terzan 5, has a
spin rate of 714 Hz [1], so that its surface velocity at the equator is about ¢ /4.

« The larges magnetic field strength, of order 10> G.

 The highest temperature superconductor, with a critical temperature of a few billion K, has been deduced for the
core superfluid neuitrons in the remnant of the Cassiopeia A supernova [2, 3].

« The highest temperatures, outside the Big Bang, exist at birth or in merging neutron stars, about 700 billion K.
« The pulsar PSR B1508+55 has a spatial velocity in excess of 1100 km s~! [4].

- Neutron stars at birth or in matter from merging neutron stars are the only places in the universe, apart from the
Big Bang, where neutrinos become trapped and must diffuse through high density matter to eventually escape.

from J. Lattimer: "Introduction to neutron stars", AIP Conference Proceedings
1645, 61 (2015); https://doi.org/10.1063/1.4909560
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Some important milestones concerning discoveries about neutron stars include:

1920 Rutherford predicts existence of the neutron.

1931 Landau anticipates single-nucleus stars (not precisely neutron stars).

1932 Chadwick discovers the neutron.

1934 W. Baade and F. Zwicky [5] suggest that neutron stars are the end product of supernovae.

1939 Oppenheimer and Volkoff [6] find that general relativity predicts a maximum mass for neutron stars.

1964 Hoyle, Narlikar and Wheeler [7] predict that neutron stars rotate rapidly.

1965 Hewish and Okoye [8] discover an intense radio source in the Crab nebulae, later shown to be a neutron star.
1966 Colgate and White [9] perform simulations of core-collapse supernovae resulting in formation of neutron stars.

1967 C. Schisler discovers a dozen pulsing radio sources, including the Crab, using classified military radar. He
revealed his discoveries in 2007. Later in 1967 Hewish, Bell, Pilkington, Scott and Collins [10] discover PSR
1919+21 (Hewish receives 1974 Nobel Prize).

1968 Crab pulsar discovered [11] and pulse period found to be increasing, characteristic of spinning stars but not
binaries or vibrating stars. This also clinched the connection with supernovae. The term "pulsar’ first appears in
print in the Daily Telgraph.

1969 "Glitches" observed [12], providing evidence for superfluidity in the neutron star crust [13].
1971 Accretion powered X-ray pulsars discovered by the Uhuru satellite [14].

1974 The first binary pulsar, PSR 1913+16, discovered by Hulse and Taylor [15] (Nobel Prize 1993). It’s orbital
decay is the first observation [16] proving existence of gravitational radiation. Lattimer and Schramm [17] suggest
decompressing neutron star matter from merging compact binaries leads to synthesis of r-process elements.

1982 The first millisecond pulsar, PSR B1937+21, discovered by Backer et al. [18]
1996 Discovery of the closest neutron star RX J1856-3754 by Walter et al. [19].
1998 Kouveliotou discovers the first magnetar [20].

from J. Lattimer: "Introduction to neutron stars", AIP Conference Proceedings
1645, 61 (2015); https://doi.org/10.1063/1.4909560
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Neutron Star RX J185635-3754
Hubble Space Telescope ¢ WFPC2

NASA and F. Walter (State University of New York at Stony Brook) ® STScl-PRC00-35

The Motion of RX J185635-3754 - The Nearest Neutron Star to Earth

This photograph is the sum of three Hubble Space Telescope images. North is down, east is to the right. The image, taken by the Wide Field
and Planetary Camera 2, is 8.8 arc seconds across (west to east), and 6.6 arc seconds top-to-bottom (south to north).

All stars line up in this composite picture, except the neutron star, which moves across the image in a direction 10 degrees south of east. The
three images of the neutron star are labeled by date. The proper motion is 1/3 of an arc second per year. The small wobble caused by
parallax (not visible in the image) has a size of 0.016 arc seconds, giving a distance of 200 light-years.
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Simple exercise: derive the Newtonian version of the Tolman-Oppenheimer-Volkov
equation for pressure and mass of a neutron star

dp Gp(r)M(r) _ Ge(r)M(r)

dr r

M(r)

272
4 T
- e(r"r'?dr’

62 0 \

energy density

|
A

3

o\ﬁ

e
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ﬁ\
N
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p(r+dr) = F(r+dr)/A

Y oA |
dr

The complete, relativistic equation, contains corrections that involve the mass-energy
density (the energy density and pressure are connected by the Equation Of State, EOS).

dp G (m+4nrip/c®)(e+p) dm an &2
_— = — — e li— —7
dr 2 r(r=2GM/c*) dr c?
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The Harrison—Wheeler Equation of State for Cold, Dead
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from K. S. Thorne: "Black Holes and Time Warps", Norton (1994)



Death of Sirius

CIRCUMFERENCE, in KILOMETER.S

from K. S. Thorne: "Black Holes and Time Warps", Norton (1994)
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quark stars?
exotic stars?

Death of Sirius

CIRCUMFERENCE, in KILOMETER.S
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Fig. 2. Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM)
equations of state [for definitions of the labels, see (27)]. Regions excluded by general relativity
(GR), causality, and rotation constraints are indicated. Contours of radiation radii R_, are given by
the orange curves. The dashed line labeled Al/I = 0.014 is a radius limit estimated from Vela pulsar
glitches (27).

from J. M. Lattimer and M. Prakash: "The Physics of Neutron Stars",
Science 304 (2004) 536
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The mass-radius relation is important to pin down the EQS, and
hence the composition of the neutron star nucleus.

The NICER (Neutron star Interior Composition ExploreR) mission

is steadily providing new informations on neutron stars
(resolution obtained on radius ~ 0.5 km)
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Sunshades and X-Ray
Concentrators (56)

Possible TMD Locations
XTI Detector Radiator

(structure is 10B) —ﬁ

Focal Plane Modules
(MIT/Amptek/GSFC)
with SDD Shields (56)

GPS Antenna Bracket
Star Tracker (DTU)

Electronics (MBR, MIT, DTU)
Electronics Radiator (not shown)

DAPS — Az/El/Deploy/Latching

Gimbal Bracket Actuators (Moog)

HiPoSBox — 7
Contamination Shield

Frangibolt Launch Lock Mounts

(x4, 3-2-2-1 constraints) AFRAM

Adapter Plate

The NICER instrument onboard the ISS

The X-ray Timing Instrument (XTI) consists of an array of
56 X-ray “concentrator” optics and matching silicon
detectors, which record the times of arrival (100 ns
resolution) and energies of individual X-ray photons (0.2-
12 keV). The payload uses an on-board GPS receiver to
register photon detections to precise GPS time and
position, while a star-tracker camera guides the pointing

system, which uses gimbaled actuators to track targets
with the XTI.



J0030+0451, is an isolated pulsar that spins roughly 200 times per second and is 337
parsecs (1,100 light years) from Earth, in the constellation Pisces. M = 1.3 — 1.4 Mo;
radius = 13 km

Hotspots rotate in two scenarios for the pulsar J0030+0451, based on analysis of NICER data.Credit:
NASA’s Goddard Space Flight Center/Cl Lab
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Observational Constraints on the Neutron Star Mass Distribution

Lee Samuel Finn

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
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Radio observations of neutron star binary pulsar systems have constrained strongly the masses of
eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper
bounds m; and m,, the observations determine with 95% confidence that 1.01 < m;/Mo < 1.34 and
143 < m,/Mo < 1.64. These limits give observational support to neutron star formation scenarios
that suggest that masses should fall predominantly in the range 1.3 < m/M, < 1.6, and will also be
important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-
wave Observatory.

PACS numbers: 97.60.Jd, 04.40.Dg, 97.10.Nf
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Two sets of data

TABLE [. The values adopted for the total mass M, the
companion mass m,, and the standard error of each (o4 and
o, ) of PSR1913+16 and PSR1534+12 [7,8].

System M /Mg omu/ Mo m./ Mg Om. /Mo
1913+16 2.82827 4 x 1073 1.442 0.003
1534+12 2.679 0.003 1.36 0.03

TABLE II. The values adopted for the mass function f, the

total mass M, and the standard error of each (o, and o) of

Functi
PSRs 2127+ 11C and 2303+46 [2,9,17]. mass function

System f/Mo or/Me  M/Ms  ou/Mo (mg sin i)3
PSR2127+11C 0.15285 1.8 x 10~* 2.706 3.6 X 1073 f= (M1 + m2)2
PSR2303+46  0.246287 6.7 X 10°® 2.57 0.08 1 2
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Our target: determine the upper and lower bound for the NS mass distribution.

The prior distribution is determined from very general considerations

M, > m, >m; > M,

/

M, = 3Mg M; =~ 0.1M
from causality and from our understanding
general relativity of the EOS
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Posterior distribution for the mass bounds

P(D|my, my, I)

P(D’]) P(ml,mu\l)

P(ml,mu\D,I) =
Thanks to the independence of individual measurements

P(Dlmy, my, 1) = | | P(Dnl|my, mu, 1)

Next we have to evaluate the different contributions to the
individual likelihoods



P (e, M|my,my, I) = /P(mC,M\mC,M, I)P(me, M|my, my, I)dm.dM

we assume that the masses in the binary are independent

|:> P(mcaM’mlamual) — P(mC’M—mc‘ml,mU7I) - (m —ml)Q

Similarly
P(f7M‘ml7mU7I) :/P(f)M’f)Mal)P(faM‘mlamU7[)dfdM
however, here

P(f7M‘ml7mual) :P(f|M7ml7mual)P<M|mlamU7I)
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P(f7M‘mlamU7I) — P(f‘MambmuaI)P(M’mlamual)
The two distributions on the r.h.s. can be evaluated separately

P(A:!|m1,m“. I)

max |0, min(M = . My) = max(M — my,my)]
(mu - m1)2

P(fIM,m;,m,, I)

1 (arcsin x, — arcsin xq) (M /f)?*/3
3 min(M — m;,m,) — max(M — m,,m;)

where
~ r212/3 E
: (fM=)~
= max| 0,1 — — 7 2
*o [ mln[mu-max(M o "2,,.."1[)]- =
x2 = max| 0.1 — (iMZ)Z/"
] ’ max[m,,min(M - ”llv'n“)]2 .
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Results

-
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FIG. 1. Assuming ns masses are uniformly distributed be-
tween m; and m,, observations of PSRs 1534+12, 1913+16,
2127+11C, and 2303+46 determine the joint probability dis-
tribution for m; and m,. Shown here are contours enclosing
regions of 68% (dotted) and 95% (solid) of this distribution.
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FIG. 2. As in Fig. 1, except that the contours are based on
the constraints provided by observations of PSRs 1534+ 12 and
1913+16.
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FIG. 3. As in Fig. |, except that the contours are based on the
constraints provided by observations of PSRs 2127+11C and
2303 +46.
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Additional references:

Model selection

A. Liddle, P. Mukherjee, D. Parkinson: "Model selection in cosmology", Astronomy & Geophysics
47 (2006) 4.30, https://academic.oup.com/astrogeo/article/47/4/4.30/206812

EM algorithm

* A. P. Dempster, N. M. Laird, and D. B. Rubin: “Maximum likelihood from incomplete data via the
EM algorithm”, Journal of the Royal Statistical Society series B, 39 (1977) 1

* J. Bilmes: “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation
for Gaussian Mixture and Hidden Markov Models”, ICSI preprint TR-97-021 (1998)

* B. Flury and A. Zoppé, “Exercises in EM” American Statistician, 54 (2000) 207.
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