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Example of Bayesian inference:
estimate of the (probability) parameter of the binomial distribution

P(n16,N)= []Zju ~6)"" ef\

this is the parameter
that we want to infer

P(n | O,N) . from data

jP(n &, N) 'p(@')d@' uniform distribution: the

least informative prior
N j( N-n A~n
( 1-6)""6 e
n 1-6 0"
°p(9) — 7 ( )

1
![ N )(1—9')“”9'”- )de’ / ! V"0 do’

the final result is a beta distribution
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(1-6)""6" (1-6)""6"
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T B+IN-n+1
[or (1-0"" a0 (LN =n+1)

0
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B(m,n) = Jtm_l (1 — t)n_1 dt
0

beta function

~I'(m)I'(n)
- I'(m+n)

I'(N +2)
I'n+DI'(N—n+1)
(N +1)!
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p(01n,N)= (1-6)""0"




Mathematical digression: the connection between gamma and beta function

0 0
X =rcoso; y=rsinb; =S
oo /2
T'(m)[(n)= 4"‘;"2’”””_16_’"2 dr J cos”" ' @sin*""' 0d6

0 0

/2
= F(m + n)[2 J cos”" ' @sin*"! 9d9] (t =cos’0; dt=-2 cos@sin@d@)

0

1

=T(m+ n)Jt’“‘1 (1—¢)"" dr

=T (m+n)B(m,n)

m!n!
(m+n+1)!

=  B(m,n)= = B(m+1,n+1)=



p(6|n,N)

Figure 1. Posterior probability density function of the binomial parameter £, having observed n
successes in N trials.
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From the knowledge of the posterior pdf we obtain all the momenta of the distribution

(N +1)!

— . N-n nn
p(@ln,N)—n!(N_n)!(l )"0
1 N+1D! Nem oo
<9>=£p(9|n,N)9d9:n(!(Nti)!!(l—e) 0" do

(VD!

_n!(N—n)!

_(N+D! (n+ DN - n)!

al(N-n)!  (N+2)!
n+1 n

— N biased, asymptotically unbiased,

B N+2 N estimator

B(n+2,N—-n+1)
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(6°)=[p(01n.N)6’d0 =
(N +1)! B
n!(N—n)!
(N+D! (n+2)[(N—n)!
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What happens if we try a different prior?

p(6)
Let’s try with a linear prior 20—
p(9)=29 15|
1.0}
0.5]
P(nIO,N) oo, . _
p(61n,N)=+ -p(6) 00 02 04 06 08 10
[P(n16".N) - p(6)dor 0
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N N-n
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p(01n,N)= (N +2)!

(n+1)((N —n)!

D

1 (N +2)!

(0)=[p(61n.N)6d0 = (s DIN = )

N +2)!
- (n—:I)!(N)—n)!B(n+ 3,N-n+1)
(N+2)!  (n+2)I(N —n)!
(n+1)(N-n)!  (N+3)
n+2 n

N\
/7

" N+3 N
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10.- Blue: start with uniform prior |
8: Red: start with linear prior |
6F |
4t ]
2t |
of /\ :

00 0.2 04 0.6 0.8 10

0

Taking few coin throws, the posterior from the linear prior is considerably
biased. The bias disappears when the number of coin throws is large.
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Now we try with a very non-uniform prior

We take 19(491)01(210
3
p(9)=(k+1)9k; k>1 6
4
2
0 ‘ ‘ __— ]
p(61n,N)= p(nl6,N) () 00 02 04 90.6 08 10
[P(n16'.N)- p(6)ae
N )(1—9)N”9"
= [ - (k+1)6" =~ (1-6) ¢
J( ; j(l_e')NHQ'”'(k+1)9’kd9' J(1-07""0 " dor
0 n 0
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p(01n,N)= (N+k+1)!

(n+ k)N —n)!

.

N  (N+k+1)!
(0)=[p(01n.N)6d6 = D=

0

(N+k+1)!
(n+k)/(N —n)!
(N+k+1)!  (n+k+1DIN—n)!
T+ k)IN=n)  (N+k+2)!
n+k+1 n

—_— N\
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10

I Blue: start with uniform prior ]
Red: start with power-law prior (k=10) |
00 02 04 06 08 10

0

In this case, initial bias due to the prior is very large.
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Note on posterior distributions:

the relationship between binomial distribution and beta function is quite important and common, and
corresponds to the formal definition of the Beta distribution:

F(a+b)

F(a)r(b)

There are other important dualities between distributions. This topic is discussed in depth in

B(6a,b)= 0! (1-6)""

J. M. Bernardo: Reference Posterior Distributions for Bayesian Inference, J. R. Statist. Soc. B 41 (1979), 113



Lessons learned:

1. The prior information is not neutral, a careful choice of the prior distribution is a necessity.
Question: how do we choose a prior?

2. If we want to keep all possibilities alive, we must heed the Cromwell’s rule: “Prior probabilities 0 and 1
should be avoided” (Lindley, 1991)

The reference is to Oliver Cromwell’s phrase:
| beseech you, in the bowels of Christ, think it possible that you may be mistaken.

3. Convergence as the dataset size grows seems to be granted, however it may be very slow with a bad
choice of prior distribution

Question: is convergence really granted???



The Bernstein-Von Mises theorem

The theorem that grants convergence under very weak hypotheses is the Bernstein-Von Mises theorem.
The theorem states that a posterior distribution converges in the limit of infinite data to a multivariate

normal distribution centered at the maximum likelihood estimator with covariance matrix given by the
normalized Fisher matrix.

Convergence can only be defined with respect to a frequentist approach (this requires repeated,
independent tests of the experimental procedure).

In the case of nonparametric statistics and for certain probability spaces, the Bernstein-von Mises theorem
usually fails.



Maximum a posteriori (MAP) estimate — MAP is not mean value!

Consider the case with a uniform prior: from the posterior distribution

(N +1)!
n!(N—n)!

p(01n,N)= (1-6)""6"

we easily find that the posterior pdf is maximized by the parameter value

0 =n/N

which is the unbiased estimate of the parameter (unlike the mean value!)
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Credible intervals (case of initial uniform prior), the Bayesian analog of confidence intervals.

Q. i
95% symmetric interval (same
probability content in tails, 2.5%)
6 i
4! i
2 i
07 | | | | | | | | | | | | | | | | | | | | | 1
0.0 0.2 04 0.6 0.8 1.0

0
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Example: analysis of a decision problem (Skilling 1998)

Let T be the temperature of a liquid which can be either water or ethanol. We use the
temperature data to discriminate between water and ethanol.

1. We suppose first that the liquid is water: then we take a uniform prior distribution for
T, between 0 °C and 100 °C

2. The experimental apparatus and the measurement process is defined by the likelihood
function:
P(DIT,water,l).
We assume that measurements are uniformly distributed within a range 5 °C.

Therefore:
P(DIT,water,I) = 0.1 (°C)1in the interval [T-5°C, T+5°C], and zero elsewhere.

3. We take a single measurement D = -3°C.
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*

4. The evidence p(D) is

p(D\Water,I):/p(D\T,Water,I)p(T)dT
T

2°C jo\—1 [(on\—1
(°C)~ (°C) o o —1
/OC 10 100 FCC)=0002CC)

5. Using Bayes’ theorem we find

p(D|T, water, I)
p(D,water, I)
=0.5(°C)"t  (0°C < T <2°0)

0.1(°C)~!

p(T|D,water, I) = 0.002(°C) 1

0.01(°C)~ !

p(T'|water, I) =




Now suppose that the liquid is ethanol, so that the temperature range is -

B~ W b=

80°C<T<80°C

p(T) = (160°C)! in -80°C < T < 80°C.
p(D1T,ethanol, ) =0.1 (°C)!in [T-5°C, T+5°C], and zero elsewhere.
We take a single measurement D = -3°C.

The evidence p(D | ethanol, I) is

p(Dlethanol, I) = /
T

2OC e} _1 o _1
C C
p(D|T, ethanol, Ip(T |ethanol, I)dT = / (°C)~" (°C)
—goc 10 160

Using Bayes’ theorem, we find

p(D|T, ethanol, I)
p(D, ethanol, I)
=0.1(°C)"'  (=8°C < T < 2°C)

0.1°C)"' 1 .,
Tethanol, ) = 0
p(Tlethanol, 1) = G G 160

p(T|D, ethanol, I') =
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* Here we only wish to discriminate between water and ethanol and we do not care
much about temperature.

 Temperature is a nuisance variable, one that can be dispensed with.

* Usually, nuisance variable are eliminated by integration. In this specific case we have
already carried out part of the work by calculating the evidences, which can be
considered as marginalized likelihoods.



Assuming a uniform prior for the water-ethanol choice, we can discriminate between
water and ethanol:

P water — P ethanol = 05

With this prior assumption we find:

p(D|water, I)
p(D|water, I) P(water|I) + p(D|ethanol, I) P(ethanol|I)
B p(D|water, I)
~ p(D|water, I) + p(D]|ethanol, I)

P(water|D, ) =

P(water|[I)

and the ratio of the posteriors is given by the Bayes' factor

P(water|D,I)  p(D|water,I)

P(ethanol|D,I)  p(Dl|ethanol, I)




We found earlier that
p(D|water, I) = 0.002(°C))~*
p(D|ethanol, I) = 0.00625(°C))~*

therefore, the Bayes factor is

B P(water|D,I)  p(D|water,I) 5 195
- P(ethanol|D,I) p(D|ethanol,I)

and we conclude that the observation favors the hypothesis of liquid ethanaol.
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log,o(B) B Evidence support

0tol/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to 10 Substantial

1to 2 10 to 100 Strong

> 2 > 100 Decisive

Interpretation of the Bayes factor B as evidence support according to Jeffreys (1961), in half units on a scale of
|Og10.

In the case of the water-ethanol problem, and according to Jeffreys’ categories, the preference for ethanol is “not
worth more than a bare mention”, although it happens to be in the upper part of the range.

In 1995, Kass and Raftery noted that it can be useful to consider twice the natural logarithm of the Bayes factor,

which is on the same scale as the familiar deviance and likelihood ratio test statistics and therefore proposed a
different interpretation

2 log.(By) (B0 Evidence against H, no_ p ( D’ Hl)
Oto2 103 Not worth more than a bare 10 —
mention P(D‘HO)
2106 31020 Positive
6to 10 20 to 150 Strong Here 1 denotes the
>10 >150 Very strong alternative hypothesis and

0 the null hypothesis
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Example of Bayesian parameter estimation: analytical straight-line fit

y,=ax,+b+¢€,

yi measured value
X;  independent variable (‘exactly” known)

a ,b fit parametes: eventually we expect to find pdf's for these parameters

E,  statistical uncertainty

the statistical measurement uncertainty N, 2\ 2
has a Gaussian distribution <€Z> . 07 <8 > — 0
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likelihood
p(ylab.x,0)=(2r0"

prior angular distribution

2

_ N .
)N/2eXp T 5g? Z(yi—axi—b)

i=1

Should we take a

uniform a or
a uniform angle?

X

uniform a

uniform angle
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The uniform distribution of a introduces an angular bias. The least informative choice
corresponds to a uniform angular distribution

and we obtain the distribution of a with the transformation method:

a = tan@

= P, (go)dgo =P, (a)da =P, (a)d(tan(p): D, (a)sec2 Qdo

IS N
Pa _ﬂseczgo_n(1+tan2q))_7r(1+a2)
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prior distribution of b: an improper uniform distribution, related to the distribution of a

oyl

|
(@)
2 |
S
\<
|

Q
¥y X

|
\

o

1 1 cosp 1 1
bla=0)=—: p(bla)=—=SC_
pbla=0)=—0; plbla)=7m=""r 2B {1+ 22
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finally, we obtain the posterior from Bayes’ theorem

la,b,x,0
p(a,bly,X,G)=+oo B/Cos(pp(y ) 'P(a,b)
[da | dbp(ylabx.c)p(a.b)
—oo —B/cos@

where the prior is

plab)= plbta)s(a)=| 75 ﬁjﬁﬂ(liaz)]

1
(1 +a’ )3/2

ccC




therefore:

1 N
exp[ 22 . — ax, b} .

p(a,b | y,X,G) = 20 32
TdaB/c]gsco dbexp[ 1 i g b :| 1 (1+a2)
—w  —Blcos 20° i=1 (1+a2)3/2
1 1
a2 Soen
T da 1 <
{[o(l—i— )3/2 jdbexp[ 0'2; Y, —ax; — b }}

This expression has a partly Gaussian structure, and we rearrange the quadratic
expression in the exponential.



N
=N b—iz(yl. —ax,) +N(Vau'y—2acov(x,y)+az2 Varx)

therefore, the normalization integral becomes

T da Xp[— N
2)3/2 25°

vary—2acov(x,y)+a’ varx +mdb exp| —
| [favese

—00

27‘[62 N
N 3/2 eXp| — 25"
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For the next step we use Laplace's method (this is the saddle-point method — also called the method of steepest
descent in the real domain) for the evaluation of the integral of a unimodal function

+0o0 +00
Z :/ p(x)dx :/ e® @) dy

— 0 — OO
where
1
®(z) = Inp(z) ~ Inp(zo) — Q—S(I — x0)°
where X, is the mode and
1 _02 Inp(x)
s Ox?

therefore
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Approximate integration of the remaining integral with Laplace's method

_j? T :iaz )3/2 exp [— ZZZZ (vary —2acov(x,y)+a’ var x)}

Taking the logarithm of the integrand, we find its maximum and we Taylor-expand about the
maximum

N

2

(I)(a):—gln(1+a2)— (Valry—2azcov(x,y)+a2 Varx)
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N

(I)(a) -

1
I
|
[G—
=
—
ok
+
Q
&}
~—
I

: (Vary —2acov(x,y)+a’ var x)

we find a from this

dd 3a N + cubic equation
— =———+—(cov(x,y)—avarx)=0
da l+a” o

cov(x,y)

note that when N>>1 the peak is at position a, =
var x

We use the Newton-Raphson method for the solution of the cubic equation:

3a,
a,)=—
Jia) 1+a§
, l-a. N N
f (a,)=-3 (1+a20)2 — Varxz—?varx
0
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then

2 2

3 3
oa, =— aoz 2 a, =dy— aoz = (1)
l+a, Nvarx l+a, Nvarx
Now, to complete the expansion, we must evaluate the
second derivative at a;:
d*P 1 —af N 1
— = —3 21 — S varxr = —— (2)
da? (14+a7)? o2 o

(I)(a) = (D(%)"'E 1 (a—al)2 = (D(al)— (az_(;?)

we find this by using equations (1) and (2)
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Now we complete the evaluation of the integral

T da N

L(+a*)” e"p[‘ 20°
(I)(a)]da

(Vary —2acov(x,y)+a’ var x)}

= fexp

“+oo

zjexp a al }d =\2mo; exp[(l) al
1

207

—00

and finally, we find the posterior distribution:

1 1 &
p(a,bly,x,0)e< ( 2)3/2 exp{— - Z(yl. —ax, —b)z}




From the posterior

p(a,b I y,X,G) oc

=~ eX]P

we see that

1

(1+a2)

(a)=a,;; vara=07;

(b)=~

N

;(yi —a,Xx, ); varb = =

l

0]

1 N
3/2 eXp|:— 262 Z(yi —dax; _b)2:|






