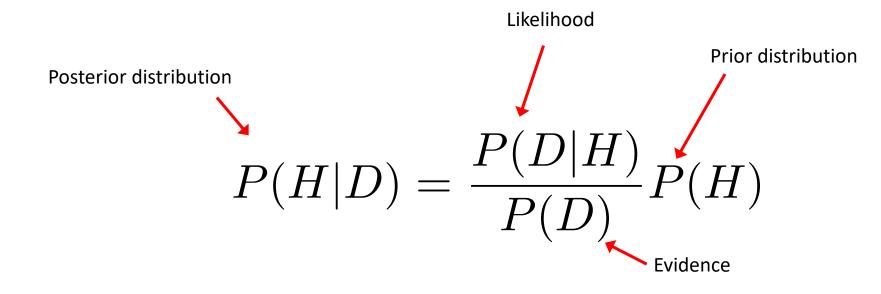
Introduction to Bayesian Methods- 2

Edoardo Milotti

Università di Trieste and INFN-Sezione di Trieste



$$P(H_k|D) = \frac{P(D|H_k)}{\sum_{j} P(D|H_j)P(H_j)} P(H_k)$$

$$p(\theta|D,I) = \frac{P(D|\theta,I)}{\int_{\Theta} P(D|\theta',I)p(\theta'|I)d\theta} p(\theta|I)$$

MAP estimates

Example of Bayesian inference:

estimate of the (probability) parameter of the binomial distribution

$$P(n \mid \theta, N) = \binom{N}{n} (1 - \theta)^{N-n} \theta^n$$
 this is the parameter that we want to infer from data
$$p(\theta \mid n, N) = \frac{P(n \mid \theta, N)}{\int\limits_0^1 P(n \mid \theta', N) \cdot p(\theta') d\theta'} \cdot p(\theta) = \frac{\int\limits_0^1 P(n \mid \theta', N) \cdot p(\theta') d\theta'}{\int\limits_0^1 \binom{N}{n} (1 - \theta')^{N-n} \theta'^n} \cdot p(\theta') d\theta'} \quad \text{uniform distribution: the least informative prior}$$

$$= \frac{\binom{N}{n} (1 - \theta')^{N-n} \theta^n}{\int\limits_0^1 (1 - \theta')^{N-n} \theta'^n \cdot p(\theta') d\theta'} \cdot p(\theta') d\theta'$$

the final result is a beta distribution

$$p(\theta \mid n, N) = \frac{(1-\theta)^{N-n} \theta^{n}}{\int_{0}^{1} \theta'^{n} (1-\theta')^{N-n} d\theta'} = \frac{(1-\theta)^{N-n} \theta^{n}}{B(n+1, N-n+1)}$$

$$B(m,n) = \int_{0}^{1} t^{m-1} (1-t)^{n-1} dt$$

$$= \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
beta function

$$p(\theta \mid n, N) = \frac{\Gamma(N+2)}{\Gamma(n+1)\Gamma(N-n+1)} (1-\theta)^{N-n} \theta^{n}$$
$$= \frac{(N+1)!}{n!(N-n)!} (1-\theta)^{N-n} \theta^{n}$$

Mathematical digression: the connection between gamma and beta function

$$\Gamma(m)\Gamma(n) = \int_{0}^{\infty} s^{m-1}e^{-s} ds \int_{0}^{\infty} t^{n-1}e^{-t} dt$$

$$s = x^{2}; \qquad t = y^{2}; \qquad \Rightarrow$$

$$\Gamma(m)\Gamma(n) = 4 \int_{0}^{\infty} x^{2m-1}e^{-x^{2}} dx \int_{0}^{\infty} y^{2n-1}e^{-y^{2}} dy$$

$$x = r\cos\theta; \qquad y = r\sin\theta; \qquad \Rightarrow$$

$$\Gamma(m)\Gamma(n) = 4 \int_{0}^{\infty} r^{2m+2n-1}e^{-r^{2}} dr \int_{0}^{\pi/2} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta$$

$$= \Gamma(m+n) \left(2 \int_{0}^{\pi/2} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta \right) \qquad (t = \cos^{2}\theta; \quad dt = -2\cos\theta \sin\theta d\theta)$$

$$= \Gamma(m+n) \int_{0}^{1} t^{m-1} (1-t)^{n-1} dt$$

$$= \Gamma(m+n)B(m,n)$$

$$\Rightarrow B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \Rightarrow B(m+1,n+1) = \frac{m!n!}{(m+n+1)!}$$

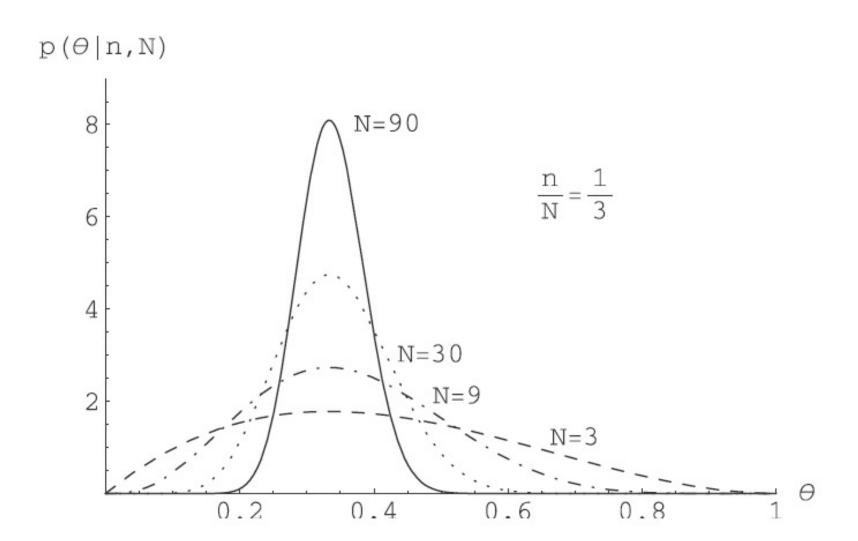


Figure 1. Posterior probability density function of the binomial parameter θ , having observed n successes in N trials.

From the knowledge of the posterior pdf we obtain all the momenta of the distribution

$$p(\theta \mid n, N) = \frac{(N+1)!}{n!(N-n)!} (1-\theta)^{N-n} \theta^n$$

$$\langle \theta \rangle = \int_{0}^{1} p(\theta \mid n, N) \, \theta d\theta = \frac{(N+1)!}{n!(N-n)!} \int_{0}^{1} (1-\theta)^{N-n} \, \theta^{n+1} \, d\theta$$

$$= \frac{(N+1)!}{n!(N-n)!} B(n+2, N-n+1)$$

$$= \frac{(N+1)!}{n!(N-n)!} \cdot \frac{(n+1)!(N-n)!}{(N+2)!}$$

$$= \frac{n+1}{N+2} \rightarrow \frac{n}{N}$$
biased, asymptotically unbiased, estimator

$$\left\langle \theta^{2} \right\rangle = \int_{0}^{1} p(\theta \mid n, N) \, \theta^{2} d\theta = \frac{(N+1)!}{n!(N-n)!} \int_{0}^{1} (1-\theta)^{N-n} \, \theta^{n+2} \, d\theta$$

$$= \frac{(N+1)!}{n!(N-n)!} B(n+3, N-n+1)$$

$$= \frac{(N+1)!}{n!(N-n)!} \cdot \frac{(n+2)!(N-n)!}{(N+3)!}$$

$$= \frac{(n+2)(n+1)}{(N+3)(N+2)}$$

$$\operatorname{var} \theta = \left\langle \theta^{2} \right\rangle - \left\langle \theta \right\rangle^{2} = \frac{(n+2)(n+1)}{(N+3)(N+2)} - \left(\frac{n+1}{N+2}\right)^{2} = \frac{(N-n+1)(n+1)}{(N+3)(N+2)^{3}}$$

What happens if we try a different prior?

Let's try with a linear prior

$$p(\theta) = 2\theta$$

$$p(\theta \mid n, N) = \frac{P(n \mid \theta, N)}{\int_{0}^{1} P(n \mid \theta', N) \cdot p(\theta') d\theta'} \cdot p(\theta)$$

$$= \frac{\binom{N}{n}(1-\theta)^{N-n}\theta^{n}}{\int_{0}^{1}\binom{N}{n}(1-\theta')^{N-n}\theta'^{n} \cdot 2\theta' d\theta'} \cdot 2\theta = \frac{(1-\theta)^{N-n}\theta^{n+1}}{\int_{0}^{1}(1-\theta')^{N-n}\theta'^{n+1} d\theta'}$$

$$p(\theta)$$
2.0
1.5
1.0
0.5
0.0
0.0
0.2
0.4
0.6
0.8
1.0
$$\theta$$

$$= \frac{(1-\theta)^{N-n} \theta^{n+1}}{\int_{-1}^{1} (1-\theta')^{N-n} \theta'^{n+1} d\theta'}$$

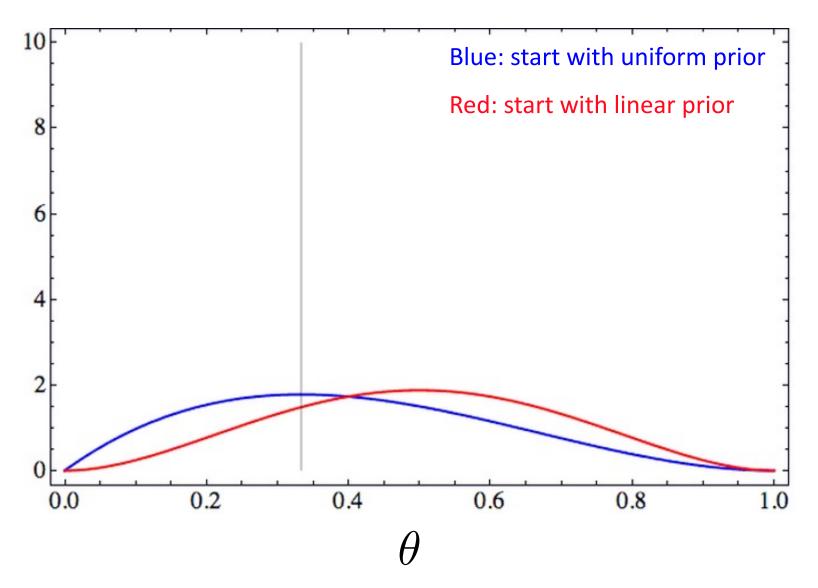
$$p(\theta \mid n, N) = \frac{(N+2)!}{(n+1)!(N-n)!} (1-\theta)^{N-n} \theta^{n+1}$$

$$\langle \theta \rangle = \int_{0}^{1} p(\theta \mid n, N) \, \theta d\theta = \frac{(N+2)!}{(n+1)!(N-n)!} \int_{0}^{1} (1-\theta)^{N-n} \, \theta^{n+2} \, d\theta$$

$$= \frac{(N+2)!}{(n+1)!(N-n)!} B(n+3, N-n+1)$$

$$= \frac{(N+2)!}{(n+1)!(N-n)!} \frac{(n+2)!(N-n)!}{(N+3)!}$$

$$= \frac{n+2}{N+2} \to \frac{n}{N}$$



Taking few coin throws, the posterior from the linear prior is considerably biased. The bias disappears when the number of coin throws is large.

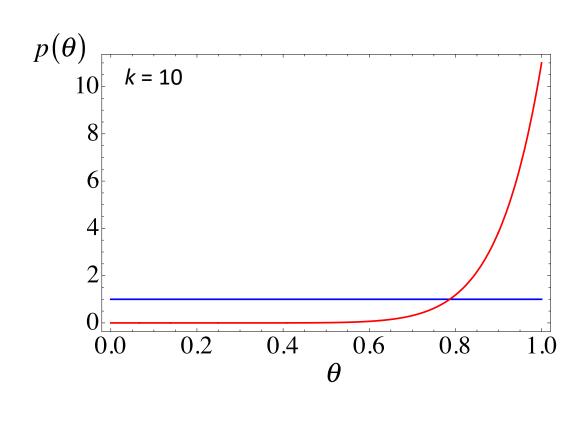
Now we try with a very non-uniform prior

We take

$$p(\theta) = (k+1)\theta^k; \qquad k \gg 1$$

$$p(\theta \mid n, N) = \frac{p(n \mid \theta, N)}{\int_{0}^{1} P(n \mid \theta', N) \cdot p(\theta') d\theta'} \cdot p(\theta)$$

$$= \frac{\binom{N}{n}(1-\theta)^{N-n}\theta^{n}}{\int_{0}^{1}\binom{N}{n}(1-\theta')^{N-n}\theta'^{n} \cdot (k+1)\theta'^{k} d\theta'} \cdot (k+1)\theta^{k} = \frac{(1-\theta)^{N-n}\theta^{n+k}}{\int_{0}^{1}(1-\theta')^{N-n}\theta'^{n+k} d\theta'}$$



$$\frac{1}{d\theta'} \cdot (k+1)\theta^k = \frac{(1-\theta)^{N-n} \theta^{n+k}}{\int_0^1 (1-\theta')^{N-n} \theta'^{n+k} d\theta'}$$

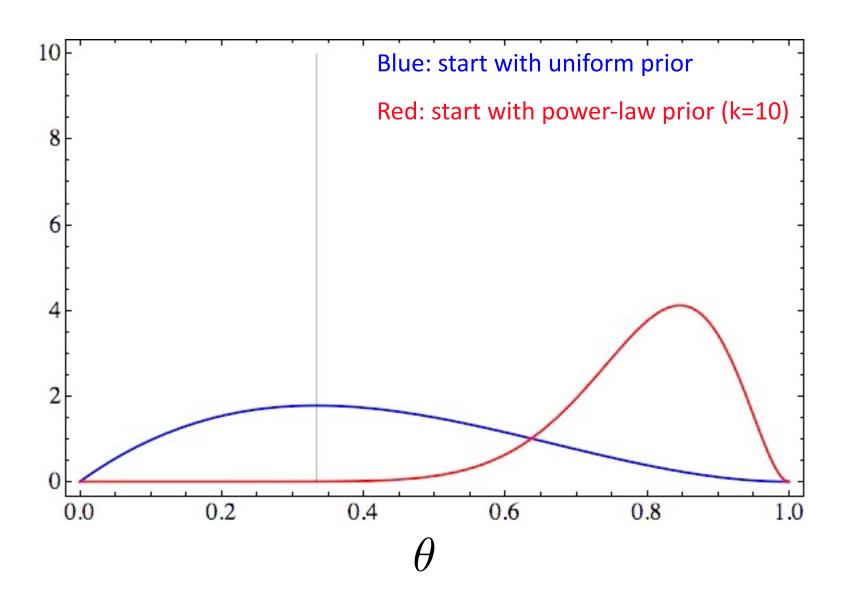
$$p(\theta \mid n, N) = \frac{(N+k+1)!}{(n+k)!(N-n)!} (1-\theta)^{N-n} \theta^{n+k}$$

$$\langle \theta \rangle = \int_{0}^{1} p(\theta \mid n, N) \, \theta d\theta = \frac{(N+k+1)!}{(n+k)!(N-n)!} \int_{0}^{1} (1-\theta)^{N-n} \, \theta^{n+k+1} \, d\theta$$

$$= \frac{(N+k+1)!}{(n+k)!(N-n)!} B(n+k+2, N-n+1)$$

$$= \frac{(N+k+1)!}{(n+k)!(N-n)!} \cdot \frac{(n+k+1)!(N-n)!}{(N+k+2)!}$$

$$= \frac{n+k+1}{N+k+2} \to \frac{n}{N}$$



In this case, initial bias due to the prior is very large.

Note on posterior distributions:

the relationship between binomial distribution and beta function is quite important and common, and corresponds to the formal definition of the Beta distribution:

$$B(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$$

There are other important dualities between distributions. This topic is discussed in depth in

J. M. Bernardo: Reference Posterior Distributions for Bayesian Inference, J. R. Statist. Soc. B 41 (1979), 113

Lessons learned:

1. The prior information is not neutral, a careful choice of the prior distribution is a necessity.

Question: how do we choose a prior?

2. If we want to keep all possibilities alive, we must heed the Cromwell's rule: "Prior probabilities 0 and 1 should be avoided" (Lindley, 1991)

The reference is to Oliver Cromwell's phrase:

I beseech you, in the bowels of Christ, think it possible that you may be mistaken.

 Convergence as the dataset size grows seems to be granted, however it may be very slow with a bad choice of prior distribution

Question: is convergence really granted???

The Bernstein-Von Mises theorem

- The theorem that grants convergence under very weak hypotheses is the Bernstein-Von Mises theorem.
 The theorem states that a posterior distribution converges in the limit of infinite data to a multivariate normal distribution centered at the maximum likelihood estimator with covariance matrix given by the normalized Fisher matrix.
- Convergence can only be defined with respect to a frequentist approach (this requires repeated, independent tests of the experimental procedure).
- In the case of nonparametric statistics and for certain probability spaces, the Bernstein-von Mises theorem usually fails.

Maximum a posteriori (MAP) estimate – MAP is not mean value!

Consider the case with a uniform prior: from the posterior distribution

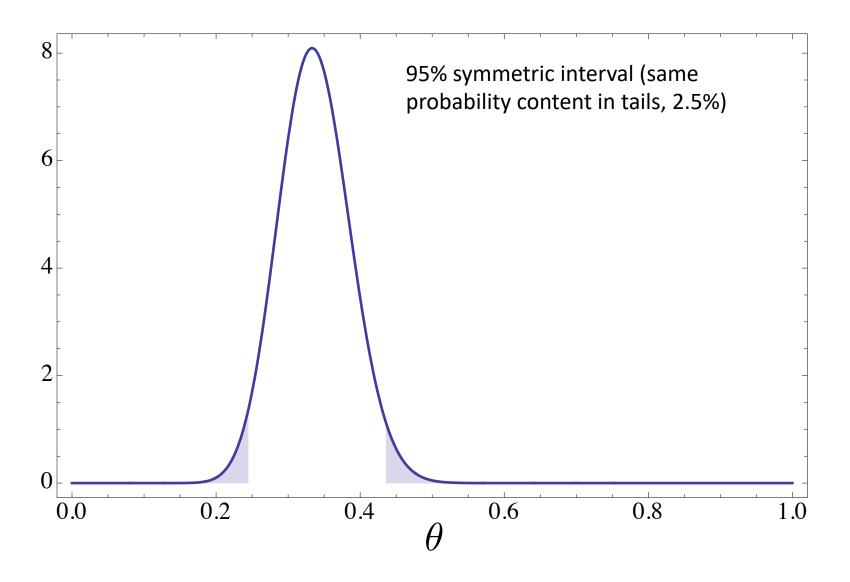
$$p(\theta \mid n, N) = \frac{(N+1)!}{n!(N-n)!} (1-\theta)^{N-n} \theta^{n}$$

we easily find that the posterior pdf is maximized by the parameter value

$$\theta = n/N$$

which is the unbiased estimate of the parameter (unlike the mean value!)

Credible intervals (case of initial uniform prior), the Bayesian analog of confidence intervals.



Example: analysis of a decision problem (Skilling 1998)

Let T be the temperature of a liquid which can be either water or ethanol. We use the temperature data to discriminate between water and ethanol.

- 1. We suppose first that the liquid is water: then we take a uniform prior distribution for T, between $0~^{\circ}C$ and $100~^{\circ}C$
- 2. The experimental apparatus and the measurement process is defined by the likelihood function:

P(D|T,water,I).

We assume that measurements are uniformly distributed within a range ± 5 °C. Therefore:

 $P(D|T,water,I) = 0.1 (°C)^{-1}$ in the interval [T-5°C,T+5°C], and zero elsewhere.

3. We take a single measurement $D = -3^{\circ}C$.

4. The evidence p(D) is*

$$p(D|\text{water}, I) = \int_{T} p(D|T, \text{water}, I) p(T) dT$$

$$= \int_{0^{\circ}\text{C}}^{2^{\circ}\text{C}} \frac{(^{\circ}\text{C})^{-1}}{10} \frac{(^{\circ}\text{C})^{-1}}{100} dT(^{\circ}\text{C}) = 0.002(^{\circ}\text{C})^{-1}$$

5. Using Bayes' theorem we find

$$p(T|D, \text{water}, I) = \frac{p(D|T, \text{water}, I)}{p(D, \text{water}, I)} p(T|\text{water}, I) = \frac{0.1(^{\circ}\text{C})^{-1}}{0.002(^{\circ}\text{C})^{-1}} 0.01(^{\circ}\text{C})^{-1}$$
$$= 0.5(^{\circ}\text{C})^{-1} \quad (0^{\circ}\text{C} < T < 2^{\circ}\text{C})$$

^{*} notice that in this case the likelihood is a pdf: the reason is that D is a continuous variable

Now suppose that the liquid is ethanol, so that the temperature range is - 80°C<T<80°C

- 1. $p(T) = (160^{\circ}\text{C})^{-1} \text{ in } -80^{\circ}\text{C} < T < 80^{\circ}\text{C}.$
- 2. $p(D \mid T, \text{ ethanol}, I) = 0.1 \, (^{\circ}\text{C})^{-1} \, \text{in } [T-5^{\circ}\text{C}, T+5^{\circ}\text{C}], \text{ and zero elsewhere.}$
- 3. We take a single measurement D = -3°C.
- 4. The evidence $p(D \mid \text{ethanol}, I)$ is

$$p(D|\text{ethanol}, I) = \int_{T} p(D|T, \text{ethanol}, I)p(T|\text{ethanol}, I)dT = \int_{-8^{\circ}\text{C}}^{2^{\circ}\text{C}} \frac{(^{\circ}\text{C})^{-1}}{10} \frac{(^{\circ}\text{C})^{-1}}{160} dT(^{\circ}\text{C}) = 0.00625(^{\circ}\text{C})^{-1}$$

5. Using Bayes' theorem, we find

$$p(T|D, \text{ethanol}, I) = \frac{p(D|T, \text{ethanol}, I)}{p(D, \text{ethanol}, I)} p(T|\text{ethanol}, I) = \frac{0.1(^{\circ}\text{C})^{-1}}{0.00625(^{\circ}\text{C})^{-1}} \frac{1}{160} (^{\circ}\text{C})^{-1}$$
$$= 0.1(^{\circ}\text{C})^{-1} \quad (-8^{\circ}\text{C} < T < 2^{\circ}\text{C})$$

- Here we only wish to discriminate between water and ethanol and we do not care much about temperature.
- Temperature is a nuisance variable, one that can be dispensed with.
- Usually, nuisance variable are eliminated by integration. In this specific case we have already carried out part of the work by calculating the evidences, which can be considered as marginalized likelihoods.

Assuming a uniform prior for the water-ethanol choice, we can discriminate between water and ethanol:

$$P_{water} = P_{ethanol} = 0.5$$

With this prior assumption we find:

$$P(\text{water}|D, I) = \frac{p(D|\text{water}, I)}{p(D|\text{water}, I)P(\text{water}|I) + p(D|\text{ethanol}, I)P(\text{ethanol}|I)} P(\text{water}|I)$$

$$= \frac{p(D|\text{water}, I)}{p(D|\text{water}, I) + p(D|\text{ethanol}, I)}$$

and the ratio of the posteriors is given by the Bayes' factor

$$\frac{P(\text{water}|D,I)}{P(\text{ethanol}|D,I)} = \frac{p(D|\text{water},I)}{p(D|\text{ethanol},I)}$$

We found earlier that

$$p(D|\text{water}, I) = 0.002(^{\circ}C))^{-1}$$

 $p(D|\text{ethanol}, I) = 0.00625(^{\circ}C))^{-1}$

therefore, the Bayes factor is

$$B = \frac{P(\text{water}|D, I)}{P(\text{ethanol}|D, I)} = \frac{p(D|\text{water}, I)}{p(D|\text{ethanol}, I)} = 3.125$$

and we conclude that the observation favors the hypothesis of liquid ethanol.

$\log_{10}(B)$	B	Evidence support	
0 to 1/2	1 to 3.2	Not worth more than a bare mention	
1/2 to 1	3.2 to 10	Substantial	
1 to 2	10 to 100	Strong	
> 2	> 100	Decisive	

Interpretation of the Bayes factor B as evidence support according to Jeffreys (1961), in half units on a scale of log_{10} .

In the case of the water-ethanol problem, and according to Jeffreys' categories, the preference for ethanol is "not worth more than a bare mention", although it happens to be in the upper part of the range.

In 1995, Kass and Raftery noted that it can be useful to consider twice the natural logarithm of the Bayes factor, which is on the same scale as the familiar deviance and likelihood ratio test statistics and therefore proposed a different interpretation

$2 \log_e(B_{10})$	(B_{10})	Evidence against H_0
0 to 2	1 to 3	Not worth more than a bare mention
2 to 6	3 to 20	Positive
6 to 10	20 to 150	Strong
>10	>150	Very strong

$$B_{10} = \frac{P(D|H_1)}{P(D|H_0)}$$

Here 1 denotes the alternative hypothesis and 0 the null hypothesis

Example of Bayesian parameter estimation: analytical straight-line fit

$$y_i = ax_i + b + \varepsilon_i$$

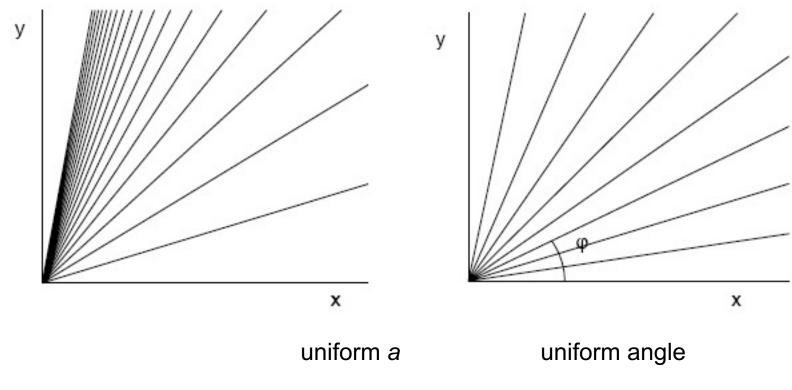
- y_i measured value
- \mathcal{X}_i independent variable ("exactly" known)
- a,b fit parametes: eventually we expect to find pdf's for these parameters
- \mathcal{E}_i statistical uncertainty

the statistical measurement uncertainty has a Gaussian distribution
$$\langle \varepsilon_i \rangle = 0; \quad \langle \varepsilon_i^2 \rangle = \sigma^2$$

likelihood

$$p(\mathbf{y} \mid a, b, \mathbf{x}, \boldsymbol{\sigma}) = (2\pi\sigma^2)^{-N/2} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - ax_i - b)^2 \right]$$

prior angular distribution



Should we take a uniform *a* or a uniform angle?

Edoardo Milotti - Bayesian Methods - May 2022

The uniform distribution of a introduces an angular bias. The least informative choice corresponds to a uniform angular distribution

$$p_{\varphi}(\varphi) = \frac{1}{\pi}; \quad -\frac{\pi}{2} \le \varphi < \frac{\pi}{2}$$

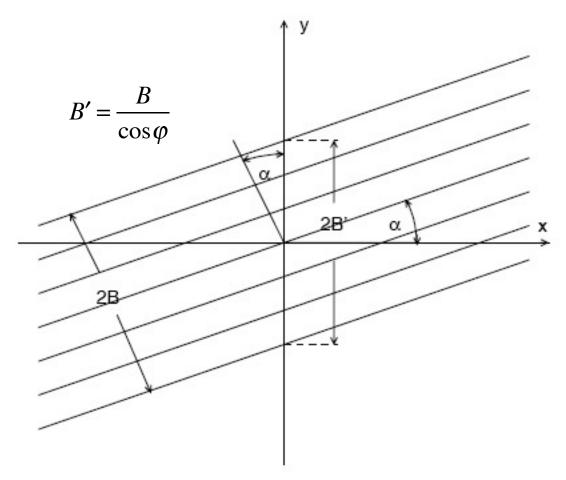
and we obtain the distribution of a with the transformation method:

$$a = \tan \varphi$$

$$\Rightarrow p_{\varphi}(\varphi)d\varphi = p_{a}(a)da = p_{a}(a)d(\tan\varphi) = p_{a}(a)\sec^{2}\varphi d\varphi$$

$$\Rightarrow p_a(a) = \frac{1}{\pi \sec^2 \varphi} = \frac{1}{\pi (1 + \tan^2 \varphi)} = \frac{1}{\pi (1 + a^2)}$$

prior distribution of b: an improper uniform distribution, related to the distribution of a



$$p(b \mid a = 0) = \frac{1}{2B}; \quad p(b \mid a) = \frac{1}{2B'} = \frac{\cos \varphi}{2B} = \frac{1}{2B} \cdot \frac{1}{\sqrt{1 + a^2}}$$

finally, we obtain the posterior from Bayes' theorem

$$p(a,b|\mathbf{y},\mathbf{x},\boldsymbol{\sigma}) = \frac{p(\mathbf{y}|a,b,\mathbf{x},\boldsymbol{\sigma})}{\int_{-\infty}^{+\infty} da} \int_{-B/\cos\varphi}^{B/\cos\varphi} db \ p(\mathbf{y}|a,b,\mathbf{x},\boldsymbol{\sigma}) \cdot p(a,b)$$

where the prior is

$$p(a,b) = p(b \mid a) \cdot p(a) = \left(\frac{1}{2B} \cdot \frac{1}{\sqrt{1+a^2}}\right) \left(\frac{1}{\pi(1+a^2)}\right)$$

$$\approx \frac{1}{(1+a^2)^{3/2}}$$

therefore:

$$p(a,b|\mathbf{y},\mathbf{x},\sigma) = \frac{\exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(y_{i}-ax_{i}-b)^{2}\right]}{\left\{\int_{-\infty}^{+\infty}da\int_{-B/\cos\varphi}^{B/\cos\varphi}db\exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(y_{i}-ax_{i}-b)^{2}\right]\cdot\frac{1}{\left(1+a^{2}\right)^{3/2}}\right\}\cdot\frac{1}{\left(1+a^{2}\right)^{3/2}}}$$

$$\approx \frac{\frac{1}{(1+a^2)^{3/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - ax_i - b)^2\right]}{\left\{\int_{-\infty}^{+\infty} \frac{da}{(1+a^2)^{3/2}} \int_{-\infty}^{+\infty} db \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - ax_i - b)^2\right]\right\}}$$

This expression has a partly Gaussian structure, and we rearrange the quadratic expression in the exponential.

$$\begin{split} \sum_{i=1}^{N} (y_{i} - ax_{i} - b)^{2} &= \sum_{i=1}^{N} \left[(y_{i} - ax_{i})^{2} - 2b(y_{i} - ax_{i}) + b^{2} \right] \\ &= \sum_{i=1}^{N} (y_{i} - ax_{i})^{2} - 2b \sum_{i=1}^{N} (y_{i} - ax_{i}) + Nb^{2} \\ &= N \left\{ \left[b^{2} - 2b \frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) + \left(\frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) \right)^{2} \right] + \frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i})^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) \right)^{2} \right\} \\ &= N \left\{ \left(b - \frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) \right)^{2} + \frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i})^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) \right)^{2} \right\} \\ &= N \left(b - \frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) \right)^{2} + N \left(\frac{1}{N} \sum_{i=1}^{N} y_{i}^{2} - 2a \frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i} + a^{2} \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} \right) - N \left(\frac{1}{N} \sum_{i=1}^{N} y_{i} - a \frac{1}{N} \sum_{i=1}^{N} x_{i} \right)^{2} \\ &= N \left(b - \frac{1}{N} \sum_{i=1}^{N} (y_{i} - ax_{i}) \right)^{2} + N \left(var y - 2a cov(x, y) + a^{2} var x \right) \end{split}$$

therefore, the normalization integral becomes

$$\int_{-\infty}^{+\infty} \frac{da}{(1+a^2)^{3/2}} \exp\left[-\frac{N}{2\sigma^2} \left(\text{var } y - 2a\cos(x,y) + a^2 \text{ var } x\right)\right]_{-\infty}^{+\infty} db \exp\left[-\frac{N}{2\sigma^2} \left(b - \frac{1}{N} \sum_{i=1}^{N} \left(y_i - ax_i\right)\right)^2\right]$$

$$= \sqrt{\frac{2\pi\sigma^2}{N}} \int_{-\infty}^{+\infty} \frac{da}{(1+a^2)^{3/2}} \exp\left[-\frac{N}{2\sigma^2} \left(\text{var } y - 2a\cos(x,y) + a^2 \text{ var } x\right)\right]$$

For the next step we use Laplace's method (this is the saddle-point method – also called the method of steepest descent in the real domain) for the evaluation of the integral of a unimodal function

$$Z = \int_{-\infty}^{+\infty} p(x)dx = \int_{-\infty}^{+\infty} e^{\Phi(x)}dx$$

where

$$\Phi(x) = \ln p(x) \approx \ln p(x_0) - \frac{1}{2s}(x - x_0)^2$$

where x_0 is the mode and

$$\frac{1}{s} = -\frac{\partial^2 \ln p(x)}{\partial x^2}$$

therefore

$$Z \approx \int_{-\infty}^{+\infty} p(x_0)e^{-\frac{(x-x_0)^2}{2s}} dx = p(x_0)\sqrt{2\pi s}$$

Approximate integration of the remaining integral with Laplace's method

$$\int_{-\infty}^{+\infty} \frac{da}{\left(1+a^2\right)^{3/2}} \exp\left[-\frac{N}{2\sigma^2} \left(\operatorname{var} y - 2a\operatorname{cov}(x,y) + a^2\operatorname{var} x\right)\right]$$

Taking the logarithm of the integrand, we find its maximum and we Taylor-expand about the maximum

$$\Phi(a) = -\frac{3}{2}\ln(1+a^2) - \frac{N}{2\sigma^2}(\text{var } y - 2a\cos(x,y) + a^2 \text{ var } x)$$

$$\Phi(a) = -\frac{3}{2}\ln(1+a^2) - \frac{N}{2\sigma^2}(\text{var } y - 2a\cos(x,y) + a^2 \text{ var } x)$$

$$\frac{d\Phi}{da} = -\frac{3a}{1+a^2} + \frac{N}{\sigma^2} (\cos(x,y) - a \operatorname{var} x) = 0$$
 we find *a* from this cubic equation

note that when *N>>*1 the peak is at position $a_0 \approx \frac{\text{cov}(x,y)}{\text{var } x}$

We use the Newton-Raphson method for the solution of the cubic equation:

$$f(a_0) = -\frac{3a_0}{1+a_0^2}$$

$$f'(a_0) = -3\frac{1-a_0^2}{(1+a_0^2)^2} - \frac{N}{\sigma^2} \text{var } x \approx -\frac{N}{\sigma^2} \text{var } x$$

then

$$\delta a_1 = -\frac{3a_0}{1 + a_0^2} \frac{\sigma^2}{N \operatorname{var} x} \qquad a_1 = a_0 - \frac{3a_0}{1 + a_0^2} \frac{\sigma^2}{N \operatorname{var} x}$$
 (1)

Now, to complete the expansion, we must evaluate the second derivative at a_1 :

$$\frac{d^2\Phi}{da^2} = -3\frac{1 - a_1^2}{(1 + a_1^2)^2} - \frac{N}{\sigma^2} \text{var } x = -\frac{1}{\sigma_1^2}$$
 (2)

$$\Phi(a) \approx \Phi(a_1) + \frac{1}{2} \frac{d^2 \Phi}{da^2} \bigg|_{a_1} (a - a_1)^2 = \Phi(a_1) - \frac{(a - a_1)^2}{2\sigma_1^2}$$

we find this by using equations (1) and (2)

Now we complete the evaluation of the integral

$$\int_{-\infty}^{+\infty} \frac{da}{(1+a^2)^{3/2}} \exp\left[-\frac{N}{2\sigma^2} \left(\operatorname{var} y - 2a \operatorname{cov}(x,y) + a^2 \operatorname{var} x\right)\right]$$

$$= \int_{-\infty}^{+\infty} \exp\left[\Phi(a)\right] da$$

$$\approx \int_{-\infty}^{+\infty} \exp\left[\Phi(a_1) - \frac{(a-a_1)^2}{2\sigma_1^2}\right] da = \sqrt{2\pi\sigma_1^2} \exp\left[\Phi(a_1)\right]$$

and finally, we find the posterior distribution:

$$p(a,b \mid \mathbf{y}, \mathbf{x}, \sigma) \propto \frac{1}{(1+a^2)^{3/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - ax_i - b)^2\right]$$

$$\approx \exp\left[-\Phi(a_1) - \frac{(a-a_1)^2}{2\sigma_1^2}\right] \exp\left[-\frac{N}{2\sigma^2} \left(b - \frac{1}{N} \sum_{i=1}^{N} (y_i - a_1 x_i)\right)^2\right]$$

From the posterior

$$p(a,b|\mathbf{y},\mathbf{x},\sigma) \propto \frac{1}{(1+a^2)^{3/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - ax_i - b)^2\right]$$

$$\approx \exp\left[-\Phi(a_1) - \frac{(a-a_1)^2}{2\sigma_1^2}\right] \exp\left[-\frac{N}{2\sigma^2} \left(b - \frac{1}{N} \sum_{i=1}^{N} (y_i - a_1x_i)\right)^2\right]$$

we see that

$$\langle a \rangle = a_1; \quad \text{var } a = \sigma_1^2;$$

 $\langle b \rangle = \frac{1}{N} \sum_{i=1}^{N} (y_i - a_1 x_i); \quad \text{var } b = \frac{\sigma^2}{N}$