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Prior distributions

The choice of prior distribution is an important aspect of Bayesian inference
e prior distributions are one of the main targets of frequentists: how much do posteriors differ when we

choose different priors?

* there are two main “objective” methods for the choice of priors

1. Jeffreys' method
2. The Maximum Entropy Method
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Random variable transformations and prior distributions

pe(2)dz = ps (2(y)) 2—9; dy = py(y)dy
S py(y) = pe (2(y)) j—j

How can we "objectively" choose a prior distribution???
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Bertrand’s paradox and the ambiguities of probability
models

Bertrand’s paradox goes as follows:
“consider an equilateral triangle inscribed inside a circle, and
suppose that a chord is chosen at random. What is the probability

that the chord is longer than a side of the triangle?”

(Bertrand, 1889)

Edoardo Milotti - Bayesian Methods - May 2022



Solution: we take two random points on the circle (radius R), then we rotate the
circle so that one of the two points coincides with one of the vertices of the
inscribed triangle. Thus a random chord is equivalent to taking the first point that
defines the chord as one vertex of the triangle while the other is taken “at
random” on the circle. Here “at random” means that it is uniformly distributed on
the circumference. Then only those chords that cross the opposite side of the
triangle are actually longer than each side. Since the subtended arc is 1/3 of the
circumference, the probability of drawing a random chord that is longer than one
side of the triangle is 1/3.
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Solution 2: we take first a random radius, and next we choose a random point on
this random radius. Then, we take the chord through this point and perpendicular
to the radius. When we rotate the triangle so that the radius is perpendicular to
one of the sides, we see that half of the points give chords longer than one side of
the triangle, therefore the probability is 1/2.
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Solution 3: we take the chord midpoints located inside the circle inscribed in the
triangle, and we obtain chords that are longer than one side of the triangle. Since
the ratio of the areas of the two circles is 1/4, we find that now the probability of
drawing a long chord is just 1/4.

At least 3 different “solutions”: which one is correct, and why?
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Now we widen the scope of the problem and we consider the

distribution of chords in the plane
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Distribution 1: distribution of chords (left panel) and of midpoints (right panel) in
the first solution of Bertrand’s paradox (the left panel shows 400 chords, the right
panel shows 100000 midpoints).
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Distribution 2: Distribution of chords (left panel) and of midpoints (right panel) in
the second solution of Bertrand’s paradox (the left panel shows 400 chords, the
right panel shows 100000 midpoints).

In this case it is very easy to find the radial density function of chord centers,

since here we take first a random radius, and next we choose a random point (the
center) on this random radius.
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Distribution 3: Distribution of chords (left panel) and of midpoints (right panel) in
the third solution of Bertrand’s paradox (the left panel shows 400 chords, the
right panel shows 100000 midpoints). Notice that while the distribution of
midpoints is uniform, the distribution of the resulting chords is distinctly non-
uniform.
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Hidden assumptions (Jaynes):

rotational invariance

T oL Iy, S RIS /“:S’Zv': : N NN . .
\“\!:2, S TR N (D /sy scale invariance
: l X * translational invariance
Now let

be the probability density of chord

centers
r, 0

AT N
g
k\\\«‘y\ 7478V

i

N\
= UK
' ;<‘.1/'\{,7@7\§"~.&

\ s

Edoardo Milotti - Bayesian Methods - May 2022



Rotational invariance

In a reference frame which is at an angle o with respect to the original
frame, i.e., the new angle ¢’ = 6 — «, the distribution of centers is
given by a different distribution function g(r,6’) = g(r.0 — a) .
Since we require rotational invariance

f(r,0) =g(r,0 —a)

with the condition g(r, #)|a=0 = f(r, #), and this must hold for every
angle «, so the only possibility is that there is no dependence on 6,

and f(r,0) = g(r,0) = f(r).
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Scale invariance

When we consider a circle with radius R, the normalization of the distribution f(r) is

given by the integral
27 R R
/ / f(r)rdrdf = 27r/ f(r)yrdr =1
0 0 0

The same distribution induces a similar distribution /(r) on a smaller concentric
circle with radius aR (0 < a < 1), such that A(r) is proportional to f(r), i.e.,
h(r) = Kf(r), and

ak ak aR
= 27r/ h(u)udu = 27r/ Kf (u)udu = 27rK/ f(u)udu
0 0 0

1.é:; ]
K™ =2m / f(u)udu
0
and -
flr)= 27rh(r)/ f(u)udu
0

inside the smaller circle.
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Now we invoke the assumed scale invariance: the probability of
finding a center in an annulus with radii r and r + dr in the original
circle, must be equal to the probability of finding a center in the
scaled down annulus,

h(ar)(ar)d(ar) = f(r)rdr

and therefore

a*h(ar) = f(r)
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Equation
a*h(ar) = f(r)

can also be rewritten in the form

and inserting this into equation

aR
flr) = 271'/1(}‘)‘/0 f(u)udu

we find

aR
a*f(ar) = 27rf(r)/0 f(u)udu
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We solve equation
ak
a*f(ar) = 2xf(r) / f(u)udu
0

taking first its derivative with respect to a: the relation that we find must hold for all
a’s, and therefore also for ¢ = 1 (no scaling), and we find the differential equation

if'(r) = (27Rf(R) — 2) £(r)
ic..

if'(r) = (¢ = 2)f(r)

where the constant ¢ = 27R*f(R) is unknown. However, we can still solve the
equation and find

f(r) = Ar12

The constant A is easy to find from the normalization condition: A = ¢/27R?, and
therefore
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Translational invariance

Geometrical construction for the discussion of translational invariance. The
original circle (black) is crossed by a straight line (red) which defines the chord.
The translated circle is shown in blue.

Edoardo Milotti - Bayesian Methods - May 2022

19



This circle is displaced by the amount b, and the new radius and angle
that define the midpoint of the chord are

r' = |r — bcos 0|
¢ =6 (ifr >bcosf) or 0 =60+x (if r <bcosh)
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Now consider a region I" surrounding the midpoint in the original
circle, which is transformed into a region I by the translation. The
probability of finding a chord with the midpoint in the region I is

]
e qrq 3 q q—1
/Ff(r)rdrdﬁ = /F e drdf) = 5—Ra FI drdt)

Likewise, the same probability for the translated circle is

q nNg—1 3.1 apn! q —1
r dr'df’ = r—bcos|9 drdf 3
2wR4 /F,( ) 2mRY /1“ | | 3)
where the Jacobian of the transformation is 1. Equating these
expressions, we see that the integrand must be a constant, and
therefore ¢ = 1, and

|
fr0) = 27 Rr

(r < R: 0< < 2n)
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Therefore

Fr,0) = ) = Or
= (normalization) 1= / f(r)2nrdr = 2nCR
C

1

= )= 21r R
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Using this distribution, we find that the probability of finding a
midpoint inside the circle with radius R/2 — i.e., the probability of
finding a chord longer than the side of the triangle in Bertrand’s
paradox — is

27 R/2 R/2 1 l
d ‘d — 2 d‘ = =
/0 0 . f(r,0)rdr ’/T/O - Tdr = 3

which corresponds to the second alternative in the previous discussion
of Bertrand’s paradox.

Lesson drawn from Bertrand’s paradox:
probability models depend on physical assumptions, they are not

God-given. We define the elementary events based on real-world
constraints, derived from our own experience.
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A way forward to "objective" priors: Jeffreys' priors

~ An invariant form for the prior probability in
estimation problems

By Harorp J EFFREYS, F.R.S.

(Received 23 November 1945)

It is shown that a certain differential form depending on the values of the parameters, in a
law of chance is invariant for all transformations of the parameters when the law is differen-
tiable with regard to all parameters. For laws containing a location and a scale parameter
a form with a somewhat restricted type of invariance is found even when the law is not
everywhere differentiable with regard to the parameters. This form has the properties
required to give a general rule for stating the prior probability in a large class of estimation
problems.
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Starting remark: here we concentrate on a problem of parametric statistics.

The different hypotheses (and therefore, the different parameters) are represented by
different pdf's (a parametric family of pdf's)

p(z|0)
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Step 1: Bartlett identities for a parametric pdf family

E

d

{5’lnp(az\6’)_
00

0% Inp(x|0)

00?

(

Olnp(z|0)

00

v




Step 2: a parameter-dependent Likelihood is a family of pdf's that represent the
distribution of the data, given the value of the parameter(s).

X 1 1
var|6(D)] > =
o | (9 L(D.60) | g9 In L(D, 6o)
00, 063

0o 0(D)



Step 3: definition of Fisher Information. A very concentrated pdf is very informative.
Therefore, the smaller the variance, the greater the "information".

R 1 1
var|f(D)] > =
o | (2LD.60)\?] @ I LD, %)
06, 005
B dlnp(z,0)\° B 0% Inp(x,0)
16) =E ( o0 ) }“E 562




Step 4: it can be shown that the Fisher Information is a local (and symmetrical) form of the
Kullback-Leibler divergence (see below)

2
062 10

Ikt (p(x‘@),p(x‘@ + 6)) _ _% [(9 1np(:l?|9)] 2 — 1



Step 5: the KL divergence is invariant with respect to random variable transformations, and
therefore also to parameter transformations. From the definition of KL divergence, and from
the transformation formula for pdf's we find

[ nm (2800~ [ @ Al | g,

Therefore, the Fisher Information is also invariant with respect to parameter transformations.
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Step 6: from the equation that relates KL divergence and Fisher Information, we find a
corresponding pdf:

1_[0%1lnp(x|0 1
It (0(al9).p(al + ) = — B | TP o 2y

this means that for small fluctuations of the parameter, Fisher's information changes
qguadratically. Then, we recover linear changes when we take the square root.

Finally, by defining the pdf

f(0) ~/1(0)

we obtain a pdf that is invariant with respect to parameter transformations and is measured
in “inverse parameter units” (as it should be for a pdf; this can be seen from the formula
above, and from the fact that the KL divergence is dimensionless).

We apply this to likelihoods, that define parametric pdf families
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Example: a simple Gaussian Likelihood for n datapoints

HDlk) = H m Xp (‘

(%0 — u)2>

202

B wIOw~) (_ o <xn2;2u>2)

n

» I(n) = E [— o IHL(DW] ~ constant

ou?
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Example: a simple Gaussian Likelihood for n datapoints (ctd.)

(xn T ,LL)2

HDlk) = H m Xp (‘

202

» I(0) = E [_ > 1naLO(2D!0)
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Example: Poisson distribution
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A lesson learned from Jeffreys priors

Jeffreys priors are tuned to the Likelihood, but
doesn't this sound strange? Shouldn't the prior
information be tied to the prior distribution
alone?

NO, the Likelihood is also constructed using

prior information (obviously!). So, in a sense,
Likelihood and the selected priors are related.
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Harold Jeffreys
(1891-1989)
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A short refresher on (Boltzmann’s) entropy in statistical mechanics

* consider a system where states n are occupied by N, identical particles
(n, n=1, ..., M).

* the number of ways to fill these states is given by

N!
N,IN,!...N,,!
* then Boltzmann’s entropy is
k,lnQ 1 N 1
S, =k, InQ=k, an!Nz!...NMINkB (NlnN—N)—;(Nn nN,—N,)

= kB(NlnN—Zan (Inp, +lnN)j =k, ). D, In-
n n pn



1
Sp = kBZpi In—
P;

/ |
\ probability of physical states

Boltzmann’s entropy is just like
Shannon’s entropy

this logarithmic function is
the information carried by
the i-th symbol
S, = Epi log,
i Pi

\ probability of source symbols

/

Shannon’s entropy is the average
information output by a source of
symbols
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Examples:

e just two symbols, 0 and 1, same source probability

1 1

/N

there are 2

equal terms average information
conveyed by each
symbol
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1 bit

\

the result is given in
pseudounit “bits” (for
natural logarithms this is
“nats”)
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e just two symbols, 0 and 1, probabilities %4 and %, respectively

1 1 3 3 .
S[:—Zlog24 4log21%0.81 bit

8 symbols, equal probabilities

1 1 .
SI:—Z§IOg2§:10g28:3blt
1



The Shannon entropy is additive for independent sources.

If symbols are emitted simultaneously and independently by two sources, the joint
probability distribution is

p(j, k) = pi(j)p2(k)

and therefore the joint entropy is

Zp js k) logy p(j, k Zm )p2(k) logy[p1(7)p2 (k)]

= —Zpl ) log, p1(J sz ) logy pa (k)

:S1+52



The Shannon entropy is at a maximum for the uniform distribution.

This is an easy result that follows using one Lagrange multiplier to keep probability
normalization into account

N N N
S+>\Zpk; = —Zpk;logzpk +)\Zpk
k=1 k=1 k=1
1 N N
= “Tno Zpk Inpg + AZpk
N

all probabilities have the same

p] — eXp()\ 1I12 — ].) — ]_/N value

SIS
©n
+
>

(]
S
|
—_
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Edwin T. Jaynes (1922-1998), introduced the method of
maximum entropy in statistical mechanics: when we start
from the informational entropy (Shannon’s entropy) and we
use it to introduce Boltzmann’s entropy we obtain again the
whole of statistical mechanics by maximizing entropy.

In a sense, statistical mechanics also arises from a
comprehensive “principle of maximum entropy”.

http://bayes.wustl.edu/etj/etj.html
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Reprinted from THE Pnvsicar Review, Vol. 106, No. 4, 620-630, May 15, 1957
Printed in U. S. A.

Information Theory and Statistical Mechanics

E. T. JaynNEs
Department of Physics, Stanford University, Stanford, California

(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether
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or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.
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Here we apply the maximum entropy principle (MaxEnt) to solve problems and find prior
distributions ...

The kangaroo problem (Jaynes)

*Basic information: one third of all kangaroos has blue eyes, and one third is left-handed.

*Question: which fraction of kangaroos has both blue eyes and is left-handed?

left | ~left left | ~left left | ~left
blue 1/9 2/9 blue 0 1/3 blue 1/3 0
~blue | 2/9 4/9 ~blue | 1/3 1/3 ~blue 0 2/3

no correlation

maximum negative correlation

maximum positive correlation
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probabilities Dy, Pz D7 Pir

entropy (proportional to Shannon’s entropy)

1 1 1 1
S=p,In—+p-In—+p In—+p_In—

Pui Py Pyr Psr

constraints (3 constraints, 4 unknowns)
Pyt P;tp;+ Py =1
Py TPy = 1/3
Py T Py = 1/3
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entropy maximization with constraints

1 1 1 1
Sy = [sz In—+p. In—+p - In—+p_ ln—)
P Py Pyr DPyr

+;Ll(pbl TP T Pyr T P — 1)+ A, (pbl TPy — 1/3)+;L3(pbl TPy~ 1/3)

Dy = exp(—1+ﬂ~1 +A, +/13)
Py = exp(—1+7t1 +7L3)
p,r =exp(—1+4, +lz)
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Pr = Prr exp(/’t3)
\Py7 = D7 eXP()‘Q) = Py Py = PuDs7
\Pri = Ppr exp(/lz T ;{'3)

(pbl+p51+pbl_+p17:1 pb’_:pa:l/:s_pbl
pb£+pbz_:1/3 pH=1/3+pbz
. 5 5
pbz+p51=1/3 (1/3_pb1) = Pu/3+ Py,
PaPor = PPyt 1/9=2p,/3+ py = p,/3+
this solution coincides
1 2 4 with the least
— Py == Py = Py = — P = informative distribution
9 3 Y (no correlation)
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