
Introduction to Bayesian Methods - 4

Edoardo Milotti
Università di Trieste and INFN-Sezione di Trieste



Solution of underdetermined systems of equations

In this problem there are fewer equations than unknowns; the 
system of equations is underdetermined, and in general there is no 
unique solution. 

The maximum entropy method helps us find a reasonable solution, 
the least informative one (least correlations between variables)

Example:  

3x + 5y +1.1z = 10
−2.1x + 4.4y −10z = 1

x, y, z > 0( )
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S = − x
x + y + z

ln x
x + y + z

+ y
x + y + z

ln y
x + y + z

+ z
x + y + z

ln z
x + y + z

⎛
⎝⎜

⎞
⎠⎟

= − 1
x + y + z

x ln x + y ln y + z ln z − x + y + z( )ln x + y + z( )⎡⎣ ⎤⎦

Q = S + λ 3x + 5y +1.1z −10( ) + µ −2.1x + 4.4y −10z −1( )

∂Q
∂x

= −
ln x − ln x + y + z( )

x + y + z
+
x ln x + y ln y + z ln z − x + y + z( )ln x + y + z( )

x + y + z( )2
+ 3λ − 2.1µ

=
y + z( )ln x + y ln y + z ln z

x + y + z( )2
+ 3λ − 2.1µ = 0

3x + 5y +1.1z = 10
−2.1x + 4.4y −10z = 1

x, y, z > 0( )
this ratio can be taken to be a 
“probability”
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∂Q
∂x

=
y + z( )ln x + y ln y + z ln z

x + y + z( )2 + 3λ − 2.1µ = 0

∂Q
∂y

=
x ln x + x + z( )ln y + z ln z

x + y + z( )2 + 5λ + 4.4µ = 0

∂Q
∂z

=
x ln x + y ln y + x + y( )ln z

x + y + z( )2 +1.1λ −10µ = 0

10 = 3x + 5y +1.1z
1= −2.1x + 4.4y −10z

x = 0.606275;   y = 1.53742;   z =  0.449148;   
λ  = 0.0218739;   µ  = -0.017793
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this is an example of an “ill-posed” problem

the solution that we found is a kind of 

regularization of the ill-posed problem
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Finding priors with the maximum entropy method

S = pk ln
1
pkk

∑ = − pk ln pk
k
∑ Shannon entropy

entropy maximization when all information is missing, 
and normalization is the only constraint:

∂
∂pk

− pk ln pk
k
∑ + λ pk

k
∑ −1⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − ln pk +1( ) + λ = 0

pk = e
λ−1; pk

k
∑ = eλ−1

k
∑ = Neλ−1 =1 ⇒ pk =1 N
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entropy maximization when the mean is known µ

∂
∂pk

− pk ln pk
k
∑ + λ0 pk

k
∑ −1⎛

⎝⎜
⎞
⎠⎟
+ λ1 xk pk

k
∑ − µ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= − ln pk +1( ) + λ0 + λ1xk = 0

pk = e
λ0 +λ1xk −1;

incomplete 
solution... 

We must satisfy two constraints now ... 
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pk = e
λ0 +λ1xk −1

pk
k
∑ = eλ0 +λ1xk −1

k
∑ = eλ0 −1 eλ1xk

k
∑ = 1

xk pk
k
∑ = xke

λ0 +λ1xk −1

k
∑ = eλ0 −1 xke

λ1xk

k
∑ = µ

eλ0 −1 =
1
eλ1xk

k
∑

;
xke

λ1xk

k
∑

eλ1xk
k
∑

= µ

no analytic solution, 
only numerical 
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Example : the biased die
(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy Formalism; 
Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

1
6
1+ 2 + 3+ 4 + 5 + 6( ) = 21

6
= 3.5

mean value for a biased die

3.5 1+ ε( )
Problem: for a given mean value of the biased die, what is the probability distribution of 
each value? 
The mean value is insufficient information, and we use the maximum entropy method to 
find the most likely distribution (the least informative one).
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entropy maximization with the biased die:

∂
∂pk

− pk ln pk
k=1

6

∑ + λ0 pk
k=1

6

∑ −1⎛
⎝⎜

⎞
⎠⎟
+ λ1 kpk

k=1

6

∑ − 7
2
1+ ε( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= − ln pk +1( ) + λ0 + kλ1 = 0
pk = e

λ0+λ1k−1

pk
k=1,6
∑ = eλ0−1 eλ1k

k=1,6
∑ = 1

kpk
k=1,6
∑ = eλ0−1 keλ1k

k=1,6
∑ = 7

2
1+ ε( )

eλ0−1 = 1
eλ1k

k=1,6
∑ ;

kpk
k=1,6
∑

eλ1k
k=1,6
∑ = 7

2
1+ ε( )

we still have to satisfy the 
constraints ... 
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eλ0 −1 eλ1k
k=1,6
∑ = eλ0 −1 eλ1k

k=0,6
∑ −1

⎛
⎝⎜

⎞
⎠⎟
= eλ0 −1 1− e

7λ1

1− eλ1
−1

⎛
⎝⎜

⎞
⎠⎟
= 1

keλ1k
k=1,6
∑

eλ1k
k=1,6
∑

=
∂
∂λ1

ln eλ1k
k=1,6
∑ =

∂
∂λ1

ln eλ1 eλ1k
k=0,5
∑⎛

⎝⎜
⎞
⎠⎟

=
∂
∂λ1

λ1 + ln 1− e
6λ1( ) − ln 1− eλ1( )⎡⎣ ⎤⎦

= 1− 6e6λ1

1− e6λ1
+

eλ1

1− eλ1
=
7
2
1+ ε( )

The Lagrange multipliers are obtained from nonlinear equations, and we must use 
numerical methods 
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with a biased die we obtain skewed distributions. 

These are examples of UNINFORMATIVE PRIORS

numerical solution
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Entropy with continuous probability distributions
(relative entropy, Kullback-Leibler divergence)

S→ − p x( )dx⎡⎣ ⎤⎦ ln p x( )dx⎡⎣ ⎤⎦
a

b

∫ this diverges!

Sp |m = − pk ln
pk
mkk

∑ relative entropy

Sp |m = − p x( ) ln p x( )
m x( ) dxa

b

∫ this does not diverge!
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Mathematical aside on the Kullback-Leibler divergence

The obvious extension of the Shannon entropy to continuous distributions 

does not work, because it diverges. 

A solution is suggested again by statistical mechanics ... 

S =

Z +1

�1
p(x)dx log2

1

p(x)dx
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Boltzmann entropy with degeneracy number attached to each level

⌦ =
N !

N1!N2! . . . NM !
gN1
1 gN2

2 . . . gNM
M

ln⌦ = lnN !�
MX

k=1

lnNk! +
MX

k=1

Nk ln gk

= �N
MX

k=1

(Nk/N) ln
(Nk/N)

gk

= �N
MX

k=1

pk ln
pk
gk

IKL =
MX

k=1

pk ln
pk
gk

Kullback-Leibler
divergence
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Properties of the Kullback-Leibler divergence

• extremal value when pk = gk.
Indeed, using again a Lagrange multiplier we must consider the auxiliary 
function

and we find the extremum at 

IKL + �
X

k

pk

pk = gke
��1 = gk

normalization
(homework!)
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• the KL divergence is a measure of the number of excess bits that we must use when we 
take a distribution of symbols which is different from the reference distribution 

IKL =
MX

k=1

pk ln
pk
gk

=
MX

k=1

pk ln
1

gk
�

MX

k=1

pk ln
1

pk
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• the KL divergence for continuous distributions does not diverge

IKL =
X

k

pk ln
pk
gk

!
Z +1

�1
p(x)dx ln

p(x)dx

g(x)dx

=

Z +1

�1
p(x) ln

p(x)

g(x)
dx
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• the KL divergence is non-negative

Notice first that when we define we find

where  and therefore

�(t) = t ln t

�(t) = �(1) + �0(1)(t� 1) +
1

2
�00(h)(t� 1)2 = (t� 1) +

1

2h
(t� 1)2

t < h < 1

IKL =

Z +1

�1
p(x) ln

p(x)

g(x)
dx = �

Z +1

�1

p(x)

g(x)
ln

p(x)

g(x)
g(x)dx =

Z +1

�1
�

✓
p(x)

g(x)

◆
g(x)dx

=

Z +1

�1

"✓
p(x)

g(x)
� 1

◆
+

1

2h

✓
p(x)

g(x)
� 1

◆2
#
g(x)dx =

Z +1

�1

1

2h

✓
p(x)

g(x)
� 1

◆2

g(x)dx

=

Z +1

�1

1

2h

(p(x)� g(x))2

g(x)
dx � 0
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The KL divergence is a quasi-metric (however a local version of the KL divergence is the Fisher 
information, which is a true metric)

The KL divergence can be used to measure the “distance” between two distributions. 

Example: the KL divergence

for the distributions  

IKL(p, q) =

Z +1

�1
p(x) ln

p(x)

q(x)
dx

p(x) =
1p
2⇡�2

exp

✓
� x2

2�2

◆

q(x) =
1p
2⇡�2

exp

✓
� (x� µ)2

2�2

◆ IKL(p, q) =
µ2

2�2
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Now consider a family of parametric distributions and evaluate the KL divergence between 
two close elements of the family

Since

we find, using the first Bartlett identity,

i.e., locally the KL divergence is just the Fisher information

IKL (p(x, ✓), p(x, ✓ + ✏)) =

Z +1

�1
p(x, ✓) ln

p(x, ✓)

p(x, ✓ + ✏)
dx

= E (ln p(x, ✓)� ln p(x, ✓ + ✏))

IKL (p(x, ✓), p(x, ✓ + ✏)) = �E

✓
@ ln p(x, ✓)

@✓
✏+

1

2

@2 ln p(x, ✓)

@✓2
✏2
◆

= �1

2
E


@2 ln p(x, ✓)

@✓2

�
✏2 =

1

2
I(✓)✏2

ln p(x, ✓ + ✏) ⇡ ln p(x, ✓) +
@ ln p(x, ✓)

@✓
✏+

1

2

@2 ln p(x, ✓)

@✓2
✏2
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The KL divergence can be transformed into a true distance between pdf's

• Jeffreys' distance

• Jensen-Shannon distance

<latexit sha1_base64="zHKth/R5r4y61qckt+bIj5IlfBo="></latexit>

IJ(p, q) =
1

2
IKL(p, q) +

1

2
IKL(q, p)

IJS(p, q) =
1

2
IKL

✓
p,

p+ q

2

◆
+

1

2
IKL

✓
q,

p+ q

2

◆



Entropy extremization with additional conditions (partial knowledge of moments of the 
prior distribution)

Q p[ ] = − p x( )ln p x( )
m x( ) dxa

b

∫ + λk xk p x( )dx −Mk
a

b

∫
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪k

∑

xk = xk p x( )dx
a

b

∫

function (functional) that must be extremized
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δQ = − δ p ln p x( )
m x( ) +1− λk x

k

k
∑⎧

⎨
⎩

⎫
⎬
⎭
dx

a

b

∫ = 0

variation

ln p x( )
m x( ) +1− λk x

k

k
∑ = 0

p x( ) = m x( )exp λk x
k

k
∑ −1

⎛
⎝⎜

⎞
⎠⎟
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p x( ) = m x( )exp λnx
n

n
∑ −1

⎛
⎝⎜

⎞
⎠⎟

Mk = xkm x( )exp λnx
n

n
∑ −1

⎛
⎝⎜

⎞
⎠⎟
dx

a

b

∫

p(x) is determined by the choice of m(x) and by the constraints

The constraints can be the moments themselves:
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1. no moment is known, normalization is the only constraint, and p(x) is defined in the 
interval (a,b)

M 0 = m x( )exp λ0 −1( )dx
a

b

∫ = 1

we take a reference distribution which is uniform on (a,b), i.e., 

m x( ) = 1
b − a

M 0 =
1

b − a
exp λ0 −1( )dx

a

b

∫ = exp λ0 −1( ) = 1

⇒ λ0 = 1; p x( ) = m x( )exp λnx
n

n=0

0

∑ −1
⎛
⎝⎜

⎞
⎠⎟
=

1
b − a
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2. only the first moment – the mean – is known, and p(x) is defined on (a,b)

M 0 =
1

b − a
exp λ0 + λ1x −1( )dx

a

b

∫ = 1

M1 =
1

b − a
x exp λ0 + λ1x −1( )dx

a

b

∫

M 0 = 1=
exp λ0 −1( )

b − a
exp λ1x( )dx

a

b

∫ =
exp λ0 −1( )

b − a
·
exp λ1b( )− exp λ1a( )

λ1

M1 =
exp λ0 −1( )

b − a
xexp λ1x( )dx

a

b

∫ =
exp λ0 −1( )

b − a
1
λ1

bexp λ1b( )− aexp λ1a( )( )− 1
λ1
2 exp λ1b( )− exp λ1a( )( )⎡

⎣
⎢

⎤

⎦
⎥

in general, these equations can only be solved numerically...
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special case:

a→ −
L
2
; b→ L

2
; M1 = 0

exp λ0 −1( )
L

·
exp λ1L 2( ) − exp −λ1L 2( )

λ1
= 1

exp λ0 −1( )
L

1
λ1

L
2
exp λ1L 2( ) + L

2
exp −λ1L 2( )⎛

⎝⎜
⎞
⎠⎟
−
1
λ1
2 exp λ1L 2( ) − exp −λ1L 2( )( )⎡

⎣
⎢

⎤

⎦
⎥ = 0

exp λ0 −1( )
L

·
exp λ1L 2( ) − exp −λ1L 2( )

λ1
= 1

L
2
exp λ1L 2( ) + exp −λ1L 2( )( ) − 1λ1 exp λ1L 2( ) − exp −λ1L 2( )( ) = 0
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p x( ) = m x( )exp λk x
k

k=0

1

∑ −1
⎛
⎝⎜

⎞
⎠⎟
=
1
L

exp λ0 −1( ) sinh λ1L 2( )
λ1L 2

= 1

L cosh λ1L 2( ) − 2
λ1
sinh λ1L 2( ) = 0

⇒ λ1L 2( ) = tanh λ1L 2( ) ⇒ λ1 = 0; λ0 = 1
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a→ −
L
2
; b→ L

2
; M1 = ε

exp λ0 −1( )
L

·
exp λ1L 2( ) − exp −λ1L 2( )

λ1
= 1

exp λ0 −1( )
λ1L

L
2
exp λ1L 2( ) + exp −λ1L 2( )( ) − 1λ1 exp λ1L 2( ) − exp −λ1L 2( )( )⎡

⎣
⎢

⎤

⎦
⎥ = ε

exp λ0 −1( )
λ1L 2( ) ·sinh λ1L 2( ) = 1

L
2

1
tanh λ1L 2( ) −

1
λ1

= ε

nonzero mean
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tanh λ1L 2( ) = 1
λ1L 2

+
2ε
L

⎛
⎝⎜

⎞
⎠⎟

−1

tanh z( ) = 1
z
+
2ε
L

⎛
⎝⎜

⎞
⎠⎟
−1

we find an approximate solution

z − z
3

3
≈ 1

z
+ 2ε
L

⎛
⎝⎜

⎞
⎠⎟
−1

⇒ z − z
3

3
⎛
⎝⎜

⎞
⎠⎟
1
z
+ 2ε
L

⎛
⎝⎜

⎞
⎠⎟ ≈1+

2ε
L
z − z

2

3
= 1

⇒ 2ε
L

− z
3
≈ 0 ⇒ z ≈ 6ε

L

λ1L
2

≈ 6ε
L

⇒ p x( ) ≈ 1
L
exp λ1x( ) ≈ 1

L
1− 12ε

L
x⎛

⎝⎜
⎞
⎠⎟
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another special case a = 0; b→∞

M 0 = 1 = m0 exp λ0 −1( )· 1
−λ1( )

M1 = m0 exp λ0 −1( ) 1
λ1
2

⎡

⎣
⎢

⎤

⎦
⎥ = −λ1( ) 1

λ1
2

⎡

⎣
⎢

⎤

⎦
⎥ = −

1
λ1

= x

M 0 =
1

b − a
exp λ0 + λ1x −1( )dx

a

b

∫ = 1

M1 =
1

b − a
x exp λ0 + λ1x −1( )dx

a

b

∫
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p x( ) = m x( )exp λnx
n

n
∑ −1

⎛
⎝⎜

⎞
⎠⎟

= m0 exp λ0 −1( )exp λ1x( ) = 1
x
exp −

x
x

⎛
⎝⎜

⎞
⎠⎟

and we obtain the exponential distribution

then

m0 exp λ0 −1( ) = −λ1 =
1
x
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3. both mean and variance are known, and the interval is the whole real axis

M 0 = m0 exp λ0 + λ1x + λ2x
2 −1( )dx

a

b

∫ = 1

M1 = m0 x exp λ0 + λ1x + λ2x
2 −1( )dx

a

b

∫

M 2 = m0 x2 exp λ0 + λ1x + λ2x
2 −1( )dx

a

b

∫

exp λ0 + λ1x + λ2x
2 −1( ) = exp λ2 x2 + 2 λ1

λ2
x + λ1

2

λ2
2

⎛
⎝⎜

⎞
⎠⎟
+ λ0 −1−

λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟
exp λ2 x + λ1

λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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M 0 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

exp −
1

2 −1 2λ2( ) x +
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−∞

+∞

∫ = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

−
π
λ2

= 1

M1 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

x exp −
1

2 −1 2λ2( ) x +
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−∞

+∞

∫ = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

−
π
λ2

−
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟
= −µ

M 2 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

x2 exp −
1

2 −1 2λ2( ) x +
λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−∞

+∞

∫ = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

−
π
λ2

−
1
2λ2

+
λ1
2

λ2
2

⎛
⎝⎜

⎞
⎠⎟
= σ 2 + µ2

M 0 = m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟

− π
λ2

= 1

M1 =
λ1
λ2

= µ

M 2 = − 1
2λ2

+ λ1
2

λ2
2

⎛
⎝⎜

⎞
⎠⎟
=σ 2 + µ2

⇒ λ1 = −
µ
2σ 2 ; λ2 = −

1
2σ 2 ; m0 exp λ0 −1−

λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟
=

1
2πσ 2
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p(x) = m0 exp λ0 + λ1x + λ2x
2 −1( )

= m0 exp λ0 −1−
λ1
2

λ2

⎛
⎝⎜

⎞
⎠⎟
exp −

1
2 −1 2λ2( ) x +

λ1
λ2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1
2σ 2π

exp 1
2σ 2 x − µ( )2⎡

⎣⎢
⎤
⎦⎥

... in this case where mean and variance are known, the entropic prior is Gaussian
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An alternative form of entropy that incorporates the normalization constraint from the start

Q p;m[ ] = − dx
X
∫ p(x)ln p(x)

m x( ) + λ dx
X
∫ p(x)− dx

X
∫ m(x)

⎛

⎝⎜
⎞

⎠⎟

= dx
X
∫ − p(x)ln p(x)

m x( ) + λ p(x)− λm(x)
⎛
⎝⎜

⎞
⎠⎟

δQ = δ pdx
X
∫ − ln p(x)

m x( ) −1+ λ
⎛
⎝⎜

⎞
⎠⎟
= 0

p(x) = m x( )exp λ −1( )
dx

X
∫ p(x) = dx

X
∫ m x( )exp λ −1( ) = exp λ −1( ) dx

X
∫ m x( ) = exp λ −1( ) = 1

⇒ λ = 1

Q p;m[ ] = dx
X
∫ − p(x)ln p(x)

m x( ) + p(x)−m(x)
⎛
⎝⎜

⎞
⎠⎟
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Until now we have emphasized the role of the momenta of the distribution, however other information can be 
incorporated in the same way in the entropic prior. 

A “crystallographic” example (Jaynes, 1968)

Consider a simple version of a crystallographic problem, where a 1-D crystal has atoms at the positions

and such that these positions may be occupied by impurities. 

 x j = jL L = 1,…,n( )
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From X-ray experiments it has been determined that impurity atoms prefer sites where

furthermore we take, as an example, 

which means that we have the constraint

where pj is the probability that an impurity atom is at site j. 

cos kx j( ) > 0

cos kx j( ) = 0.3

cos kx j( ) = pj cos kx j( )
j=1

n

∑ = 0.3



Then the constrained entropy that must be maximized is

from which we find the maximization condition

i.e.,  

The rest of the solution proceeds either by approximation or by numerical calculation. 
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∂Q
∂pj

= − ln pj +1( ) + λ0 + λ1 cos kx j( ) = 0

Q = − pj ln pj
j=1

n

∑ + λ0 pj
j=1

n

∑ −1
⎛

⎝⎜
⎞

⎠⎟
+ λ1 pj cos kx j( )

j=1

n

∑ − 0.3
⎛

⎝⎜
⎞

⎠⎟

pj = exp 1− λ0 − λ1 cos kx j( )⎡⎣ ⎤⎦
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Example of MaxEnt in action: 
unconstrained problem in image restoration

J. Skilling, Nature 309 (1984) 748
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Car movement introduces linear correlations among pixels. The model of linear corrections does not allow direct inversion to find the 
corrected image because the number of variables is larger than the number of equations. The MaxEnt methods regularizes the problem and 
finds a reasonable solution.

J. Skilling, Nature 309 (1984) 748



Reconstruction of missing data
(from http://www.maxent.co.uk )

50%

95%

99%
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http://www.maxent.co.uk/


low resolution (MEM enhanced)

low resolution

high resolution

(from http://www.mirametrics.com)

NGC 40
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http://www.maxent.co.uk/
(the company no longer exists and the website has disappeared from the web) 
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Example: miscalibrated Gaussian measurement errors, a Bayesian estimate using objective priors

Here, we consider the case where we must find the mean value with given measurement uncertainties that are 
systematically multiplied by an unknown scale factor, under the assumption of Gaussianity.
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The likelihood has a Gaussian structure

P d | µ,σ ,α( ) = 1
2πα 2σ k

2
exp −

dk − µ( )2
2α 2σ k

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=1

N

∏

=
1

2π( )N /2α N

1
σ kk=1

N

∏⎛⎝⎜
⎞
⎠⎟
exp −

1
2α 2

dk − µ( )2
σ k
2

k=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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we must rearrange the exponent as usual ... 

dk − µ( )2
σ k
2

k=1

N

∑ =
dk
2

σ k
2

k=1

N

∑ − 2µ dk
σ k
2

k=1

N

∑ + µ2 1
σ k
2

k=1

N

∑ =
ND
σM
2 − 2µ NM

σM
2 + µ2 N

σM
2

=
N
σM
2 D − 2µM + µ2( )

dove 1
σM
2 =

1
N

1
σ k
2

k=1

N

∑ ; M = dk
σ k
2

k=1

N

∑ 1
σ k
2

k=1

N

∑ ; D = dk
2

σ k
2

k=1

N

∑ 1
σ k
2

k=1

N

∑

P d | µ,σ ,α( ) = 1
2π( )N /2α N

1
σ kk=1

N

∏⎛⎝⎜
⎞
⎠⎟
exp −

N
2α 2σM

2 D − 2µM + µ2( )⎡

⎣
⎢

⎤

⎦
⎥

therefore the likelihood is

Edoardo Milotti - Bayesian Methods - May 2022 51



Now we estimate the scale factor from Bayes’ theorem

however, we need first to marginalize the likelihood with respect to the mean, 
which in this case is a nuisance parameter

we take a uniform prior for the mean

P d |σ ,α( ) = P d | µ,σ ,α( )P µ σ ,α( )dµ
µ
∫

= 1
W

P d | µ,σ ,α( )dµ
µmin

µmax

∫

≈ 1
W

1
2π( )N /2α N

1
σ kk=1

N

∏⎛⎝⎜
⎞
⎠⎟

exp − N
2α 2σ M

2 D − 2µM + µ2( )⎡

⎣
⎢

⎤

⎦
⎥dµ

−∞

+∞

∫
W = µmax − µmin( )
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D − 2µM + µ2 = µ2 − 2µM + M 2 + D − M 2

= µ − M( )2 + D − M 2

as usual ... 

P d |σ ,α( ) ≈ 1
W

1
2π( )N /2α N

1
σ kk=1

N

∏⎛⎝⎜
⎞
⎠⎟

exp −
N

2α 2σM
2 µ − M( )2 + D − M 2⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭
dµ

−∞

+∞

∫

=
1
W

1
2π( )N /2α N

1
σ kk=1

N

∏⎛⎝⎜
⎞
⎠⎟
exp −

N D − M 2( )
2α 2σM

2

⎛

⎝
⎜

⎞

⎠
⎟
2πα 2σM

2

N

... therefore the marginalized likelihood is:
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P α( )∝ 1
α

for the standard deviation we 
take again a Jeffreys prior

Edoardo Milotti - Bayesian Methods - May 2022 54

<latexit sha1_base64="eg/If9BdpBm6oGTktF45pDmOct0="></latexit>

p(↵|d,�) = p(d|↵,�)R
↵ p(d|↵0,�)p(↵0)d↵0 p(↵)

=

1

↵N�1
exp

✓
�N(D �M2)

2↵2�2
M

◆

R
↵

1

↵0N�1
exp

✓
�N(D �M2)

2↵02�2
M

◆
p(↵0)d↵0

p(↵)



Edoardo Milotti - Bayesian Methods - May 2022 55

<latexit sha1_base64="7YySuLF2UIhW5cazv+0VK9sYVew="></latexit>

p(↵|d,�) =

1

↵N�1
exp

✓
�N(D �M2)

2↵2�2
M

◆
1

↵
R
↵

1

↵0N�1
exp

✓
�N(D �M2)

2↵02�2
M

◆
1

↵0 d↵
0
; A2 =

N(D �M2)

2�2
M

<latexit sha1_base64="AYECzKWB6d5D4y1kg6WFY+d3x7Q="></latexit>

p(↵|d,�) !

1

↵N
exp

✓
�A2

↵2

◆

R1
0

1

↵0N exp

✓
�A2

↵02

◆
d↵0



A2

α 2 = x; α =
A
x
; dα = −

A
2x3/2

dx

xN /2

AN exp −x( ) A
2x3/2

dx
0

∞

∫ =
1

2AN −1 x
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2

−1
exp −x( )dx = 1
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evaluation of
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Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.

Died: September 17, 1979, in Herndon, Virginia.

Reproduced by permission of the Royal Statistical Society

Jerome Cornfield was arguably the most influential
statistician in the biomedical sciences in the US from
the 1950s until his death. He was the consummate
statistical scientist. His understanding of the nature
of the subject-matter of statistics and of its essential
role in the inductive process of integrating data into
a body of empirical knowledge, particularly in the
biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him
to identify essential statistical problems. He exercised
considerable influence as an advisor and consultant,
and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the
Bronx, New York, he entered New York University,
graduating in 1933 with a major in history. Cornfield
did not receive any advanced degrees. He did, how-
ever, take some formal graduate courses in history at
Columbia University. After moving to Washington,
DC, in 1935, Cornfield took a number of courses in
statistics at the US Department of Agriculture Grad-
uate School during the period 1936–1938, including
courses with M.A. Girshick in general statistics and

multivariate analysis. He also had a course in sam-
pling which, together with what he learned on the
job from Duane Evans, enabled him to advance the
cause of getting probability sampling accepted by
several Federal Agencies. Although his formal train-
ing was minimal, most of what he had to learn about
statistical theory, reasoning, and methodology was
self-taught from a continually expanding literature.
This enabled him to be discriminatingly selective
both as to subject-matter and to the time at which
he felt it necessary to learn about a subject. In later
years, biomedical associates and statistical colleagues
were surprised to discover that he had no docto-
rate.

A brief review of the major positions he held
begins with the Bureau of Labor Statistics, where
he was a statistician from 1935 to 1947. In 1947
he joined Harold Dorn’s methods unit in the Pub-
lic Health Service. This unit was shortly transferred
to the National Cancer Institute on the campus of
the National Institutes of Health (NIH). Cornfield
remained in the Cancer Institute until 1955 or 1956
when both he and Dorn moved over to a new Division
of Research Services. Here, he consulted with inves-
tigators in various Institutes of the NIH. In 1958 he
was invited to succeed William Cochran as Chair-
man of the Department of Biostatistics in the School
of Hygiene and Public Health of the Johns Hop-
kins University. He was also appointed Professor
of Biomathematics in the School of Medicine. He
returned to the NIH in 1960 as Assistant Chief of the
Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made
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Developments in Theory and Quantitative Methods 95 

A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA. 
APPLICATIONS TO CANCER OF THE 
LUNG, BREAST, AND CERVIX 1 

JEROME CORNFIELD, Nationat Cancer Imtit"", National 
Imtitut.& of HeaUh, U. 8. Public HeaUh Smtia, B.a...da, 
Md. 

A frequent problem in epidemiological research is the attempt to deter-
mine whether the probability of having or incurring a stated disease, such 
as cancer of the lung, during a specified interval of time is related to the 
possession of a certain charscteristic, such as smoking. In principle, 
such a question offers no difficulty. One selects representative groups 
of persons having and not having the characteristic and determines the 
percentage in each group who have or develop the disease during this 
time period. This yields a true rate. The difference in the magnitudes 
of the rates for those possessing and lacking the characteristic indicates 
the strength of the association. If it were true, for example, that a very 
large percentage of cigarette smokers eventually contracted lung cancer, 
this would suggest the possibility that tobacco is a strong carcinogen. 

An investigation that involves selecting representative groups of those 
having and not having a characteristic is expensive and time consuming, 
however, and is rarely if ever used. Actual practice in the field is to take 
two groups presumed to be representative of persons who do and do not 
have the disease and determine the percentage in each group who have the 
characteristic. Thus rather than determine the percentage of smokers 
and nonsmokers who have cancer of the lung, one determines the per-
centage of persons with and without cancer of the lung who are smokers. 
This yields, not a true rate, but rather what is usually referred to as a 
relative frequency. Relative frequencies can be computed with compar-
ative ...Se from hospital or other clinical records, and in consequence most 
investigations based on clinical records yield nothing but relative frequen-
cies. The difference in the magnitudes of the relative frequencies does 
not indicate the strength of the association, however. Even if it were 
true that there were many more smokers among those with lung cancer 
than among those without it, this would not by itself suggest whether 
tobacco was a weak or a strong carcinogen. We are consequently inter-
ested in whether it is possible to deduce the rates from knowledge of the 
relative frequencies. 

1 Received for publication Febrw:irr 23, 1961. 
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Example: the statistical link between smoking and lung cancer
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418 Stolley

Pearson. He took notice of Fisher's work
and genius and, as editor of Biometrika,
arranged to publish some of Fisher's articles.
Pearson published Fisher's paper describing
the general sampling distribution of the cor-
relation coefficient. When Pearson pub-
lished another article by Fisher about maxi-
mum likelihood and editorially criticized it
without first informing Fisher he would do
this, Fisher developed a strong antipathy for
Pearson, the first of Fisher's several feuds.

In September 1917, Fisher started work as
a statistician at Rothamsted experimental
agricultural station which, under his leader-
ship, was to become a world center for the
theoretical development of experimental de-
sign. There he developed the analysis of
variance, the principle and contribution of
randomization, and the idea and importance
of replication. He made great contributions
to the understanding of confounding and
created designs to handle problems created
by confounding. In 1925 he published Sta-
tistical Methods for Research Workers (4),
and 10 years later The Design of Experi-
ments was published (5). In 1938 he and
Frank Yates brought out Statistical Tables
for Biological, Agricultural, and Medical Re-
search, still used today (6). (See figure 1.)

Following up his work on the distribution
of the correlation coefficient, Fisher derived
the sampling distributions of other statistics
in common use, including the F distribution
and the multiple correlation coefficient. He
developed the theory of estimation in 1922.
In later years he made many other contri-
butions to genetic and evolutionary theory
that are considered central to the under-
standing of the theory of natural selection
(7).

Fisher was offered the chair as the Galton
Professor of Eugenics at University College
in London. Actually, a new Department of
Eugenics was created in order to attract him
to the University. Fisher would never have
agreed to work in the statistics department
under Karl Pearson because of the antipathy
between them which had originated with
Pearson's critical editorial in Biometrika.
Consequently, two departments doing the
same kind of work coexisted at the Univer-

RGURE 1. Passport photograph of Ronald Aylmer
Fisher at age 34. Reprinted from Box JF. RA Fisher
the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.

sity College—Statistics under E. G. Pearson,
who headed the department after his father,
and statistics (misnamed Eugenics) under
Fisher. An intense rivalry and bad feeling
existed between Pearson and Fisher which
was reflected in their departmental activities.

Jerzy Neyman joined Egon Pearson in
Statistics in 1934 and immediately chal-
lenged some of Fisher's ideas on hypothesis
testing, introducing the ideas of power and
decision theory which he developed further
in the United States with Abraham Wald.
Fisher was unaccustomed to being contra-
dicted and confronted Neyman as follows
(related to Constance Reid by Neyman when
he was an old man in working retirement at
the University of California, Berkeley):

And he said to me that he and I are at
the same building... he had published a
book and that's Statistical Methods for Re-

Fisher developed four lines of argument in questioning the 
causal relation of lung cancer to smoking. 

1) If A is associated with B, then not only is it possible that 
A causes B, but it is also possible that B is the cause of A. 
In other words, smoking may cause lung cancer, but it is 
a logical possibility that lung cancer causes smoking. 

2) There may be a genetic predisposition to smoke (and 
that genetic predisposition is presumably also linked to 
lung cancer).

3) Smoking is unlikely to cause lung cancer because secular 
trend and other ecologic data do not support this 
relation. 

4) Smoking does not cause lung cancer because inhalers 
are less likely to develop lung cancer than are 
noninhalers 



Edoardo Milotti - Bayesian Methods - May 2022 61

Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

what is the proportion having cancer of the lung in each population? 

Smokers: 0.119·10-3/0.580025 = 2.05164·10-4

Nonsmokers: 0.036·10-3/0.419971 = 8.57202·10-5

And the prevalence of lung cancer in smokers with respect to nonsmokers is

Smokers/Nonsmokers ≈ 2.4

Having cancer 
of the lung

Healthy Total

Smokers 0.119·10-3 0.579910 0.580025

Nonsmokers 0.036·10-3 0.419935 0.419971

Total 0.155·10-3 0.999845 1.000000
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We can also write an easy Bayesian equation that leads to some information as to the causation of cancer of the lung

Therefore, the Bayes factor is 

and with the numbers in the table, one finds that this ratio is about 3.5 (significant according to both Jeffreys, and Kass
and Raftery)

P (Cancer|Smoker) =
P (Smoker|Cancer)P (Smoker)

P (Cancer)

P (Cancer|Nonsmoker) =
P (Nonsmoker|Cancer)P (Nonsmoker)

P (Cancer)

P (Cancer|Smoker)

P (Cancer|Nonsmoker)
=

P (Smoker|Cancer)P (Smoker)

P (Nonsmoker|Cancer)P (Nonsmoker)
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According to Jeffreys, a Bayes ratio of 3.5 is already substantial support in favor of the hypothesis that smoking does 
cause lung cancer. 
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• In 1954 Richard Doll and Bradford Hill published evidence in the British Medical Journal showing a strong link 
between smoking and lung cancer. They published further evidence in 1956.

• Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He did not think the statistical evidence 
for a link was convincing.

• Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following an operation for colon cancer. 

• With bitter irony, we now know that the likelihood of getting this disease increases in smokers. 

Ronald Fisher was cremated, and his ashes interred in St. Peter’s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017 <www.famousscientists.org/ronald-fisher/>.)
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2 Cornfield, Jerome

many original contributions to biostatistics, epidemi-
ology, clinical trials, and to quantitative methods in
the design and analysis of experiments (see Experi-
mental Design) conducted in clinical and laboratory
research. In addition, he wrote a number of papers
on Bayesian inference and on the application of
Bayesian methods in the biomedical sciences. Before
presenting the highlights of the work in this period, it
is important to comment on his contributions to eco-
nomic statistics and sampling while at the Bureau of
Labor Statistics (BLS).

From the very beginning of his career, Cornfield
was a creative and original thinker, motivated by
important real-world problems. He made a number of
important contributions to economics and economic
statistics during his work at the BLS. He played a
major role in the revision of the Consumer Price
Index, 1938–1940, introducing several new proce-
dures. He developed a keen interest in sampling,
which led to the development of a survey using prob-
ability sampling for a study of Family Spending and
Saving in wartime. This complex design, according
to Duncan & Shelton [26, pp. 46–49] “represented a
significant advance in a number of respects. Indeed, it
was the precursor of several ideas which were worked
out more fully and justified mathematically a year
later by Hansen and Hurwitz”. In 1941 Cornfield
consulted with the Bureau of Home Economics on
a nutrition-related problem which was known as the
“diet” problem. The mathematical problem requires
the minimization of linear functions subject to a set
of given inequality constraints, the problem of lin-
ear programming. Zelen [31, p. 12] refers to a 1958
book on linear programming by Dorfman et al. as
crediting Cornfield “as being the first person to for-
mulate the linear programming problem and find an
approximate solution”. His work appeared in 1941 in
an unpublished BLS memorandum. It was also at the
BLS that Cornfield made his first contribution to sta-
tistical theory. He developed a method using indicator
variables for easily obtaining the first few moments
of the sample mean when sampling from finite popu-
lations. He thus obtained an unbiased estimate of the
sample variance and of the variance of the sample
mean [2].

From 1948 to his death 31 years later, Corn-
field devoted the major portion of his career to
the development and application of statistical the-
ory and methods to the biomedical sciences. His
contributions were diverse both in the nature of his

statistical interests and in the areas of biostatisti-
cal applications. He was involved in and touched
upon every major public health issue that arose in
that period – the polio vaccines [23], smoking and
lung cancer (see Smoking and Health) [22, 29],
risk factors for cardiovascular disease [5, 30], and the
difficult statistical issues of estimating the low-dose
carcinogenic effects in humans (see Extrapolation,
Low Dose) of a food additive that becomes suspect
because it produces cancer in animals at much higher
doses [14, 20].

In the broad area of biomedical research, Corn-
field was involved in a wide variety of problems, in
each of which he made significant and lasting con-
tributions. These studies and problems include the
following: an imaginative method for estimating the
volume–surface ratio of individual cells as observed
under the microscope [15], the statistics of bioas-
say (see Biological Assay, Overview) [3, 6, 19],
photosynthesis [1], the analysis of the toxicity of
mixtures of the essential amino acids [28], chemi-
cal kinetic experiments using radioactive compounds
(see Pharmacokinetics and Pharmacodynamics)
[25], the physiological and biological effects of irradi-
ated animals (see Radiation) [17], and the computer
diagnosis of electrocardiograms [12] (see Clinical
Signals).

In the amino acid problem, the question was:
Which mixtures of the 10 essential amino acids were
toxic? The investigators called on Cornfield for help
when they were confronted with the impractical task
of conducting 1013 experiments with two or more
mixtures. Cornfield considered the issue of measuring
the joint effects of two or more drugs administered
in combination. The method usually employed was
to assume the joint effects were additive in their
individual responses. Cornfield saw that this simple
method could give strange results. Instead, he chose a
measure of additivity introduced by Gaddum, namely
additivity of doses conditioned on a given response, a
concept which Cornfield called dose-wise additivity.
After some persuasion, the biochemists proceeded to
conduct experiments implied by dose-wise additivity.
These turned out to be highly successful, leading to
the previously unknown result that L-arginine was
essential for the combination of the 10 amino acids
to be nontoxic in the human [28].

The animal radiation study is noteworthy for
the development of a methodology that would later
become a fundamental tool in epidemiologic research,
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mean [2].

From 1948 to his death 31 years later, Corn-
field devoted the major portion of his career to
the development and application of statistical the-
ory and methods to the biomedical sciences. His
contributions were diverse both in the nature of his

statistical interests and in the areas of biostatisti-
cal applications. He was involved in and touched
upon every major public health issue that arose in
that period – the polio vaccines [23], smoking and
lung cancer (see Smoking and Health) [22, 29],
risk factors for cardiovascular disease [5, 30], and the
difficult statistical issues of estimating the low-dose
carcinogenic effects in humans (see Extrapolation,
Low Dose) of a food additive that becomes suspect
because it produces cancer in animals at much higher
doses [14, 20].

In the broad area of biomedical research, Corn-
field was involved in a wide variety of problems, in
each of which he made significant and lasting con-
tributions. These studies and problems include the
following: an imaginative method for estimating the
volume–surface ratio of individual cells as observed
under the microscope [15], the statistics of bioas-
say (see Biological Assay, Overview) [3, 6, 19],
photosynthesis [1], the analysis of the toxicity of
mixtures of the essential amino acids [28], chemi-
cal kinetic experiments using radioactive compounds
(see Pharmacokinetics and Pharmacodynamics)
[25], the physiological and biological effects of irradi-
ated animals (see Radiation) [17], and the computer
diagnosis of electrocardiograms [12] (see Clinical
Signals).

In the amino acid problem, the question was:
Which mixtures of the 10 essential amino acids were
toxic? The investigators called on Cornfield for help
when they were confronted with the impractical task
of conducting 1013 experiments with two or more
mixtures. Cornfield considered the issue of measuring
the joint effects of two or more drugs administered
in combination. The method usually employed was
to assume the joint effects were additive in their
individual responses. Cornfield saw that this simple
method could give strange results. Instead, he chose a
measure of additivity introduced by Gaddum, namely
additivity of doses conditioned on a given response, a
concept which Cornfield called dose-wise additivity.
After some persuasion, the biochemists proceeded to
conduct experiments implied by dose-wise additivity.
These turned out to be highly successful, leading to
the previously unknown result that L-arginine was
essential for the combination of the 10 amino acids
to be nontoxic in the human [28].

The animal radiation study is noteworthy for
the development of a methodology that would later
become a fundamental tool in epidemiologic research,
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Born: October 30, 1912, in New York City, New
York.

Died: September 17, 1979, in Herndon, Virginia.

Reproduced by permission of the Royal Statistical Society

Jerome Cornfield was arguably the most influential
statistician in the biomedical sciences in the US from
the 1950s until his death. He was the consummate
statistical scientist. His understanding of the nature
of the subject-matter of statistics and of its essential
role in the inductive process of integrating data into
a body of empirical knowledge, particularly in the
biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him
to identify essential statistical problems. He exercised
considerable influence as an advisor and consultant,
and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the
Bronx, New York, he entered New York University,
graduating in 1933 with a major in history. Cornfield
did not receive any advanced degrees. He did, how-
ever, take some formal graduate courses in history at
Columbia University. After moving to Washington,
DC, in 1935, Cornfield took a number of courses in
statistics at the US Department of Agriculture Grad-
uate School during the period 1936–1938, including
courses with M.A. Girshick in general statistics and

multivariate analysis. He also had a course in sam-
pling which, together with what he learned on the
job from Duane Evans, enabled him to advance the
cause of getting probability sampling accepted by
several Federal Agencies. Although his formal train-
ing was minimal, most of what he had to learn about
statistical theory, reasoning, and methodology was
self-taught from a continually expanding literature.
This enabled him to be discriminatingly selective
both as to subject-matter and to the time at which
he felt it necessary to learn about a subject. In later
years, biomedical associates and statistical colleagues
were surprised to discover that he had no docto-
rate.

A brief review of the major positions he held
begins with the Bureau of Labor Statistics, where
he was a statistician from 1935 to 1947. In 1947
he joined Harold Dorn’s methods unit in the Pub-
lic Health Service. This unit was shortly transferred
to the National Cancer Institute on the campus of
the National Institutes of Health (NIH). Cornfield
remained in the Cancer Institute until 1955 or 1956
when both he and Dorn moved over to a new Division
of Research Services. Here, he consulted with inves-
tigators in various Institutes of the NIH. In 1958 he
was invited to succeed William Cochran as Chair-
man of the Department of Biostatistics in the School
of Hygiene and Public Health of the Johns Hop-
kins University. He was also appointed Professor
of Biomathematics in the School of Medicine. He
returned to the NIH in 1960 as Assistant Chief of the
Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made
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