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Solution of underdetermined systems of equations

In this problem there are fewer equations than unknowns; the
system of equations is underdetermined, and in general there is no
unique solution.

The maximum entropy method helps us find a reasonable solution,
the least informative one (least correlations between variables)

Example:

3x+5y+1.1z=10

% 9 O
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this ratio can be taken to be a
“probability”
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x =0.606275; y=1.53742; z = 0.449148;
A =0.0218739; u=-0.017793
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this is an example of an “ill-posed” problem

the solution that we found is a kind of

regularization of the ill-posed problem



Finding priors with the maximum entropy method
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entropy maximization when all information is missing,
and normalization is the only constraint:
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entropy maximization when the mean is known p
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We must satisfy two constraints now ...
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Example : the biased die

(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy Formalism;
Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

%(1+2+3+4+5+6):%:3.5

mean value for a biased die

35(1+¢)

Problem: for a given mean value of the biased die, what is the probability distribution of
each value?

The mean value is insufficient information, and we use the maximum entropy method to
find the most likely distribution (the least informative one).
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entropy maximization with the biased die:
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we still have to satisfy the
constraints ...
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k=1,6 a 1 k=0,5
k=1,6
d
= a—)tl[ll + ln(l — % ) — ln(l — M )}
6¢0™ A 7
=1- 1—66611 T 1ie)L1 :5(1+8)

The Lagrange multipliers are obtained from nonlinear equations, and we must use
numerical methods
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numerical solution
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with a biased die we obtain skewed distributions.

These are examples of UNINFORMATIVE PRIORS
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Example: mean =4
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Entropy with continuous probability distributions
(relative entropy, Kullback-Leibler divergence)

S— —}[p(x)dx]ln[p(x)dx:l

S pim = —Zp(x)ln ’l;((z)) dx
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relative entropy

this does not diverge!

14



Mathematical aside on the Kullback-Leibler divergence

The obvious extension of the Shannon entropy to continuous distributions

—+ o0

N
|

dr ]
o p(f) L 1089 p(ZC)dZU

does not work, because it diverges.

A solution is suggested again by statistical mechanics ...
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Boltzmann entropy with degeneracy number attached to each level
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Properties of the Kullback-Leibler divergence

extremal value when p, = g,.
Indeed, using again a Lagrange multiplier we must consider the auxiliary

function
T + A E Dk
k

and we find the extremum at

e = gre™ = gi

normalization

(homework!)
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* the KL divergence is a measure of the number of excess bits that we must use when we
take a distribution of symbols which is different from the reference distribution

M 1 X 1
:Zpklﬂ ];pklﬂp—k
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e the KL divergence for continuous distributions does not diverge

= Zpk 111
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* the KL divergence is non-negative

Notice first that when we define ¢(t) = tInt we find

8(t) = B(1) + ' (1)t~ 1)+ 58" (W)t~ 1)* = (t 1) + 5o (¢~ 1)?

where t < h < 1 andtherefore

Ixr = /;oo p(z)In 2 g — /m P(2) 1 PO oy = /ZO & (p(‘”)> g(x)dz

g(x) oo 9(x)  g(7) g(z)
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- /_:O i (p(x)gzxi(w)y =t
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The KL divergence is a quasi-metric (however a local version of the KL divergence is the Fisher
information, which is a true metric)

The KL divergence can be used to measure the “distance” between two distributions.

Example: the KL divergence

+00 T
Ik (p,q) = /_ p(x)In SExid:ﬂ

for the distributions

[ —

p(z) = ooz P (—$—2>

e
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Now consider a family of parametric distributions and evaluate the KL divergence between
two close elements of the family

oo p(z,0)

Tien (0@ 0)p(e.0 +0) = [ (. 0)n 2L

=E (Inp(z,0) — Inp(x,0 + ¢))

vince dlnp(z,0)  18%Inp(z,0)
~ np e, = 1 p{ex, 2
Inp(x,0+¢€) ~Inp(x,0)+ Y e+2 o0z €

we find, using the first Bartlett identity,

B Olnp(z,0) 10%Inp(x,0) ,
Lt (ol 0),p(o. 6+ ) = - Ty JERERD

1. [0%Inp(x,0) > 1 5

i.e., locally the KL divergence is just the Fisher information



The KL divergence can be transformed into a true distance between pdf's

» Jeffreys' distance 1

1
Iﬂn@zikdn®+5kd%m

1 p+q)\ 1 P+q
* Jensen-Shannon distance [JS (p, Q) — §IKL (p, 5 ) | §IKL (CL T)
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Entropy extremization with additional conditions (partial knowledge of moments of the
prior distribution)

<xk>= jxkp(x)dx

function (functional) that must be extremized

0| p|= —}p(x)ln 51(();)) dx+§lk ;Txkp(x)dx— Mkk
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variation

b ("

5Q=—J5p< In

a Q

(x)  _
- IDZ(X)+1—zkllkx =0

- p(x)= m(x)exp(;lkxk - 1)

m\Xx

p(x)+ — xkl X =
() 1T A =0

J
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p(x)=mx)exp| T -1

p(x) is determined by the choice of m(x) and by the constraints

The constraints can be the moments themselves:

=<
|l
Q C—
o
b
S

(x)exp(zn:/lnx” - ljdx
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1. no moment is known, normalization is the only constraint, and p(x) is defined in the

interval (a,b)
b

M, = Jm(x)exp(/lo —1)dx=1

a

we take a reference distribution which is uniform on (a,b), i.e.,

1
Mozb_

b
J.exp(/lo —1)dx=exp(A,—1)=1
a

1

0
= A= p(x)zm(x)exp(z&lx”—lj:
n=0 b_a
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. only the first moment — the mean —is known, and p(x) is defined on (a,b)

b
Jexp (A, + A x—1)dx=1
b

b a

xexp (A, + A,x—1)dx

_ b
M,=1= epr(/lo ) Jexp(llx)dx =

exp(4, - 1).exp(/llb) —exp(La)
b—a A

b —
exp )LO ! Jxexp (A,x)d exp(% 1){%(1’6@(%5)—@6@(% ))_%(e"p(’lb) exp(4,a))
a 1

in general, these equations can only be solved numerically...
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special case:

exp(A, — 1)_exp(/11L/2) —exp(—-4,L/2) .

L A, B

exp(io —1) { ;t (%exp(ﬂqlx/z) + %exp(—ﬂqL/z)

exp(A, — 1).exp(llL/2) —exp(-A,L/2)
L A,

L

1

) ) %(exp(%L/ 2)-exp(-4L/2))

1

~(exp(AL/2) +exp(=AL/2)) = o-(exp(AL/2) - exp(-AL/2)) =0
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exp(2, —1) Sm}/ll(i“l/Lz/ 2)_,
1

Lcosh(A,L/2)- %sinh(/llL/2) =0

1

= (AL/2)=tanh(AL/2) = A,=0; A, =1

p(x)= m(X)eXp(kflaAkxk _ 1) _

4
L



nonzero mean

L L '
a—>——; b—>—; M, =
2 2

exp (4, — 1)_exp(ﬂ,1L/2) —exp(—-A,L/2)

L Z
exp ():12— 1) [%(exp(,llL/z) +exp(-A,L/2))- %(eXP(ALﬁ) —exp(-A,L/ 2))} =€
exp(ﬂ.o — 1). , B
(2,1)2) sinh(A,L/2) =1

tanh(A,L/2) A,

L 1 1
2
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tanh(A,L/2)= [ : 2€ ]

+
AL/2 L

we find an approximate solution




another specialcase a=0; b—

M, = myexp(A, —1)
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then

myexp(A, —1)=-1, = —
and we obtain the exponential distribution
p(x)= m(x)exp(Z?Lnx” — 1)

ol ea(i) - e 5



3. both mean and variance are known, and the interval is the whole real axis

=
I
=

=
I
=

||
at—,w Q"_ow Qt—-,w

exp( A, + Ax+A,x" —1)=exp

=exp
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? 20, A K

Edoardo Milotti - Bayesian Methods - May 2022




p(x)=m, exp()LO +Ax+A,x° — 1)

= m, exp /’Lo—l—/l—12 exp| — : X+—
2 i 2(_1/22'2)
1 | 2
) ZGZneXP[ZGZ(X_H)}

... in this case where mean and variance are known, the entropic prior is Gaussian
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An alternative form of entropy that incorporates the normalization constraint from the start

p(x)
m(x)

p(x)
m(x)

50 = J5pdx£—ln p(( ))—1+/1)=0

p(x)=m(x)exp(A—1)
de p(x)= de m(x) exp(l—l):exp(/l—l)de m(x)=exp(A-1)=1

Ol p;m] jdx p(x)In +ﬂ,(jdxp(x) J.dxm(x)]

= de[—p(x)ln +Ap(x)— lm(x))

= A=1

p(x)
m(x)

O[psm]= fdx[—p(X)ln + p(x) - m(X)]

Edoardo Milotti - Bayesian Methods - May 2022 38



Until now we have emphasized the role of the momenta of the distribution, however other information can be
incorporated in the same way in the entropic prior.

A “crystallographic” example (Jaynes, 1968)

Consider a simple version of a crystallographic problem, where a 1-D crystal has atoms at the positions

and such that these positions may be occupied by impurities.

Edoardo Milotti - Bayesian Methods - May 2022
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From X-ray experiments it has been determined that impurity atoms prefer sites where

cos(kxj)>0

furthermore we take, as an example,

which means that we have the constraint

<cos(kxj)> = jzn}pj cos(kxj) =0.3

where p; is the probability that an impurity atom is at site j.



Then the constrained entropy that must be maximized is

n n n
O :—ijlnpj + A, zpj -1 [+ 4, ijcos(kxj)—0.3
j=1 j=1 j=1
from which we find the maximization condition

aa—sz—(lnpj+1)+ito +/llcos(kxj)=0

p;= exp[l—/lo - A cos(kxj)}

The rest of the solution proceeds either by approximation or by numerical calculation.



Example of MaxEnt in action:
unconstrained problem in image restoration

J. Skilling, Nature 309 (1984) 748
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Car movement introduces linear correlations among pixels. The model of linear corrections does not allow direct inversion to find the
corrected image because the number of variables is larger than the number of equations. The MaxEnt methods regularizes the problem and
finds a reasonable solution.

J. Skilling, Nature 309 (1984) 748
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Reconstruction of missing data
(from http://www.maxent.co.uk )

9)

-

|

50%

95%

99%
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http://www.maxent.co.uk/

low resolution (MEM enhanced)

low resolution

\ high resolution
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NMH Maximum Entropy Data Consultants Ltd.

John Skilling: Biographical information

John is Scientific Director of MEDC. He did his Ph.D. (on cosmic rays) in

About MEDC the Department of Physics at Cambridge University, and went on to
become a Lecturer in the Department of Applied Mathematics and

Applications Theoretical Physics, and a Fellow of St Johns College.

Examples In the late 1870s, another radio astronomer, Steve Gull, introduced him to

Products the power of the Maximum Entropy Method. John wrote what was to

become the first MemSys kernel system, and helped lay the Bayesian
foundations for MEM. In 1881 he and Steve founded MEDC to exploit
opportunities to apply MEM in other fields.

Prices

Documents John resigned his Lectureship in 1990 in order to go fullime with MSL and

MEDC. Thanks to the wonders of modern technology John is able to
telecommute from his new home in the West of Ireland, and he makes
Search MEDC regular visits to clients both in the UK and further afield.

g
.

Quick Search: Home | Applications | Products | Prices | Documents | About MEDC |

Contact Us | Full search

@MEDC Ltd. Last revised Wed Sep 19 22:19:39 2007

http://www.maxent.co.uk/
(the company no longer exists and the website has disappeared from the web)
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Example: miscalibrated Gaussian measurement errors, a Bayesian estimate using objective priors

Here, we consider the case where we must find the mean value with given measurement uncertainties that are
systematically multiplied by an unknown scale factor, under the assumption of Gaussianity.

2 4 & 8 10
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The likelihood has a Gaussian structure

Edoardo Milotti - Bayesian Methods - May 2022
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we must rearrange the exponent as usual ...

k=1 0'13 k=1 (713 k=1 (713 k=1 G;f 61%4 6134 612\4
N
=—2(D—2/,LM+/,L2)
M
1 11 Nd/Nl Ndz/Nl
dove = ; M = k. — D = "k _
o T Waor ML) 2o PR/ 2

therefore the likelihood is

platno )= o (T o] -2 (o2 )

(27)"" o™ \ izt o, 20°03;,
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Now we estimate the scale factor from Bayes’ theorem

o p(d‘O&,O‘)
plald, o) = T p(d’a,’a)p(&,)da,p(a)

however, we need first to marginalize the likelihood with respect to the mean,
which in this case is a nuisance parameter

we take a uniform prior for the mean

P(dlo.a)=[P(dlu.c.0)P(ulo.a)du
‘ul Himax

= _[ P(dlp,o,0)du

Edoardo Milotti - Bayesian Methods - May 2022

52



as usual ...

D-2uM+u =y’ -2uM +M*+D—-M"
=(u-M) +D-M*

... therefore the marginalized likelihood is:

1 1

v
W (27)"" o Eo_k J&
lﬁ[i exp[_N(D—Mz)]\/zmza;

20°0;, N

P(dlo,x)= Texp{— al [(M—M)2+D—M2}}du

2 2
20000,




P(a)e<

Lo (_N(D — M2)>

N—1 2 2
Qo 20 oaf

: Jo Oﬂi_l exp <—N(D n ]2\42)> p(a’)da

o

/2
20 Oy

for the standard deviation we
take again a Jeffreys prior
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1 ( N(D-M?)) 1
exp | — —
aN-1 20202 o N(D — M?
plafd o) = — e e M)
fa o/ N—1 exXp | — 2&/2012\4 a/da
1 A?
N P T 7o
‘ p(Oz‘d,U’) ? - 042
1 A

C /
K —IN XD do
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Plald, o) = ¢

AP(«a)

0.4}

0.3f

0.2}

0.1}

0.0}

2AN=1 /aN) exp(—A2/a?)

LNV =1)/2)]

N =2 |

ol
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we take the MAP estimate of the scale parameter from the pdf

2AN—1 A2
QN exXp <—§>

p(a‘d,d) —

dOC aN+1 2

d N A®) 247 A’
—P(o1d,0) o< — exp(——j+ exp(——jzo
o
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Example: the statistical link between smoking and lung cancer

Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.
Died: September 17, 1979, in Herndon, Virginia.

A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA.
APPLICATIONS TO CANCER OF THE
LUNG, BREAST, AND CERVIX!

JeroME CosNFIELD, Nolionai Cancer Instilule, Nalional
i{u;tﬂu&a of Health, U. S. Public Health Service, Betheada,

1 Recslved for publication February 23, 1081,
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FIGURE 1.
Fisher at age 34. Reprinted from Box JF. RA Fisher:
the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.

Fisher developed four lines of argument in questioning the
causal relation of lung cancer to smoking.

1) If Ais associated with B, then not only is it possible that

In other words, smoking may cause lung cancer, but it is
a logical possibility that lung cancer causes smoking.

2) There may be a genetic predisposition to smoke (and
that genetic predisposition is presumably also linked to
lung cancer).

3) Smoking is unlikely to cause lung cancer because secular

trend and other ecologic data do not support this
relation.

4) Smoking does not cause lung cancer because inhalers
are less likely to develop lung cancer than are
noninhalers

Passport photograph of Ronald Aylimer
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Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

Having cancer | Healthy Total
of the lung

Smokers 0.119-103 0.579910 0.580025
Nonsmokers  0.036-10-3 0.419935 0.419971
Total 0.155-103 0.999845 1.000000

what is the proportion having cancer of the lung in each population?

Smokers: 0.119-10-3/0.580025 = 2.05164-10*

Nonsmokers: 0.036-103/0.419971 = 8.57202-10°5

And the prevalence of lung cancer in smokers with respect to nonsmokers is

Smokers/Nonsmokers = 2.4

Edoardo Milotti - Bayesian Methods - May 2022
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We can also write an easy Bayesian equation that leads to some information as to the causation of cancer of the lung

k
P(Cancer[Smoker)  £(SmokeriCancer) P(Smoker)

P(Cancer)
P(Cancer|Nonsmoker) — P(Nonsmoker|Cancer) P(Nonsmoker)
P(Cancer)
Therefore, the Bayes factor is
P(Cancer|Smoker) P(Smoker|Cancer) P(Smoker)

P(Cancer|Nonsmoker)  P(Nonsmoker|Cancer) P(Nonsmoker)

and with the numbers in the table, one finds that this ratio is about 3.5 (significant according to both Jeffreys, and Kass

and Raftery)
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According to Jeffreys, a Bayes ratio of 3.5 is already substantial support in favor of the hypothesis that smoking does
cause lung cancer.

log1o(B) B Evidence support

0to1/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive
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* In 1954 Richard Doll and Bradford Hill published evidence in the British Medical Journal showing a strong link
between smoking and lung cancer. They published further evidence in 1956.

* Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He did not think the statistical evidence
for a link was convincing.

* Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following an operation for colon cancer.
* With bitter irony, we now know that the likelihood of getting this disease increases in smokers.

Ronald Fisher was cremated, and his ashes interred in St. Peter’s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017 <www.famousscientists.org/ronald-fisher/>.)
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Trends in Tobacco Use and Lung Cancer Death Rates in the U.S.
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Death rates source: US Mortality Data, 1960-2010, US Mortality Volumes, 1930-1959, National Center for Health Statistics, Centers

for Disease Control and Prevention.

Cigarette consumption source: US Department of Agriculture, 1900-2007.
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From 1948 to his death 31 years later, Corn-
field devoted the major portion of his career to
the development and application of statistical the-
ory and methods to the biomedical sciences. His
contributions were diverse both in the nature of his
statistical interests and in the areas of biostatisti-
cal applications. He was involved in and touched
upon every major public health issue that arose in
that period — the polio vaccines [23], smoking and
lung cancer (see Smoking and Health) [22, 29],
risk factors for cardiovascular disease [5, 30], and the
difficult statistical issues of estimating the low-dose
carcinogenic effects in humans (see Extrapolation,
Low Dose) of a food additive that becomes suspect

because it produces cancer in animals at much higher
doses [14, 20].

Encyclopedia of Biostatistics, Online © 2005 John Wiley & Sons, Ltd.

This article is © 2005 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Biostatistics in 2005 by John Wiley & Sons, Ltd.
DOI: 10.1002/0470011815.b2a17032



