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Image likelihood: 2. the noise model (degradation model)
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(Poisson noise mostly from detection process, Gaussian noise
mostly from electronics or from approximation of Poisson
noise)



sometimes we can use the Gaussian approximation of Poisson
noise
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Gaussian noise only:

maximize linear combination of entropy and chi-square
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Combined noise model

detector noise: Poisson noise
electronic noise: Gaussian noise

1
P(g|f):1:[;Wexp —~ - 1 X

maximize

log P(f|g)=aS(f)+ zn:log {; \/2;7 exp{— s _zk) }(I-Zf')i exp| —(HF), ]}

0

» numerical maximization procedure
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Many related methods: e.g. the Richardson-Lucy (RL) algorithm

noise model: Poisson noise
prior: flat prior

P(f|g) H(Hf)gn

1= !" exp| —(HFf) |P(f)

logP(f\g) = Z[—(Hf)n +g, log(Hf)n]+ const.
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A 8. Raw image of planet Saturn obtained with the WF/PC cam-
era of the HST.

A 9. Reconstruction of the image of Saturn using the R-L algo-
rithm.
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NGC 604 in Spiral Galaxy M33
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Example: reconstruction
of the mass distribution
of a gravitational lens
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Galaxy Cluster Abell 2218
Hubble Space Telescope e WFPC2

NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) * STScl-PRC00-08



A very small, faint galaxy - possibly one of
the long sought "building blocks' of present-
day galaxies - has been discovered by a
collaboration between the Hubble Space
Telescope and the Keck Telescopes at a
tremendous distance of 13.4 billion light-
years (based on the estimate of 14 billion
years as the age of the Universe). The
discovery was made possible by examining
small areas of sky viewed through massive
intervening clusters of galaxies. These act as

a powerful gravitational lens, magnifying
distant objects and allowing scientists to
probe how galaxies assemble at very early
times. This has profound implications for
our understanding of how and when the
first stars and galaxies formed in the
Universe.

(from:
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Distant Galaxy Lensed by Cluster Abell 2218 HST+*WFPC2 ¢ ACS
The highlighted orange arc in this image taken o
by the Hubble Space Telescope's Advanced
Camera for Surveys represent the stretched
image of a galaxy some 13 billion light-years

away from Earth. Analysis of spectra taken by ' ' . .
Hubble and Keck determined that the galaxy |
has a redshift of about 7, meaning that the 5 .

star system is seen as it was only 750 million

L
years after the Big Bang. Light from the galaxy *
has been distorted by the gravitational-lensing N a
effects of the intervening galaxy cluster Abell
2218.

W

- % o
ESA, NASA, J.-P Kneib (Caltech/Observatoire Midi-Pyrénées) and R. Ellis (Caltech)) STScl-PRC04-08




Gravitational lenses:
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A weak gravitational lens is, in its essentials, equivalent to T .\
a flat space deflector with refractive index 1 — 2¢/c?,
where ¢ is the 3D Newtonian potential with respect to
infinity. (Blandford & Narayan, Cosmological Applications of [
Gravitational Lensing, Annu. Rev. Astron. Astrophys. 1992, \ ey
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B = angle in the source plane
Le-o 0 = angle in the image plane

Figure 1. The gravitational lens geometry. The light ray propagates from the
source S to the observer O and is deflected through as angle & so that the
image appears at [. The angular separations of the source and image from the
optic axis are denoted by @ and 0 respectively. Dy, D, and Dy, are
respectively the angular diameter distances from the observer to the lens,
the observer to the source and the source to the lens.

Vectors of angular distances in the source and
image transform as follows:

dB = Ad6

where the the tensor A is the inverse of the
magnification tensor and depends on the angle in
the image plane

_(l=—Kk—m —72
AlB) = ( —72 1—/€‘|"Yl)

This tensor depends on two 0-dependent
variables: Kk which is called the convergence, and
Y1, Y2 Which are called the shears.

The convergence is directly related to the mass
distribution in the source plane

>(0) ¢ D,
— ; crit =
> erit 4G DyD 4,
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Fig. 6 Illustration of the effect of lensing: local deformation of a regular grid and a circle (left: source
map) by a lens with constant value of the convergence x and the shear y over the region (right: image

map)



Distortion field overlay
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* Starting from an image, it is possible to recover magnification and
(complex) ellipticity values (averaged over groups of pixels)

* These experimental values are used to reconstruct the
convergence by means of a MEM approach

* The convergence distribution is simply proportional to the mass
distribution

2(9). s c? D,
T 4rG DyDy.
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GEMINI AND CHANDRA OBSERVATIONS OF ABELL 586, A RELAXED STRONG-LENSING CLUSTER

E. S. CYPRIANO,l’Z G. B. Lima NETo,3 L. SoDRE, JR.,3 J.-P. KNEIB,4’5 AND L. E. Campusano®
Received 2004 August 16; accepted 2005 April 1

ABSTRACT

We analyze the mass content of the massive strong-lensing cluster Abell 586 (z = 0.17). We use optical data
(imaging and spectroscopy) obtained with the Gemini Multi-Object Spectrograph (GMOS) mounted on the 8 m
Gemini North telescope, together with publicly available X-ray data taken with the Chandra space telescope.
Employing different techniques—velocity distribution of galaxies, weak gravitational lensing, and spatially resolved
X-ray spectroscopy—we derive mass and velocity dispersion estimates from each of them. All estimates agree well
with each other, within a 68% confidence level, indicating a velocity dispersion of 1000—-1250 km s~!. The projected
mass distributions obtained through weak lensing and X-ray emission are strikingly similar, having nearly circular
geometry. We suggest that Abell 586 is probably a truly relaxed cluster whose last major merger occurred more than
~4 Gyr ago.
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Gemini Multi-Object Spectrograph image of the central region of Abell 586 with logarithmically spaced X-
ray isophotes (solid lines) and weak-lensing reconstructed mass density (dashed lines) superposed. The
X-ray point source near the southwest corner is the Seyfert 1 galaxy C171_3650.

(from Cypriano et al., ApJ, 630 (2005) 38-49)
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Bayesian classification

this likelihood is defined by
data X, classes C training data

4

P(x|C)
P(X)

the prior is also defined by
training data

P(C|X)= P(C)

we canh use the prior learning to assign a class to new data

Pl X|C
Ckzarggnax I(D(‘X)k)P(Ck)zarggnaxP(X\Ck)P(Ck)
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Consider a vector of N attributes given as Boolean variables

X = {x;} and classify the data vectors with a single Boolean variable.

The learning procedure must yield:

it is easy to obtain it as an empirical distribution from
an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N+!
different values, and we must estimate 2(2N-1)
parameters ... for instance, with N = 30 there are more
than 2 billion parameters!
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How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,’s:
naive Bayesian learning

for instance, with just two attributes

P(x,.3,]y) = P(x]x%,.) P(x,|y) = P(xy) P(x,]y)

conditional independence assumption

with more than 2 attributes

P(X\y)zﬁp(xk\ﬁ
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Therefore:

P(x|y,) (y,)= P(xly,)

P(x)

)
5P ()ITP(xl)

P(yk|x):

P()’k)

and we assign the class according to the rule (MAP)

N
[1P(x]x)
y = arg max =l P(y,)
W ZP yj) lP(xn yj)
j n=
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More general discrete inputs

If any of the N x variables has J different values, e if there are K
classes, then we must estimate in all NK(J-1) free parameters with
the Naive Bayes Classifier (this includes normalization) (compare

this with the K(JN-1) parameters needed by a complete classifier)
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Continuous inputs and discrete classes — the Gaussian case

2
1 X, = i,
P('xn yk): 2%62 eXp _( 262kk)
nk | n _

here we must estimate 2NK parameters + the shape of the

distribution P(y) (this adds up to another K-1 parameters)
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Gaussian special case with class-independent variance and Boolean
classification (two classes only):

P(X|y = O)P(y = O)
X|y = O)P(y = O)+P(X|y = I)P(y = 1)

P()’=0|X): P(

1 ('xn _ aLLnO )2
P(x|y=0)= -
(%[y=0) 2no? exp_ 20, |
1 _ ('xn o ILLnl )2 —
P :1 — —
(xn y ) Zyralf eXp_ = _
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logistic shape

N
W, + anxnj

ex
P(y=1x)=1-P(y=0Jx)= =
1+ exp(wo + anxnj
n=1
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Finally an input vector belongs to classy =0 if

P(y=0|x)
P(y=1[x)

g

> 1

1
P(y=0x)= v
1+exp(w0 +anxnj
n=1 N
eXp(wo +iwnxn) » eXp(WO ’ 2;1‘ ot
P(y: 1|X): =

N
1+ exp(wo + anxnj

n=1

N
» wo+ Y wx <0
n=1
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Logistic regression (logit regression)

The odds ratio

Py = 1|x) p

Ply=0x) 1-p

with the exponential expansion that we just found (the logistic expression for p) gives

N
lnlp :w0+2wnacn
R n=1

For a given set of K class determinations where the fraction of assignments to class 1
is p(k) for a parameter vector of {ng)}k:l,K this log odds ratio becomes

p(k) N 5
In T p® = wp + Z_:lwnxn
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The expression

1

is the basis for a generalized linear regression, to determine the w parameters.

n 1 —p(k)

p(k)

N
— Wy -+ Z wn:vg‘“)
n=1

This can be done with the least squares method, where one minizes

k=1 L

I

N
1—p(k)

N
wo + Z wnxg“)
n=1

This logit regression is often used in classification problem:s.




The Gibbs sampler

(from Casella and George, Explaining the Gibbs sampler Am.Stat. 46 (1992) 167 )
Let's start with an example, and consider the following joint distribution:
n rt+a—1 1 n—x+68—1 — 0 0<y<1
f(.il?,y)OC 7 Y ( _y) ) L=U,..., N > Y >
We see that

f(x|y) ~ Binomial(n, y)
f(y|lz) ~ Beta(x + a,n — z + )

Next we set up a simple Markov chain procedure ...

Edoardo Milotti - Bayesian Methods - May 2022
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We generate a "Gibbs sequence" of random variables

Y, X, Y, X, Y, XS, ..., Y, X,

where the initial value is specified and the others are computed with the rule
Xj ~f(x|Y; = yj)
;+1 Nf(y Xj’ = xj{)

(Gibbs sampling).

We observe that for large enough k, the final X values have a fixed distribution
that corresponds to the marginal pdf of the x variate.
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50 + black = Gibbs sampling
white = theoretical expectation
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Figure 1. Comparison of Two Histograms of Samples of Size
m = 500 From the Beta-Binomial Distribution Withn = 16, a = 2,
and B = 4. The black histogram sample was obtained using Gibbs
sampling with k = 10. The white histogram sample was generated
directly from the beta-binomial distribution.



Should we expect this result?

Consider the following expectation value
By [f (xly)] = /Y (aly) £ () dy = /Y f(a,y)dy = f(x)
therefore we can estimate f(x) with the sum
F) = = 3 x| )

and finally the Gibbs sampling provides representative samples that correspond to this marginal distribution. (for a better
proof, check the paper by Casella&George)
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Does Gibbs sampling converge?

We consider the following case: two discrete random variables with marginally Bernoulli distributions and with a joint

probability distribution described by this matrix

X
0 1
0 P1 J 2
Y
1 P3 Pa

pi=0,ps + p, + p3 + py

£.,(0,0) £.,(1,0)
£o,(0,1) £, (1,1)

e

1

P1
P3
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£.,(0,0)  £.,(1,0)
£o,(0,1) fo,(1,1)

-

fo = 1£0) (D)) =1[p1 + ps p2 + pdl

D1

P1 P2
| P3 P4

Pz 7

P1 t+ D3
P2

P1 + D3
P4

| P2 T Da

2

P2 t Pa_

P2

P1 t D2
P3

P1 Tt D2
Pa

|_P3 + Da4

P3 t Pa_
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Since we are only interested in the X sequence

P(X{=x1|X(',=x0)=2P(X{=x1|Y{=y)

y

X P(Y] = y| X5 = xp).

-

the transition matrix for the X sequence is
A = AypAyy

From the theory of Markov chains, we know that iterating this produces a fixed probability distribution, i.e., our
marginal distribution for X.

Edoardo Milotti - Bayesian Methods - May 2022
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So, what's the use of all this?

Consider the case where we want to compute the marginal pdf

f(x)=j...ff(x,yl,...,yp)dyl...dyp

in a situation where the multidimensional integral can be hard to compute.

The Gibbs sampler completely bypasses the calculation of the multidimensional integral and affords an easy
path to marginalization.

The procedure can be easily extended to multidimensional distributions, for example with two nuisance
variables we produce the sequence

’ ’ ’ ’ ’ ’ ’ ’ ’
YO, 207 XO) Yl’ Zla Xla Y2, ZZ’ X27 . v

by means of the conditional PDFs
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Model selection

The generic purpose of a model selection statistic is to set up a tension between the
predictiveness of a model (for instance indicated by the number of free parameters)
and its ability to fit observational data. Oversimplistic models offering a poor fit

should of course be thrown out, but so should more complex models that offer poor

predictive power.

There are two main types of model selection statistic that have been used in the
literature so far. Information criteria look at the best-fitting parameter values and
attach a penalty for the number of parameters; they are essentially a technical
formulation of “chi-squared per degrees of freedom” arguments. By contrast, the
Bayesian evidence applies the same type of likelihood analysis familiar from
parameter estimation, but at the level of models rather than parameters. It
depends on goodness of fit across the entire model parameter space.

(Liddle & al., 2006)

Edoardo Milotti - Bayesian Methods - May 2022
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Akaike Information Criterion (AIC).

This was derived by Hirotugu Akaike in 1974, and takes the form

AIC = —2In Lax + 2k

where k is the number of parameters in the model. The subscript “max” indicates that one
should find the parameter values yielding the highest possible likelihood within the model.
This second term acts as a kind of “Occam factor”; initially, as parameters are added, the
fit to data improves rapidly until a reasonable fit is achieved, but further parameters
then add little and the penalty term 2k takes over. The generic shape of the AIC as a
function of number of parameters is a rapid fall, a minimum, and then a rise. The preferred
model sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an
approximate minimization of the Kullback—Leibler information entropy which measures

the distance between two probability distributions.

(Liddle & al., 2006)
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Bayesian Information Criterion (BIC).

This was derived by Gideon Schwarz in 1978, and strongly resembles the AIC. It is given by

BIC=-2InLy.x +kIn N

where N is the number of datapoints. Since a typical dataset will have InN > 2, the BIC
imposes a stricter penalty against extra parameters than the AlC.

It was derived as an approximation to the Bayesian evidence, to be discussed next, but
the assumptions required are very restrictive and unlikely to hold in practice, rendering

the approximation quite crude.

(Liddle & al., 2006)
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible
given some data, without necessarily considering preferred values of model
parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing

models using Bayes' theorem:

~ P(D|M;, I)P(M;]|T)
P(M;|D,I) = S . P(D| My, I)P(Mg|I)

and select the best model using the odds ratio

P(M;|D,I)  P(D|M;, I)P(M;|I)

"= P(Mi[D,T) ~ P(D[M;, T)P(M;|T)

or the Bayes factor, if we assume equal prior probabilities for the different models:

v P(D|M37])

Edoardo Milotti - Bayesian Methods - May 2022
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Thus we see that the Bayes factor is a ratio of evidences

" P(D|Mj, 1)

As usual, each evidence is obtained by marginalizing the likelihood with respect to the
(potentially different) parameters:

O;



The evidence of a model is thus the average likelihood of the model in the prior.

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model, but
asks “of all the parameter values you thought were viable before the data came along,
how well on average did they fit the data?”. Literally, it is the likelihood of the model
given the data.

The evidence rewards predictability of models, provided they give a good fit to the data,
and hence gives an axiomatic realization of Occam'’s razor.

A model with little parameter freedom is likely to fit data over much of its parameter
space, whereas a model that could match pretty much any data that might have cropped

up will give a better fit to the actual data but only in a small region of its larger
parameter space, pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using — wherever possible — the Bayesian evidence,
which is a full implementation of Bayesian inference and can be directly interpreted in terms
of model probabilities. It is computationally challenging to compute, being a highly peaked
multidimensional integral, but recent algorithm development has made it feasible in
cosmological contexts.

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is
much simpler to compute as one need only find the point of maximum likelihood for each
model. However, interpreting it can be difficult. Its main usefulness is as an approximation
to the evidence, but this holds only for gaussian likelihoods and provided the datapoints
are independent and identically distributed. The latter condition holds poorly for the current
global cosmological dataset, though it can potentially be improved by binning of the data,
hence decreasing the N in the penalty term.

The AIC has been widely used outside astrophysics, but is of debatable utility. It has been
shown to be “dimensionally inconsistent”, meaning that it is not guaranteed to give the
right result even in the limit of infinite unbiased data. It may be useful for checking the
robustness of conclusions drawn using the BIC. The evidence and BIC are dimensionally
consistent.

(Liddle & al., 2006)

Edoardo Milotti - Bayesian Methods - May 2022
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The EM algorithm

(Dempster, Laird & Rubin, 1977)

Recall the max. likelihood principle:

uniform distribution
(usually an improper prior)

p(dle,I) /

P(Gld’l): P(d|]) 'P(Gll) likelihood
evidence N }f((:;ig P(G | I) o £(d’9)

in this (approximate) setting, the MAP estimate coincides with
the ML estimate.
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when data are independent and identically distributed (i.i.d.) we find the following
likelihood function

0)

£(d.0)= Hp(di

and we estimate the parameters by maximizing the likelihood function
0 = argmax £(d,0)
(7]
or, equivalently, its logarithm

0 = argmax| log £ (d,0) |
7]

(in real life, this procedure is often complex and almost invariably it requires a
numerical solution)



The EM algorithm is used to maximize likelihood with incomplete information, and it
has two main steps that are iterated until convergence:

E. expectation of the log-likelihood, averaged with respect to missing data:

parameters (with respect to
which we want to maximize

the expression
measured  missing

data data previous parameter

likelihood estimate (constant
values

logp X y\O

ofo.0")

E,
j  log p(x,y|8) |p y‘x@”l) y
Y

M. maximization of the averaged log-likelihood with respect to parameters:

0" = arg maXQ(H, 9(”_1))
0
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Example: an experiment with an exponential model
(Flury and Zoppe)

Light bulbs fail following an exponential distribution with mean failure time @
To estimate the mean two experiments are performed
1. n light bulbs are tested, all failure times u; are recorded

2. m light bulbs are tested, only the total number r of bulbs failed at time t are
recorded

( )

1 1 U, 1 zi‘ui 1 n{u)
: lzngexp ) :Eexp 5 =§exp 5

\ J

missing data!



combined likelihood

porl 6 el 5,

log-likelihood

_nlno n{u) Z(lnm&)
o~ 6

l




expected failure time for a bulb that
is still burning at time t t+0

expected failure time for a bulb that O_ texp(—t/@)
is not burning at time t 1 — 6Xp(—t/9)



Note on mean failure time for a bulb that is not burning at time t

P(l")‘x%e_t'/e 0<t' <t
normalization = j p(t')dt' — jd_t, o0 —1— o1/
) v
. : ’ ’ ’ y /g GL dt
mean failure time = _[t p(t )dt = = jt

— - —z/e |:1 e—t/O (t/a)e—t/eil

te”?

1 . e—t/@

s



P

average log-likelihood

0= E{—nln@— ”g"> +i(-m9—%ﬂ
n(u) z(@_ rexm—r/e))]_(m;ﬁ(wo

—_ Ino— _
(n-+m)In 1—exp(—1/6

0

this ends the expectation step
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the max of the mean likelihood

1
Q——(n+m)ln9—5

texp(—1/6)
_n<u>+r(9— 1—exp(—t/9

can be found by maximizing the approximate expression

1

Q= —(n+m)ln9—5 n<u>+r[9(k) _

dO 11

do

—z—(n+m)5+9— n<u>+r[9

texp(—t/G(k))

(0 texp(—t/e(k))

1- exp(—t/e(k)

- exp (— t/H(k)
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))+(m—r)(9+t)—

)]+(m—r)(9(k) -|—t):

)]+<m_r>(e<k>+t)_
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dQ

9(k+1) _

n+m

1 © texp(—t/e("))

20" —(n+m)5+§ n<u>+r(9 - 1—exp(—t/G(k))]_l_(m_r)(e(k) +t)

-

texp(—t/ 0("))

n<u> +r| oW

- exp(—t/e(k))

this formula summarizes expectation
and maximization: therefore, the recipe
is to iterate this until convergence ...
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Example with mean failure time = 2 (a.u.), and randomly generated
data (n = 100; m = 100). In this example r = 36.

2'Of _____________________ oo o o o o o o o o o o
0" 1o
0.5
007, 5 10 15 20
k

Edoardo Milotti - Bayesian Methods - May 2021




