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Prior distributions

The choice of prior distribution is an important aspect of Bayesian inference
e prior distributions are one of the main targets of frequentists: how much do posteriors differ when we

choose different priors?

* there are two main “objective” methods for the choice of priors

1. Jeffreys' method
2. The Maximum Entropy Method
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Random variable transformations and prior distributions

pe(2)dz = ps (2(y)) 2—9; dy = py(y)dy

S py(y) = pe (2(y)) j—j

* In general, if the first pdf is uniform, the other one is not. This means that choosing a uniform
distribution as the "least informative" distribution is not enough, unless we specify which variate should

be uniformly distributed.

* How can we "objectively" choose a prior distribution???
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Bertrand’s paradox and the ambiguities of probability models (and how
physics can point to a way out)

Bertrand’s paradox goes as follows:
“consider an equilateral triangle inscribed inside a circle and suppose that a chord is
chosen at random. What is the probability that the chord is longer than a side of the

triangle?”

(Bertrand, 1889)
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Solution: we take two random points on the circle (radius R), then we rotate the circle so that one of the
two points coincides with one of the vertices of the inscribed triangle. Thus, a random chord is
equivalent to taking the first point that defines the chord as one vertex of the triangle while the other is
taken “at random” on the circle. Here “at random” means that it is uniformly distributed on the
circumference. Then only those chords that cross the opposite side of the triangle are actually longer
than each side. Since the subtended arc is 1/3 of the circumference, the probability of drawing a
random chord that is longer than one side of the triangle is 1/3.
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Solution 2: we take first a random radius, and next we choose a random point on this random radius.
Then, we take the chord through this point and perpendicular to the radius. When we rotate the
triangle so that the radius is perpendicular to one of the sides, we see that half of the points give chords
longer than one side of the triangle, therefore the probability is 1/2.
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Solution 3: we take the chord midpoints located inside the circle inscribed in the triangle, and we obtain
chords that are longer than one side of the triangle. Since the ratio of the areas of the two circles is 1/4,
we find that now the probability of drawing a long chord is just 1/4.

At least 3 different “solutions”: which one is correct, and why?
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Now we widen the scope of the problem, and we consider the
distribution of chords in the plane
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Distribution 1: distribution of chords (left panel) and of midpoints (right panel) in
the first solution of Bertrand’s paradox (the left panel shows 400 chords, the right
panel shows 100000 midpoints).
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Distribution 2: Distribution of chords (left panel) and of midpoints (right panel) in
the second solution of Bertrand’s paradox (the left panel shows 400 chords, the
right panel shows 100000 midpoints).

In this case it is very easy to find the radial density function of chord centers,

since here we take first a random radius, and next we choose a random point (the
center) on this random radius.

Edoardo Milotti - Bayesian Methods - May 2023 10



e
¥

Wi

A

Distribution 3: Distribution of chords (left panel) and of midpoints (right panel) in
the third solution of Bertrand’s paradox (the left panel shows 400 chords, the
right panel shows 100000 midpoints). Notice that while the distribution of
midpoints is uniform, the distribution of the resulting chords is distinctly non-
uniform.
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Hidden assumptions (Jaynes):

e rotational invariance
* scale invariance
* translational invariance

Now let

be the probability density of chord

centers
r, 0

Edoardo Milotti - Bayesian Methods - May 2023

13



Rotational invariance

In a reference frame which is at an angle o with respect to the original
frame, i.e., the new angle ¢’ = 6 — «, the distribution of centers is
given by a different distribution function g(r,0") = g(r,0 — «) .
Since we require rotational invariance

f(r,@):g(r,ﬁ—a)

with the condition g(r, 8)|a=0 = f(r, #), and this must hold for every
angle «, so the only possibility is that there is no dependence on 6,

and f(r,0) = g(r,0) = f(r)
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Scale invariance

When we consider a circle with radius R, the normalization of the distribution f(r) is

given by the integral
27 R R
/ / f(r)yrdrdd = 27r/ f(ryrdr =1
o Jo 0

The same distribution induces a similar distribution /(r) on a smaller concentric
circle with radius aR (0 < a < 1), such that h(r) is proportional to f(r), i.e.,
h(r) = Kf(r), and

ak aR aR
b 27r/ h(u)udu = 27r/ Kf (u)udu = 27rK/ f(u)udu
0 0 0

1LE., :
G 27T/ f(u)udu
0
and
aR
f(r) = 27rh(r)/ f(u)udu
0

inside the smaller circle.
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Now we invoke the assumed scale invariance: the probability of
finding a center in an annulus with radii r and r 4 dr in the original
circle, must be equal to the probability of finding a center in the
scaled down annulus,

h(ar)(ar)d(ar) = f(r)rdr

and therefore

a*h(ar) = f(r)
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Equation
a*h(ar) = f(r)

can also be rewritten in the form

and inserting this into equation

aR
lr) = 27Th(r)/0 f(u)udu

we find

aR
612 gry — ZRIF uudu
f(ar) 2f()/0 £ (w)ud
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We solve equation
aR
a*f(ar) = 27f(r) / f(u)udu
0

taking first its derivative with respect to «: the relation that we find must hold for all
a’s, and therefore also for ¢ = 1 (no scaling), and we find the differential equation

if'(r) = (27RF(R) - 2) (1)

e

if'(r) = (g —2)f(r)
where the constant ¢ = 27R*f(R) is unknown. However, we can still solve the
equation and find

f(r) =Ar"""

The constant A is easy to find from the normalization condition: A = ¢/27R9, and
therefore
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Translational invariance

Geometrical construction for the discussion of translational invariance. The
original circle (black) is crossed by a straight line (red) which defines the chord.
The translated circle is shown in blue.
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This circle is displaced by the amount b, and the new radius and angle
that define the midpoint of the chord are

r' = |r — bcos 0|
¢ =0 (ifr >bcosf) or 0 =60+7 (if r <bcosb)
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Now consider a region I' surrounding the midpoint in the original
circle, which is transformed into a region I by the translation. The
probability of finding a chord with the midpoint in the region I" is

grt q —1
drdf = drdf = T drd
/Ff(r)r rdf /FZ'erq rdf 27rR‘1/Fr rdf

Likewise, the same probability for the translated circle is

q ng—1 319 _ 4 o q—1
- /1“'(r) dr'df’ = 27‘_Rq/F|r bcosO|7 drdf  (3)

where the Jacobian of the transformation is 1. Equating these
expressions, we see that the integrand must be a constant, and

therefore ¢ = 1, and

f(r,0) = —

27Rr

(<R 0 < (= 2x)
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Therefore

Fr.0) = ) = Or
=  (normalization) 1= / f(r)2nrdr = 2nCR
C

1

= )= 21r R
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Using this distribution, we find that the probability of finding a
midpoint inside the circle with radius R/2 — i.e., the probability of
finding a chord longer than the side of the triangle in Bertrand’s
paradox — is

27 R/2 R/2 1 1
d . d — 2 d = —
/0 V) A f(r,0)rdr 7r/0 27rRrr r >

which corresponds to the second alternative in the previous discussion
of Bertrand’s paradox.

Lesson drawn from Bertrand’s paradox:
probability models depend on physical assumptions, they are not

God-given. We define the elementary events based on real-world
constraints, derived from our own experience.
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Proof of the Bartlett identities for a parametric family of pdf's

e pdf normalization /{ }p(% 9)d$ =1

op(x,0)
. 00

derivation of normalization formula g / p(:c, H)d;c — /
00 J ) i

further manipulation of the previous result

Ip(z, 0) / 1 9p(z,0)
0= dr =

:/ 811&]9(:16,(9)10(5576,)@j
1z}

00

B Olnp(x,0)
-5 |0

] First Bartlett identity
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Proof of the Bartlett identities for a parametric family of pdf's (ctd.)

Olnp(x,0
* derivation of the first identity / g(ﬁ )p(x, 9)d$ =0
{z}

e further manipulation of the previous result

0 Olnp(x,0) _/ 0% Inp(zx,0) Olnp(x,0) Op(x, )
V= o6 /{w} g Moo= | [ o P05 06

B 0% np(x,0) 1  Olnp(x,0) op(z,0H)

] /{w} T e e 0

B #np(z,0) [dlnp(z,0)]°
= /{x} { 502 + o9 ] p(x, 0)dx

2 2
:E[a lnp(az,ﬁ)] B ((9lnp(:z:,9)> } N o
062 o6 econd Bartlett identity
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The Cramér-Rao-Fisher bound and the Fisher information

dln L(z,0)\ " _ P InL(z.0)
0 - 52

Oln L(x,0)
= E
o

e using both identities var [
* expectation value of ML estimator E[é(D)] = / O(x)L(x,0)dx =0+ by,
{z}

* derivative of the previous expression

%E[QA(D)] =1+ %i; — /{x} 0(z) (9L(8:2, ) dr = /{x} é(a:)aln ggc’ Q)L(x, 0)dx
_R [é(D)(?lnIéng,H)] — eou [é(D)ﬁlnlg)(QD,@)] R [é(D)} - lalnl;(HD,Q)]
= cov [é(D)aln lé;(QD,H)]

Edoardo Milotti - Bayesian Methods - May 2023 26



The Cramér-Rao-Fisher bound and the Fisher information (ctd.)

* we use Schwartz's inequality for covariance [COV(ZU, y)]2 < 033(75
Ob,, A OlnL(D,0
 we apply the inequality to the previous result 1 + 20 = Ccov IH(D), - 8(6 )] and find
2 2
. A InL(D,6

(1+%ig) _ {cov [e(m,al”g(f’e)” < var[(D)]var [8 = a<e ’ )]

* rearranging terms, we obtain the Cramér-Rao-Fisher bound
; (14 %)’ (1+ %)’ (1+ %)’
var|f(D)] = dln L(D,0) - 2] — 0% 1In L(D,0)
var[ L(D, } B [(alng(gD,e)) ] -E—5
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Definition of Fisher Information. A very concentrated pdf is very informative. Therefore,

the smaller the variance, the greater the "information".

Thus, from the (unbiased, consistent) Cramér-Rao-Fisher bound

A 1 1
var|0(D)| > —
D) o | (9mL(D, ) | _g@InL(D, b)
90, 005

one is led to the Fisher Information

1(0) = E

Olnp(x,0) ’ __E82lnp(:r;,9)
00 B 062
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A short refresher on Boltzmann's entropy in statistical mechanics

* consider a system where states n are occupied by N, identical particles
(n, n=1, ..., M).

* the number of ways to fill these states is given by

N!
" N,IN,l...N,,!
« then Boltzmann’s entropy is
N '
Sp =kzlnQ =kpln TARA (NInN — N) — Z:(Nz- In N; — ;)

=kp [NInN =) Np;(Inp; +nN)| =kgN ) p;ln—
i i Pi




From Boltzmann's entropy to Shannon's entropy

1
SB:]CBN In —
Pi

)
probability of physical states

Boltzmann’s entropy is just like
Shannon’s entropy
this logarithmic function is

the information carried by
the i-th symbol

Shannon’s entropy is the average probability of source symbols
information output by a source of
symbols
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Examples:

e just two symbols, 0 and 1, same source probability

1 1
21 =1 — | =
0%22

/N

St

there are 2

equal terms average information
conveyed by each
symbol
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\

the result is given in
pseudounit “bits” (for
natural logarithms this is
“nats”)
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e just two symbols, 0 and 1, probabilities %4 and % , respectively

1 1 3 3 .
S[:—Zlog24 4log21%0.81 bit

8 symbols, equal probabilities

1 1 .
SI:—Z§IOg2§:10g28:3blt
1



The Shannon entropy is additive for independent sources.

If symbols are emitted simultaneously and independently by two sources, the joint

probability distribution is

p(j, k)

and therefore the joint entropy is

S = —Zp J, k) logy p(j, k

- Zpl ) logy p1(3

:Sl—l—SQ

Edoardo Milotti -

= p1(J)p2(k)

Zpl Pz

sz ) log, p2 (k)
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The Shannon entropy is at a maximum for the uniform distribution.

This is an easy result that follows using one Lagrange multiplier to keep probability
normalization into account

N N N
S+ )\Zpk: = _Zpkzlongk +)\Zpk
k=1 k=1 k=1
1 N N
= “Tno Zpk Inpg + AZpk
N
0, 1

—E(lnpj +1)+A=0

P = eXp()\ In?2 — 1) — 1/N 32|E;0babilities have the same

3 9
s
©n
_|_
>
(]
J
|
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The Kullback-Leibler divergence

The obvious extension of the Shannon entropy to continuous distributions

+ 00
— l

does not work, because it diverges.

A solution is suggested again by statistical mechanics ...



Boltzmann entropy with degeneracy number attached to each level

2

N

() =
N1INs!. .. Ny,!

M M
InQ=InN!— ZlnNk! —I—ZNklngk
k=1 k=1

(Nk/N)
gk
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Kullback-Leibler

divergence
M
Pk
= E pr In —
—1 9k
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Properties of the Kullback-Leibler divergence

extreme value when p, = g,.
Indeed, using again a Lagrange multiplier we must consider the auxiliary

function
T + A E Dk
k

and we find the extreme value at

e = gre™ "t = gi

normalization

(homework!)
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The KL divergence is a measure of the number of excess bits that we must use when we take
a distribution of symbols which is different from the reference distribution

M 1 X 1
:Zpklﬂ ];pklﬂp—k
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The KL divergence for continuous distributions does not diverge

= Zpk 111
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The KL divergence is non-negative

Notice first that when we define ¢(t) = tInt we find

B(t) = B(1) + ' (1)t — 1)+ 58" (W)t~ 1)* = (t = 1) + 5t — 1)?

where t < h <1 andtherefore

Ixr = /;OO p(z)In 2 g — /m P(2) 1 P oy = /ZO & (p(‘”)) g(z)dz

g(x) oo 9(x)  g(z) g(z)

G e G ) e [ (5
- / N i (p(a:)gz;;(cv)fdx ="

— 0



The KL divergence is a quasi-metric (however a local version of the KL divergence is the Fisher
information, which is a true metric)

The KL divergence can be used to measure the “distance” between two distributions.

Example: the KL divergence

+-00 T
Iy (p,q) = /_ p(x)In SExid:ﬂ

for the distributions

—

p(z) = Toos P (—$—2>

(o) =~ exp (1)
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Now consider a family of parametric distributions and evaluate the KL divergence between
two close elements of the family

oo p(z,0)

Tien 0@ 0)p(e.0 +0) = [ p(a.0)n 2L

=E (Inp(z,0) — Inp(x,0 + ¢))

vince dlnp(z,0)  18%Inp(z,0)
N np(«, 19%Inp(x,0) ,
Inp(x,0+¢€) ~Inp(x,0)+ Y e+2 o0z €

we find, using the first Bartlett identity,

B Olnp(z,0) 10%Inp(x,0) ,
Lt (ol 0),p(o. 6+ ) = - Ty JERERD

1. [0%1Inp(x,0) 5 1 5
__§E[ 502 ]e —51((9)6

i.e., locally the KL divergence is just the Fisher information



The KL divergence can be transformed into a true distance between pdf's

» Jeffreys' distance 1

1
IﬂnQZQMdn®+5hd%m

1 p+qy\ 1 P+q
* Jensen-Shannon distance [JS (p, Q) — §IKL (p, 5 ) | §IKL (CL T)
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A way forward to "objective" priors: Jeffreys' priors

- An invariant form for the prior probability in
estimation problems

By HaroLp J EFFREYS, F.R.S.

(Recewved 23 November 1945)

It is shown that a certain differential form depending on the values of the parameters, in a
law of chance is invariant for all transformations of the parameters when the law is differen-
tiable with regard to all parameters. For laws containing a location and a scale parameter
a form with a somewhat restricted type of invariance is found even when the law is not
everywhere differentiable with regard to the parameters. This form has the properties

required to give a general rule for stating the prior probability in a large class of estimation
problems.
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The KL divergence is invariant with respect to generic random variable transformations.

From the definition of KL divergence, and from the transformation formula for pdf's we find

boo py() oo (re) |3
/—oo Py(y) 1n<Qy(y)> dy:/—oo Potz)ln \q (z) d_a:' ) “

= [ o (2 ) e

In this case, our random variables are the parameter estimates, therefore the KL divergence
is invariant with respect to parameter (random variable transformations), therefore the
associated Fisher Information from the local expansion of the KL divergence is also invariant
with respect to parameter transformations.
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From the equation that relates KL divergence and Fisher Information, we find a
corresponding pdf:

1

I (p(x|0), p(x|0 + €)) = —= [5’ In p(x]0)

067

1
] ¢ = —I(0)e
2 2
this means that for small fluctuations of the parameter, Fisher's information changes
quadratically. Then, we recover linear changes when we take the square root.

Finally, the non-negative function

can be normalized to obtain a pdf that is invariant with respect to parameter
transformations and is measured in “inverse parameter units” (as it should be for a pdf; this
can be seen from the formula above, and from the fact that the KL divergence is
dimensionless).
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Example: a simple Gaussian Likelihood for n datapoints, with known variance

1 (0 — p)?
ol =TT s o (-5 )
N2
(— Ino — (wn 'u) ) fixed sigma

202

\ 4
=3
b,
S
S
X

*[]

0% 1In L(D|u)
» I(p)=E [— o ] ~ constant

This points to a uniform prior for u. In general, this uniform prior is an improper prior.
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Example: a simple Gaussian Likelihood for n datapoints, with known mean

0°In L(D|o 1
» I(O‘):E[— 80'(2 ’ )] ~ — fixed mu

This power-law pdf is another improper prior.
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Example: Poisson distribution

L(Dla) = H

akn
e
k!

» ()=E [— 7 lnaLagD‘“)} N

» @~ -

This power-law pdf is yet another improper prior.
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A lesson learned from Jeffreys priors

Jeffreys priors are tuned to the Likelihood, but doesn't
this sound strange? Shouldn't the prior information be
tied to the prior distribution alone?

Well ... no, the Likelihood is also constructed using

prior information (obviously!). So, in this approach the
Likelihood and the priors are both determined using the
available prior information.
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(1891-1989)
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