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Our next important topic: Bayesian estimates often require complex 
numerical integrals. How do we confront this problem? 

enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling perspective
5. Introduction to Markov chains and to Random Walks (RW)
6. Simulated annealing
7. The Metropolis algorithm
8. Markov Chain Monte Carlo (MCMC)
9. The Gibbs sampler
10. The efficiency of MCMC algorithms
11. Affine-invariant MCMC algorithms (EMCEE)
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4. Bayesian methods in a sampling-resampling perspective (Smith & Gelfand, 1992)
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In Bayesian methods we have to evaluate many integrals, like, e.g.,

normalization (evidence)

marginalization

averages (statistical estimators)
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Bayesian learning as a resampling procedure (importance sampling-
like scheme)

1. prior distribution defined 
by the empirical distribution 
of the initial samples

(sampling)

2. the Likelihood distorts 
the distribution of initial 
samples (corresponds to 
a sample acceptance 
probability) 

(resampling))

3. the posterior distribution is 
represented by the resampled 
empirical distribution

Edoardo Milotti - Bayesian Methods - May 2023 6

<latexit sha1_base64="5dm2SwVZhrvSC8KlNsS3mFQoo8c=">AAACPXicdVC7SgNBFJ31GeMramkzGISkCbviqxGCWlgqJCpkQ5id3Jghs7vDzF0hbPJjNv6DnZ2NhSK2tk4e4vvAwOGcc7lzT6CkMOi6987E5NT0zGxmLju/sLi0nFtZPTdxojlUeSxjfRkwA1JEUEWBEi6VBhYGEi6CztHAv7gGbUQcVbCroB6yq0i0BGdopUauogo+tgFZo9M7LlJf6VhhTFVaOO59GMU+pZ+xIj2gqQ9S/p9o5PJuyR2C/ibemOTJGKeN3J3fjHkSQoRcMmNqnquwnjKNgkvoZ/3EgGK8w66gZmnEQjD1dHh9n25apUlbsbYvQjpUv06kLDSmGwY2GTJsm5/eQPzLqyXY2q+nIlIJQsRHi1qJpLafQZW0KTRwlF1LGNfC/pXyNtOMoy08a0vwfp78m5xvlbzd0s7Zdr58OK4jQ9bJBikQj+yRMjkhp6RKOLkhD+SJPDu3zqPz4ryOohPOeGaNfIPz9g5izK2E</latexit>

p(✓k|D) / p(D|✓k)p(✓k) = `(D|✓k)p(✓k)



Example (McCullagh & Nelder): take two sets of binomially 
distributed independent random variables Xi1 and Xi2 (i=1,2,3)

The observed random variables are the sums 

Yi = Xi1 + Xi2

Xi1 = Binomial ni1,θ1( )
Xi2 = Binomial ni2 ,θ2( )
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Sample data

1 2 3
ni1 5 6 4
ni2 5 4 6
yi 7 5 6
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Example of implementation in Mathematica
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Posterior as a resampled prior using acceptance-rejection
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Posterior as a resampled prior using weighted bootstrap
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The resampled points are representative of the posterior 
distribution and can be used to evaluate any sample estimate
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... these calculational methodologies have also had an impact on 
theory. By freeing statisticians from dealing with complicated 
calculations, the statistical aspects of a problem can become the main 
focus. 

Casella & George, in their description of the Gibbs sampler. Am. Stat. 46 (1992) 167
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Chapter 6

Markov processes

In this chapter I give a short introduction to both discrete and continuous time
Markov processes. We start with the discrete time Markov processes, which are
better known as Markov chains1.

6.1 Transition Probabilities

Consider a system such that

• the system can occupy a finite or countably infinite set of states Sn;

• the system changes state randomly at discrete times t = 1; 2; : : : ;

• if the system is in state Si , then the probability that the system goes into
state Sj is

pi j = P [S(n + 1) = Sj |S(n) = Si ] i ; j = 1; 2; : : :

i.e., this probability depends only on the previous state, and is independent
o all previous states (this is the Markov property);

• the transition probabilities pi j do not depend on time n.

Such a system is a special type of discrete time stochastic process, which is
called Markov chain.
The assumption that the transition probabilities do not depend on time is not
strictly necessary, however many interesting processes fall in this category of
homogeneous Markov chains.

Consider the following example, taken from Kemeny, Snell, and Thompson
Introduction to Finite Mathematics, 3rd ed. (Prentice-Hall, 1974): in the Land

1These notes are partly based on ch. 6, ref. [30]; additional material is taken from [7, 8, 17].
Please note that the notation used in these notes differs slightly from the notation in [30].
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5. Very short introduction to Markov chains
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Example: 

in the Land of Oz they never have two nice days in a row, rather, after a sunny day it either rains or snows. 

If they have a nice day, they are just as likely to have snow as rain the next day. If they have snow or rain, they have 
an even chance of having the same the next day. If there is change from snow or rain, only half of the time is this a 
change to a nice day. When we denote the three states with the symbols N (Nice), R (Rain), or S (Snow), the 
transition probabilities are:
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of Oz they never have two nice days in a row, rather, after a sunny day it either
rains or snows. If they have a nice day, they are just as likely to have snow as
rain the next day. If they have snow or rain, they have an even chance of having
the same the next day. If there is change from snow or rain, only half of the time
is this a change to a nice day. This means – if we denote the three states with
the symbols N (Nice), R (Rain), or S (Snow) – that the transition probabilities
are:

pNN = 0; pNR = 1=2; pNS = 1=2
pRN = 1=4; pRR = 1=2; pRS = 1=4
pSN = 1=4; pSR = 1=4; pSS = 1=2
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Figure 6.1: Directed graph representation of the states and transition proba-
bilities of the three-state Markov chain that describes weather in the Land of
Oz.

The whole system can be represented as a directed graph (see figure 6.1),
however there is a more useful representation: we can set up a matrix of transition
probabilities (also called transition kernel):

P =

0

B@
pNN pNR pNS

pRN pRR pRS

pSN pSR pSS

1

CA =

0

B@
0 1=2 1=2

1=4 1=2 1=4
1=4 1=4 1=2

1

CA

This is a row stochastic matrix, i.e., all rows are such that
P

j pi j = 1. There
are also column stochastic matrices (all columns are such that

P
i pi j = 1),

and doubly stochastic matrices (both row and column stochastic). Notice that
doubly stochastic matrices are necessarily square: indeed if such a matrix has n
rows and m columns, then

nX

i=1

mX

j=1

pi j =
nX

i=1

1 = n (6.1)

and
mX

j=1

nX

i=1

pi j =
mX

j=1

1 = m (6.2)

(representation as a 
directed graph)
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Matrix of transition probabilities (also called transition kernel)

This is a row stochastic matrix, where all rows are such that

There are also column stochastic matrices, and doubly stochastic matrices that are necessarily square: 
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however the two double sums are equal and therefore m = n.

Now let ı
(n)
i

= P [S(n) = Si ] be the probability that at time t = n the
system is in state Si , and since the probabilities of being in any given state are
mutually exclusive, we can write

ı
(n+1)
j

=
X

i

P [S(n + 1) = Sj |S(n) = Si ]P [S(n) = Si ]

=
X

i

pi jı
(n)
i

(6.3)

Equation (6.3) can be rewritten in matrix form, defining the probability vector2

ı(n) = {ı(n)
i

}, and using the transition probability matrix defined above P =
{pi j}:

ı(n+1) = ı(n)
P (6.4)

Thus we find a recursive formula for the probability distribution (the probability
vector) at the n-th step, and to solve it we must define an initial probability
vector ı(0). Clearly the solution involves the powers of the transition probability
matrix:

ı(n) = ı(0)
P
n (6.5)

The matrix P
n is also called the n-step transition kernel, and its entries are the

probabilities p
(n)
i j

of a transition from state i to state j in n steps.

For example, if we take the transition probability matrix for the weather in
the Land of Oz, we find:

P
2 =

0

B@
0:25 0:375 0:375

0:1875 0:4375 0:375
0:1875 0:375 0:4375

1

CA

P
5 =

0

B@
0:199219 0:400391 0:400391
0:200195 0:400391 0:399414
0:200195 0:399414 0:400391

1

CA

P
10 =

0

B@
0:200001 0:4 0:4

0:2 0:400001 0:4
0:2 0:4 0:400001

1

CA

P
20 =

0

B@
0:2 0:4 0:4
0:2 0:4 0:4
0:2 0:4 0:4

1

CA

P
100 =

0

B@
0:2 0:4 0:4
0:2 0:4 0:4
0:2 0:4 0:4

1

CA

2Obviously, the probability vector obeys the normalization condition
P

i
ı(n)
i = 1.
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Figure 6.2: Plots of two random walks with p = q = 1=2 (position vs. timestep),
for 10000 time steps. Generic representations such as this are called sample
paths. The Mathematica code used to generate these sample paths is listed in
Appendix A.

The matrix power converges to a fixed matrix, and the rows are all equal. This
means that whatever the initial probability vector, the distribution converges to
that specified by any one row: indeed, if Pn ���!

n!1
P1 such that (P1)i ;j = fj ,

then X

i

ı
(0)
i

(P1)i ;j =
X

i

ı
(0)
i

fj = fj (6.6)

.

6.1.1 The discrete-time, discrete-space random walk

An important example of a Markov chain is the random walk. Consider a 1D
string of sites where a particle can jump, moving either left or right at each time
step. The state of the system is given by the position of the particle, and the
probabilities are

pi ;i+1 = p; pi ;i�1 = q

and 0 otherwise. This process is regulated by a binomial distribution, and if after
a total of n steps, k is the number of steps to the right, then n�k is the number
of steps to the left, and a random walker that starts at the origin reaches position
x = k � (n � k) = 2k � n. Then, it is easy to see that the mean position of
a particle that starts at the origin, after n steps is n(p � q) = n(2p � 1), while
the variance of the position is 4npq.
Figure 6.2 shows a pair of realizations of the random walk. Figure 6.3 shows the
graph representation of the states and of the transition probabilities.

6.2 The Ehrenfest urn model

In the Ehrenfest urn model there are two urns and n balls. The balls are num-
bered, and at each step one ball is chosen at random, and is placed in the other

Discrete-time discrete-space random walks are an example of Markov chains with infinite states. 
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Figure 6.3: Graph representation of the states and transition probabilities of the
1D random walk.

urn. The state of the system is the number of balls in one – fixed – urn. Figure
6.4 shows a pair of simulations of the model: the system is started in an un-
balanced situation – all balls are either in one or in the other urn – and after a
while the balls are evenly distributed in the two boxes, and the system fluctuates
about this equilibrium condition.
If the system has k balls in the first urn (i.e., it is in state k), then the probability
of extracting one ball from that urn is k=n, therefore the transition probabilities
are

pk;k�1 =
k

n
pk;k+1 =

n � k

n
(6.7)

and 0 otherwise.

This model was proposed by the Ehrenfest’s in an effort to understand irre-
versibility and approach to equilibrium in statistical mechanics [11].

6.3 Classification of States. Persistent and Tran-
sient States

The system may or may not return to a given state, and more generally we can
classify states as in table 1. Figure 6.5 illustrates the meaning of transient and
persistent states in a finite Markov chain. The same figure also shows that state
D leads to state E (E is accessible from D) but not vice versa, while E leads to
F and F leads to E: we say that E and F communicate, while D and E do not
communicate. On the other hand D leads to A, and A leads to D (after 3 steps),
thus A communicates with D. In general we say that two states i , j communicate
if after a finite number of steps i leads to j and j leads to i . The communication
between states establishes equivalence classes: the Markov chain of figure 6.5
has two equivalence classes: (A, B, C, D) and (E, F). A Markov chain with just
one class, such that all states communicate, is said to be irreducible. A state is
periodic if it is persistent, and if the system returns to it at times t, 2t, 3t, : : : ,
where t > 1. Clearly all the periodic states in the same equivalence class have
the same period. For the same reason all the periodic states in an irreducible
Markov chain have the same period.
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Now let                               

be the probability that at time n the system is in state Si , then: 

When we define the vector                                   and the matrix                            we see that the equation becomes
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P

i
ı(n)
i = 1.

⇡(n+1)
j =

X

i

P [S(n+ 1) = Sj |S(n) = Si]P [S(n) = Si] =
X

i

pij⇡
(n)
i

<latexit sha1_base64="BMXPBIzeTysxk5gaiPEfyBC4Uyg="></latexit>

⇡(n) = {⇡(n)
j }

<latexit sha1_base64="7G3m61cT6m9UhOIEUWlD8IhMUus=">AAACEXicbVA9T8MwEHXKVylfAUYWiwqpLFWCKgEDUgULY5Hoh9SEyHGc1tRxIttBqqL8BRb+CgsDCLGysfFvcNoO0PIky+/e3enunp8wKpVlfRulpeWV1bXyemVjc2t7x9zd68g4FZi0ccxi0fORJIxy0lZUMdJLBEGRz0jXH10V+e4DEZLG/FaNE+JGaMBpSDFSWvLMmuPHLJDjSH+Zk9D8Lqvx4/zCyaCOvPtpCJ3cM6tW3ZoALhJ7RqpghpZnfjlBjNOIcIUZkrJvW4lyMyQUxYzkFSeVJEF4hAakrylHEZFuNrkoh0daCWAYC/24ghP1d0eGIlksrSsjpIZyPleI/+X6qQrP3IzyJFWE4+mgMGVQxbCwBwZUEKzYWBOEBdW7QjxEAmGlTaxoE+z5kxdJ56RuN+rnN41q83JmRxkcgENQAzY4BU1wDVqgDTB4BM/gFbwZT8aL8W58TEtLxqxnH/yB8fkDZBidXA==</latexit>

⇡(n) = ⇡(0)Pn
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P = {pij}
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⇡(n+1) = ⇡(n)P
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n-step transition kernel
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however the two double sums are equal and therefore m = n.

Now let ı
(n)
i

= P [S(n) = Si ] be the probability that at time t = n the
system is in state Si , and since the probabilities of being in any given state are
mutually exclusive, we can write

ı
(n+1)
j

=
X

i

P [S(n + 1) = Sj |S(n) = Si ]P [S(n) = Si ]

=
X

i

pi jı
(n)
i

(6.3)

Equation (6.3) can be rewritten in matrix form, defining the probability vector2

ı(n) = {ı(n)
i

}, and using the transition probability matrix defined above P =
{pi j}:

ı(n+1) = ı(n)
P (6.4)

Thus we find a recursive formula for the probability distribution (the probability
vector) at the n-th step, and to solve it we must define an initial probability
vector ı(0). Clearly the solution involves the powers of the transition probability
matrix:

ı(n) = ı(0)
P
n (6.5)

The matrix P
n is also called the n-step transition kernel, and its entries are the

probabilities p
(n)
i j

of a transition from state i to state j in n steps.

For example, if we take the transition probability matrix for the weather in
the Land of Oz, we find:

P
2 =

0

B@
0:25 0:375 0:375

0:1875 0:4375 0:375
0:1875 0:375 0:4375

1

CA

P
5 =

0

B@
0:199219 0:400391 0:400391
0:200195 0:400391 0:399414
0:200195 0:399414 0:400391

1

CA

P
10 =

0

B@
0:200001 0:4 0:4

0:2 0:400001 0:4
0:2 0:4 0:400001

1

CA

P
20 =

0

B@
0:2 0:4 0:4
0:2 0:4 0:4
0:2 0:4 0:4

1

CA

P
100 =

0

B@
0:2 0:4 0:4
0:2 0:4 0:4
0:2 0:4 0:4

1

CA

2Obviously, the probability vector obeys the normalization condition
P

i
ı(n)
i = 1.

For example, the transition kernels for the weather in the Land of Oz are

P =

0

@
0 0.5 0.5

0.25 0.5 0.25
0.25 0.25 0.5

1

A
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the transition kernels 
seem to converge to 
a fixed matrix ...
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Notice that if the transition kernel converges to a fixed matrix where all rows are equal, then the distribution of 
states also converges to a fixed distribution which does not depend on the initial distribution: 

Pn ����!
n!1

P1

<latexit sha1_base64="7QSL/He0TOGLdwbDEx4O9b8qx9o=">AAACKHicbVDLSgMxFM3UV62vqks3wSK4KjNSUFcW3bisYB/QGUsmzbShmcyQ3FHLMJ/jxl9xI6JIt36J6QPU1gOBwzn3knuOHwuuwbZHVm5peWV1Lb9e2Njc2t4p7u41dJQoyuo0EpFq+UQzwSWrAwfBWrFiJPQFa/qDq7HfvGdK80jewjBmXkh6kgecEjBSp3jhhgT6fpDWsjuJsfuoeK8PRKnooZ1K7EKEXS4DGOLMSzP8M92Zyp1iyS7bE+BF4sxICc1Q6xTf3G5Ek5BJoIJo3XbsGLyUKOBUsKzgJprFhA5Ij7UNlSRk2ksnQTN8ZJQuDiJlngQ8UX9vpCTUehj6ZnJ8qJ73xuJ/XjuB4MxLuYwTYJJOPwoSgU38cWu4yxWjIIaGEKq4uRXTPlGEgum2YEpw5iMvksZJ2amUz28qperlrI48OkCH6Bg56BRV0TWqoTqi6Am9oHf0YT1br9anNZqO5qzZzj76A+vrG+bvp8I=</latexit>

(P1)i,j = fj

<latexit sha1_base64="9M5rdYu7ChnHp4qzps3P9Bvg0K0=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQQUoiBXUhFN24rGAf0IQwmU7aaSeTMDMRSsjOjb/ixoUibv0Fd/6Nk7YLbT1w4XDOvdx7jx8zKpVlfRuFpeWV1bXiemljc2t7x9zda8koEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH93kfvuBCEkjfq/GMXFD1Oc0oBgpLXnmYcUJkRr4QdrIPIfyQI1PvJSeDrMrGHhDzyxbVWsCuEjsGSmDGRqe+eX0IpyEhCvMkJRd24qVmyKhKGYkKzmJJDHCI9QnXU05Col008kfGTzWSg8GkdDFFZyovydSFEo5Dn3dmR8t571c/M/rJiq4cFPK40QRjqeLgoRBFcE8FNijgmDFxpogLKi+FeIBEggrHV1Jh2DPv7xIWmdVu1a9vKuV69ezOIrgAByBCrDBOaiDW9AATYDBI3gGr+DNeDJejHfjY9paMGYz++APjM8fdpqZEQ==</latexit>

all rows equal

⇡(1)
j =

X

i

⇡(0)
i (P1)i,j =

X

i

⇡(0)
i fj = fj
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Persistent and transient states ... Edoardo Milotti – Statistics for data analysis – A. A. 2016-17 139

Type of state Definition of state (assuming, where applicable,
that the state is initially occupied)

Periodic Return to state possible only at times t, 2t, 3t,
: : : , where t > 1

Aperiodic Not periodic
Recurrent/Persistent Eventual return to state certain
Transient Eventual return to state uncertain
Ephemeral Is a state j such that pi j = 0 for every i
Positive-recurrent Recurrent/persistent, finite mean recurrence

time
Null-recurrent Recurrent, infinite mean recurrence time
Ergodic Aperiodic, positive-recurrent

Table 6.1: Classification of states in a Markov chain (from Cox and Miller).

after precisely n steps. Then, we can write

un = u0vn + u1vn�1 + u2vn�2 + · · ·+ un�2v2 + un�1v1 + unv0

=
nX

k=0

ukvn�k (6.8)

for n � 1 (for n = 0 the equation is simply u0 = u0), where we set u0 = 1 and
v0 = 0 by definition. Thus we have a convolution between the sequence of u’s
and v ’s, and if we use the corresponding generating functions

U(z) =
1X

k=0

ukz
k ; V (z) =

1X

k=0

vkz
k (6.9)

we can write

U(z)� u0 =
1X

n=1

unz
n =

1X

n=0

 
nX

k=0

ukvn�k

!

zn = U(z)V (z) (6.10)

and therefore

U(z) =
u0

1� V (z)
=

1

1� V (z)
(6.11)

The sum

v =
1X

n=0

vn (6.12)

is the probability that the system returns sooner or later to the original state.
The state is persistent if v = 1, and is transient if v < 1. Notice that if the



Edoardo Milotti - Bayesian Methods - May 2023 22

138

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

Figure 6.4: Simulations of the Ehrenfest urn model with 1000 balls, 10000 time
steps (number of balls in the first urn vs. time). The system is started in two
different out-of-equilibrium conditions: all balls in the first urn (blue curve), no
balls in the first urn (red curve). In both cases the system reaches equilibrium
and fluctuates about it. The Mathematica code used to generate these sample
paths is listed in Appendix C.

A B C D E F

Figure 6.5: Persistent and transient states. This graph represents the states and
the transition probabilities of a finite Markov chain with 6 states. The arrows
correspond to nonzero transition probabilities. If the chain starts with any one
of states A, B, C or D, it can loop around these four states until a transition D
! E occurs, then the system is locked in the E-F loop. States A, B, C, and D
are transient, while states E and F are persistent (and periodic, with period 2).
This Markov chain is not irreducible.

As shown by the example in figure 6.5, a persistent state is characterized by
an infinite number of returns. Now start from state i and let un = p

(n)
i i

be the
probability of a return after n steps. Also, let vn be the probability of a return

This graph represents the states and the transition probabilities of a finite Markov chain with 6 states.

The arrows correspond to nonzero transition probabilities. If the chain starts with any one of states A, B, C or D, it can loop 
around these four states until a transition D to E occurs, then the system is locked in the E-F loop. 

States A, B, C, and D are transient, while states E and F are persistent (and periodic, with period 2). A Markov chain with 
just one class, such that all states communicate, is said to be irreducible. This Markov chain is not irreducible.

VERY INTERESTING MATH ON PERSISTENT STATES, HOWEVER WE DO NOT PURSUE IT FURTHER, WE DO NOT NEED IT NOW.
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Limiting probabilities and stationary distributions

Here we prove that the convergence that we saw in the Land of Oz example is a general feature of Markov 
chains, under the assumption that the chain is irreducible, and that for some N we have 

Now let

be the min and max of the j-the column vector in the n-step transition matrix. 

144

we find ni = exp(–� 1), i.e., n = d exp(–� 1), and the multinomial coefficient
is maximized when all the ni ’s have the same value ni = n=d , so that the
maximum is

n!

[(n=d)!]d
⇡

p
2ın nne�n

(
p
2ın=d (n=d)(n=d)e�n=d)d

=
dd=2

(2ın)(d�1)=2
dn (6.34)

Therefore:

p(2n)(x1; : : : ; xd) <

<

 
2n

n

!
X

P
k=1;d

nk=n

"
dd=2

(2ın)(d�1)=2
dn

# "
n!

Q
k=1;d(nk !)

#
1

(2d)2n
(6.35)

Since X
P

k=1;d
nk=n

n!
Q

k=1;d(nk !)
= dn (6.36)

and  
2n

n

!

⇡ 4np
ın

(6.37)

we obtain eventually

p(2n)(x1; : : : ; xd) <
4np
ın

"
dd=2

(2ın)(d�1)=2
dn

#

dn
1

(2d)2n
=

s
2

(2ı)d
dd=2

nd=2

(6.38)
and the sum

X

n

p(2n)(x1; : : : ; xd) <
X

n

s
2

(2ı)d
dd=2

nd=2
(6.39)

converges for all d > 2. Therefore all states of the d-dimensional random walks
on cubic lattices with d > 2 are transient.

6.4 Limiting Probabilities and Stationary Distribu-
tions

We have found earlier – in the example of the weather in the Land of Oz – that
the n- step transition probability matrix converges to a matrix with rows that are
all equal, and that each one of these rows represents the final probability vector,
for any choice of the initial probability vector. Now we prove that these features
are very general, subject only to few restrictive conditions.

Consider a finite Markov chain, and assume that for some N

min
i ;j

p
(N)
i j

= ‹ > 0 (6.40)
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so that the chain is also irreducible.

Let
r
(n)
j

= min
i

p
(n)
i j

; R
(n)
j

= max
i

p
(n)
i j

(6.41)

be the minimum and the maximum values of the j-th column vector in the n-step
transition matrix P

n, then

r
(n+1)
j

= min
i

p
(n+1)
i j

= min
i

P
n+1
i j

= min
i

(PPn)i j = min
i

X

k

pikp
(n)
kj

(6.42a)

� min
i

X

k

pik r
(n)
j

= r
(n)
j

(6.42b)

and similarly

R
(n+1)
j

= max
i

p
(n+1)
i j

= max
i

P
n+1
i j

= max
i

(PPn)i j = max
i

X

k

pikp
(n)
kj

(6.43a)

 max
i

X

k

pikR
(n)
j

= R
(n)
j

(6.43b)

This means that as n grows, the minimum and the maximum values in a column
vector get closer and closer (the components of the column vector get closer
and closer).

How close do the r
(n)
j

and the R
(n)
j

get for larger and larger n? Do they
eventually approach the same limit? This question is answered by the difference

R
(n)
j

� r
(n)
j

= max
i

p
(n)
i j

�min
k

p
(n)
kj

= max
i ;k

h
p
(n)
i j

� p
(n)
kj

i
(6.44)

In addition, shifting the index n ! n + N the same difference writes

R
(n+N)
j

� r
(n+N)
j

= max
i ;k

h
p
(n+N)
i j

� p
(n+N)
kj

i

= max
i ;k

(
X

l

h
p
(N)
i l

� p
(N)
kl

i
p
(n)
l j

)

(6.45)

Now notice that by splitting the sum over the positive and negative values
of the difference in square brackets, and denoting by

P+ (
P�) the sum over

positive (negative) values we find

X

l

h
p
(N)
i l

� p
(N)
kl

i
p
(n)
l j

=
+X

l

[p
(N)
i l

� p
(N)
kl

]p
(n)
l j

+
�X

l

[p
(N)
i l

� p
(N)
kl

]p
(n)
l j

(6.46a)


+X

l

[p
(N)
i l

� p
(N)
kl

]R
(n)
j

+
�X

l

[p
(N)
i l

� p
(N)
kl

]r
(n)
j

(6.46b)
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Recall the example: 
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however the two double sums are equal and therefore m = n.

Now let ı
(n)
i

= P [S(n) = Si ] be the probability that at time t = n the
system is in state Si , and since the probabilities of being in any given state are
mutually exclusive, we can write

ı
(n+1)
j

=
X

i

P [S(n + 1) = Sj |S(n) = Si ]P [S(n) = Si ]

=
X

i

pi jı
(n)
i

(6.3)

Equation (6.3) can be rewritten in matrix form, defining the probability vector2

ı(n) = {ı(n)
i

}, and using the transition probability matrix defined above P =
{pi j}:

ı(n+1) = ı(n)
P (6.4)

Thus we find a recursive formula for the probability distribution (the probability
vector) at the n-th step, and to solve it we must define an initial probability
vector ı(0). Clearly the solution involves the powers of the transition probability
matrix:

ı(n) = ı(0)
P
n (6.5)

The matrix P
n is also called the n-step transition kernel, and its entries are the

probabilities p
(n)
i j

of a transition from state i to state j in n steps.

For example, if we take the transition probability matrix for the weather in
the Land of Oz, we find:

P
2 =

0

B@
0:25 0:375 0:375

0:1875 0:4375 0:375
0:1875 0:375 0:4375

1

CA

P
5 =

0

B@
0:199219 0:400391 0:400391
0:200195 0:400391 0:399414
0:200195 0:399414 0:400391

1

CA

P
10 =

0

B@
0:200001 0:4 0:4

0:2 0:400001 0:4
0:2 0:4 0:400001

1

CA

P
20 =

0

B@
0:2 0:4 0:4
0:2 0:4 0:4
0:2 0:4 0:4

1

CA

P
100 =

0

B@
0:2 0:4 0:4
0:2 0:4 0:4
0:2 0:4 0:4

1

CA

2Obviously, the probability vector obeys the normalization condition
P

i
ı(n)
i = 1.

we shall show that, in each 
column, the min and the max 
become closer and closer as n 
grows and bracket a value that is 
the asymptotic matrix element 
(the same for all rows in a given 
column)
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Then we find

and

This means that, as n grows, the minimum and the maximum values in a column vector get closer and closer 
(the components of the column vector get closer and closer). But do they converge to the same value ???
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so that the chain is also irreducible.

Let
r
(n)
j

= min
i

p
(n)
i j

; R
(n)
j

= max
i

p
(n)
i j

(6.41)

be the minimum and the maximum values of the j-th column vector in the n-step
transition matrix P

n, then

r
(n+1)
j

= min
i

p
(n+1)
i j

= min
i

P
n+1
i j

= min
i

(PPn)i j = min
i

X

k

pikp
(n)
kj

(6.42a)

� min
i

X

k

pik r
(n)
j

= r
(n)
j

(6.42b)

and similarly

R
(n+1)
j

= max
i

p
(n+1)
i j

= max
i

P
n+1
i j

= max
i

(PPn)i j = max
i

X

k

pikp
(n)
kj

(6.43a)

 max
i

X

k

pikR
(n)
j

= R
(n)
j

(6.43b)

This means that as n grows, the minimum and the maximum values in a column
vector get closer and closer (the components of the column vector get closer
and closer).
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get for larger and larger n? Do they
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Now notice that by splitting the sum over the positive and negative values
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We must consider the difference

Then, shifting the difference by N, we find

Next we split the difference enclosed in braces into sums of negative and positive contributions

R(n)
j � r(n)j = max

i
p(n)ij �min

k
p(n)kj = max

i,k

h
p(n)ij � p(n)kj

i
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Now consider the structure of the positive sum, it must contain at least one term where one subtracts the smallest element 
in the column, so that

Similarly, for the negative sum we find

and therefore
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Since

the matrix elements in the j-th column converge to a single value      , i.e., 

and   
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Now consider the structure of the positive sum
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Therefore if we take strides of N steps at a time, we find
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because 0 < (1� ‹) < 1. Then the difference between maximum and minimum
vanishes, the column values converge to a single value p⇤

j
, and the matrix struc-

ture is the same as in the example (i.e., all rows are equal).

Then we can write
p⇤i j = lim

n!1
[Pn]i j = p⇤j (6.50)

and therefore, if we start from the initial probability vector ı
(0)
j

, we find the
asymptotic probability vector

ı⇤
j =

X

k

ı
(0)
k

p⇤kj =
X

k

ı
(0)
k

p⇤j = p⇤j (6.51)

i.e., the asymptotic probability vector coincides with the rows of the asymptotic
transition probability matrix, and does not depend on the initial probability vec-
tor.

This asymptotic distribution is stable, indeed from

ı
(n)
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=
X

k

ı
(n�1)
k

pkj (6.52)

we find

[ı⇤
P]j =

X

k

ı⇤
kpkj =

X

k

p⇤kpkj =
X

k

p⇤ikpkj = p⇤i j = p⇤j = ı⇤
j (6.53)

or, in matrix form
ı⇤ = ı⇤

P (6.54)

i.e., the asymptotic probability vector is the left eigenvector with eigenvalue 1 of
the transition probability matrix. The distribution expressed by the probability
vector ı⇤ is called invariant distribution or stationary distribution.
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Detailed balance

From the definition of conditional probabilities we find 

therefore, when a Markov chain is time reversed we find

which shows that the reversed chain is time-dependent. 
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6.5 Time reversal. Detailed balance

The chain can be time-reversed, and we find

P [S(n) = Si |S(n + 1) = Sj ]

= P [S(n + 1) = Sj |S(n) = Si ]
P [S(n) = Si ]

P [S(n + 1) = Sj ]
(6.55)

i.e.,

P [S(n) = Si |S(n + 1) = Sj ] = pi j
ı
(n)
i

ı
(n+1)
j

(6.56)

which shows that the time-reversed process is time-dependent (the reversed chain
is inhomogeneous even if the original chain is homogeneous). However if states
are distributed according to the invariant distribution, we have

P [S(n) = Si |S(n + 1) = Sj ] = pi j
ı⇤
i

ı⇤
j

(6.57)

which means that the backward transition probabilities are again time-independent,
and in particular they must coincide with the forward transition probabilities, i.e.,

pj iı
⇤
j = pi jı

⇤
i (6.58)

this condition is called detailed balance.

We have found that if the probability distribution of states is stationary, then
the detailed balance condition holds. The converse is also true: indeed

ı
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j

=
X

i

ı
(n)
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pi j =
X

i

ı
(n)
j

pj i = ı
(n)
j

X

i

pj i = ı
(n)
j

(6.59)

i.e., if the detailed balance condition holds, then the probability distribution of
states is stationary.

6.6 Continuous time Markov processes

Just as in the discrete case we introduce the probability of finding the system in
state Sn at time t

P (Sn; t) = P [S(t) = Sn] (6.60)

where t is now a continuous time variable, and we note that in general

P
`
Sik ; tk ;Sik�1 ; tk�1; : : : ;Si0 ; t0

´
=

= P
`
Sik ; tk |Sik�1 ; tk�1; : : : ;Si0 ; t0

´
P
`
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P [S(n) = Si and S(n+ 1) = Sj ] = P [S(n) = Si|S(n+ 1) = Sj ]P [S(n+ 1) = Sj ]

= P [S(n+ 1) = Sj |S(n) = Si]P [S(n) = Si]
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6.5 Time reversal. Detailed balance

The chain can be time-reversed, and we find

P [S(n) = Si |S(n + 1) = Sj ]

= P [S(n + 1) = Sj |S(n) = Si ]
P [S(n) = Si ]

P [S(n + 1) = Sj ]
(6.55)

i.e.,

P [S(n) = Si |S(n + 1) = Sj ] = pi j
ı
(n)
i

ı
(n+1)
j

(6.56)

which shows that the time-reversed process is time-dependent (the reversed chain
is inhomogeneous even if the original chain is homogeneous). However if states
are distributed according to the invariant distribution, we have

P [S(n) = Si |S(n + 1) = Sj ] = pi j
ı⇤
i

ı⇤
j

(6.57)

which means that the backward transition probabilities are again time-independent,
and in particular they must coincide with the forward transition probabilities, i.e.,

pj iı
⇤
j = pi jı

⇤
i (6.58)

this condition is called detailed balance.

We have found that if the probability distribution of states is stationary, then
the detailed balance condition holds. The converse is also true: indeed

ı
(n+1)
j

=
X

i

ı
(n)
i

pi j =
X

i

ı
(n)
j

pj i = ı
(n)
j

X

i

pj i = ı
(n)
j

(6.59)

i.e., if the detailed balance condition holds, then the probability distribution of
states is stationary.

6.6 Continuous time Markov processes

Just as in the discrete case we introduce the probability of finding the system in
state Sn at time t

P (Sn; t) = P [S(t) = Sn] (6.60)
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However, if states are distributed according to the invariant distribution, we have

which means that the backward transition probabilities are again time-independent, and in particular they 
must coincide with the forward transition probabilities, i.e.,

a condition which is called detailed balance.

So, if stationary distribution then detailed balance ... however the reverse also holds

i.e., a distribution is stationary if and only if it satisfies the condition of detailed balance
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Physical aside: continuous-time Markov processes

The time-dependence of the reversed chain is a manifestation of the dissipative character of the chain. Another important 
related result is the validity of the H-theorem for Markov processes.

In the case of continuous-time processes we can write

Memoryless processes

Markov processes
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where the time ordering is t0  t1  · · ·  tn�1  tn, i.e., the state at time n
depends on the system behavior at all previous times.

The case of a memoryless system is particularly simple, as the probability
does not depend on any previous time:

P
`
Sik ; tk ;Sik�1 ; tk�1; : : : ;Si0 ; t0

´
= P (Sik ; tk) (6.62)

The continuous Markov process corresponds to the discrete Markov chain in the
sense that it depends only on the latest time in the sequence:

P
`
Sik ; tk ;Sik�1 ; tk�1; : : : ;Si0 ; t0

´
= P

`
Sik ; tk |Sik�1 ; tk�1

´
P
`
Sik�1 ; tk�1

´

(6.63)

Now notice that, given t1  t  t2,

P (Si2 ; t2;Si1 ; t1) = P (Si2 ; t2|Si1 ; t1)P (Si1 ; t1)

=
X

j

P (Si2 ; t2|Sj ; t)P (Sj ; t|Si1 ; t1)P (Si1 ; t1) (6.64)

i.e.,
P (Si2 ; t2|Si1 ; t1) =

X

j

P (Si2 ; t2|Sj ; t)P (Sj ; t|Si1 ; t1) (6.65)

which is the Chapman-Kolmogorov equation: the Chapman-Kolmogorov equa-
tion is an integral relationship between transition probabilities.

Now we note that the following equation also holds

P (Sn; t +�t) = P (Sn; t)+

+
X

j

[P (Sn; t +�t|Sj ; t)P (Sj ; t)� P (Sj ; t +�t|Sn; t)P (Sn; t)] (6.66)

which is called the master equation, and if we assume that the transition prob-
abilities are time-invariant and we define the transition rates T

P (Sn; t +�t|Sj ; t) = Tn;j�t (6.67)

we find
d

dt
P (Sn; t) =

X

j

[Tn;jP (Sj ; t)� Tj;nP (Sn; t)] (6.68)

which is a differential form of the master equation.

As an example, consider the 1D random walk on a discrete array of sites on
the real line, so that Sn represents the position n�x , and let Tn;n±1 = (1=2�t)
while all the other transition probabilities vanish. Then

d

dt
P (n�x; t) =

1

2�t
[P ((n + 1)�x; t) + P ((n � 1)�x; t)� 2P (n�x; t)]

(6.69)
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For Markov processes the following equation also holds

(master equation). 

When we assume that the transition probabilities are time-invariant, and we define the transition rates T

we find the differential form of the master equation 
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Using the previous notation for the probability distribution on states, we can rewrite the master equation 
as follows

Next, we assume that transition probabilities are "reversible"

so that 

and therefore, at equilibrium
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and if we let x = n�x and �x ! 0, �t ! 0 we find the diffusion equation

@

@t
P (x; t) = D

@2

@x2
P (x; t) (6.70)

where

D = lim
�x!0
�t!0

(�x)2

�t
(6.71)

is the diffusion coefficient. The diffusion equation is a special form of Fokker-
Planck equation. Moreover we notice that a nonzero, finite, diffusion coefficient,
requires (�x)2 = O(�t).

6.6.1 The H-theorem and approach to equilibrium

Using the master equation we can prove a version of Boltzmann’s H-theorem
which demonstrates the entropy increase in continuous-time Markov processes.
We let ıi (t) = P (Si ; t), and rewrite the master equation in the more compact
form

dın

dt
=
X

j

[Tn;jıj(t)� Tj;nın(t)] (6.72)

We also assume that the physics of microscopic processes is time-reversible, and
therefore Tn;j = Tj;n: it follows that the master equation takes the simpler form

dın

dt
=
X

j

Tn;j [ıj(t)� ın(t)] (6.73)

and that at equilibrium it yields the equality
X

j

Tn;j
“
ı⇤
j � ı⇤

n

”
= 0 (6.74)

Since the equality (6.74) holds for any set of transition rates, it implies ı⇤
j
= ı⇤

n

for any pair (j; n), i.e., the states S are all equally probable.

Now we turn our attention to the following sum

H =
X

n

ın lnın (6.75)

which is proportional to Gibbs’ entropy, and which we shall meet again in due
time. Using the master equation (6.73), we find a differential equation for H:

dH

dt
=
X

n

d

dt
(ın lnın) =

X

n

dın

dt
(lnın + 1)

=
X

n;j

Tn;j (ıj � ın) (lnın + 1) (6.76)
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Obviously the equation holds with exchanged indexes as well, i.e.,

dH

dt
=
X

n;j

Tn;j (ın � ıj) (lnıj + 1) (6.77)

and therefore, by summing, we obtain

dH

dt
=

1

2

X

n;j

Tn;j (ın � ıj) (lnıj � lnın) (6.78)

The logarithm is an monotonic, increasing function of its argument, therefore
the products

(ın � ıj) (lnıj � lnın)  0

and finally
dH

dt
 0 (6.79)

since the transition rates are Tn;j � 0. The derivative vanishes at equilibrium,
and we find that it is a stable point for H. Since H is essentially the negative of
Gibbs’ entropy, the theorem states that the entropy of a Markov chain increases
up to a maximum which is reached at equilibrium.

6.7 An important application: the Hidden Markov
Models (HMM)

Consider the following problem: a physical source emits photons and the emission
process is Poissonian in time. This means that it is a memoryless process,
where the time intervals between successive emissions follow the exponential
distribution, or also, that the number of photons observed in a given time span
is a Poisson variate.

For some reason we believe that the photon source switches randomly be-
tween different rates, i.e., that there are several states that correspond to the
different rates, and that the switching process is described by transitions between
the states of a Markov chain.

In general we only observe the photon rates, while we do not know the
number of states, nor the transition rates between the states: the Markov chain
is hidden.

A Hidden Markov Model (HMM) – is defined by the matrix A of transition
rates, by the probability model B that corresponds to each state (in this case a
Poisson distribution, with the corresponding photon emission rate, but it could be
another discrete or continuous distribution), and finally by the initial probability
distribution ı0 assigned to the different states – in symbols – = (A;B;ı0). In
general we do not know how many hidden states are there, and we must find
ways of guessing the number of states N.
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