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Our next important topic: Bayesian estimates often require complex 
numerical integrals. How do we confront this problem? 

enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling perspective
5. Introduction to Markov chains and to Random Walks (RW)
6. Simulated annealing
7. The Metropolis algorithm
8. Markov Chain Monte Carlo (MCMC)
9. The Gibbs sampler
10. The efficiency of MCMC algorithms
11. Affine-invariant MCMC algorithms (EMCEE)
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To introduce the method, we consider the Traveling Salesman Problem (TSP), where we want to find the 
shortest closed path that connects N cities. 

The problem was first stated by the Viennese mathematician Karl Menger in 1930 and is one of the most 
studied problems in combinatorial optimization.
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For many up-to-date links, see
http://www.math.uwaterloo.ca/tsp/index.html

See also the history page
http://www.math.uwaterloo.ca/tsp/history/index.html

6. The Traveling Salesman Problem and Simulated Annealing

http://www.math.uwaterloo.ca/tsp/index.html
http://www.math.uwaterloo.ca/tsp/history/index.html
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12 “cities” randomly distributed in the  (0,1) square: the path corresponds to a random permutation of the sequence of 
cities.

(path length L=1.93834)
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Paths are enumerated by permutations of “city names”, e.g., {9, 2, 7, 8, 1, 12, 4, 5, 3, 10, 11, 6} (start at 9, 

step to 2, and so on until you reach 6 and then return to 9).

The total number of configurations (undirected paths) is

The problem belongs to the class of NP-complete problems (Non-Polynomial complexity, a class of 

particularly hard problems)

In such cases there is only one known exact solution: the full enumeration of all paths.

1
2
n −1( )!
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Optimization by 
Simulated Annealing 

S. Kirkpatrick, C. D. Gelatt, Jr . ,  M. P. Vecchi 

In this article we briefly review the 
central constructs in combinatorial opti- 
mization and in statistical mechanics and 
then develop the similarities between the 
two fields. We show how the Metropolis 
algorithm for approximate numerical 
simulation of the behavior of a many-
body system at  a finite temperature pro- 
vides a natural tool for bringing the tech- 
niques of statistical mechanics to  bear on 
optirn~ization. 

We have applied this point of view to a 
number of problems arising in optimal 
design of computers. Applications to 
partitioning, component placement, and 
wiring of electronic systems are de-
scribed in this article. In each context, 
we introduce the problem and discuss 
the improvements available from optimi- 
zation. 

Of classic optimization problems, the 
travel~~ngsalesman problem has received 
the most intensive study. T o  test the 
power of simulated annealing, we used 
the algorithm on traveling salesman 
problems with as  many a s  several thou- 
sand cities. This work is described in a 
final section, followed by our conclu-
sions. 

Combinatorial Optimization 

The subject of combinatorial optimiza- 
tion (1)consists of a set of problems that 
are central to  the disciplines of computer 
science and engineering. Research in this 
area aims a t  developing efficient tech- 
niques for finding minimum or  maximum 
values of a function of very many inde- 
pendent variables (2). This function, usu- 
ally called the cost function or  objective 
function, represents a quantitative mea- 
13 MAY I983 

sure of the "goodness" of some complex 
system. The cost function depends on 
the detailed configuration of the many 
parts of that system. We are most famil- 
iar with optimization problems occurring 
in the physical design of computers, so  
examples used below are drawn from 

with N, so  that in practice exact solu- 
tions can be attempted only on problems 
involving a few hundred cities o r  less. 
The traveling salesman belongs to  the 
large class of NP-complete (nondeter- 
ministic polynomial time complete) 
problems, which has received extensive 
study in the past 10 years (3).N o  method 
for exact solution with a computing ef- 
fort bounded by a power of N has been 
found for any of these problems, but if 
such a solution were found, it could be 
mapped into a procedure for solving all 
members of the class. It is not known 
what features of the individual problems 
in the NP-complete class are the cause of 
their difficulty. 

Since the NP-complete class of prob- 
lems contains many situations of practi- 
cal interest, heuristic methods have been 
developed with computational require- 

Summary. There is a deep and useful connection between statistical mechanics 
(the behavior of systems with many degrees of freedom in thermal equilibrium at a 
finite temperature) and multivariate or combinatorial optimization (finding the mini- 
mum of a given function depending on many parameters). A detailed analogy with 
annealing in solids provides a framework for optimization of the properties of very 
large and complex systems. This connection to statistical mechanics exposes new 
information and provides an unfamiliar perspective on traditional optimization prob- 
lems and methods. 

that context. The number of variables 
involved may range up  into the tens of 
thousands. 

The classic example, because it is so  
simply stated, of a combinatorial optimi- 
zation problem is the traveling salesman 
problem. Given a list of N cities and a 
means of calculating the cost of traveling 
between any two cities, one must plan 
the salesman's route, which will pass 
through each city once and return finally 
to  the starting point, minimizing the total 
cost. Problems with this flavor arise in 
all areas of scheduling and design. Two 
subsidiary problems are of general inter- 
est: predicting the expected cost of the 
salesman's optimal route, averaged over 
some class of typical arrangements of 
cities, and estimating or  obtaining 
bounds for the computing effort neces- 
sary to  determine that route. 

All exact methods known for deter- 
mining an optimal route require a com- 
puting effort that increases exponentially 

ments proportional to  small powers of N. 
Heuristics are  rather problem-specific: 
there is no guarantee that a heuristic 
procedure for finding near-optimal solu- 
tions for one NP-complete problem will 
be effective for another. 

There are two basic strategies for 
heuristics: "divide-and-conquer" and it- 
erative improvement. In the first, one 
divides the problem into subproblems of 
manageable size, then solves the sub- 
problems. The solutions to  the subprob- 
lems must then be patched back togeth- 
er. For  this method to produce very good 
solutions, the subproblems must be natu- 
rally disjoint, and the division made must 
be an appropriate one, so  that errors 
made in patching d o  not offset the gains 

S. Kirkpatrick and C.  D. Gelatt, Jr., are research 
staff members and M. P. Vecchi was a visiting 
scientist at IBM Thomas J .  Watson Research Cen- 
ter, Yorktown Heights, New York 10598. M. P. 
Vecchi's present address is Instituto Venezolano de 
lnvestigaciones Cientificas, Caracas 1010A. Vene- 
znela. 
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Approximate solution of the TSP with the Simulated Annealing algorithm

path length                    energy of the system

exploration of the configuration space with the Metropolis algorithm
(Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)
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7. The Metropolis algorithm and its application to the TSP



Additional details

• the algorithm needs a slow cooling (it is common to choose an exponential cooling 
schedule)

• if cooling is not gradual, the system can get stuck into a local minimum

• simple exchanges of pairs of cities are the individual moves in the SA solution of the 
TSP

• the individual steps from one configuration to the next can be described by a Markov 
chain

1. We generate a new configuration ′C  from the present configuration C
2. We compute the energy of the new configuration, ′E
3. We compute the energy difference ΔE = ′E − E
4. The new configuration is accepted with probability p 

p = 1 ΔE < 0

p = exp − ΔE
kT

⎛
⎝⎜

⎞
⎠⎟ ΔE ≥ 0

⎧

⎨
⎪

⎩
⎪
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Decrease of total path length in a realization of the SA solution of a 50-cities problem
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Here we note that the transition probability can be written as follows

T C→ ′C( ) = min 1, exp −
′E − E( )
kT

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Moreover, it is easy to show that the algorithm preserves detailed balance 

P C( )T C→ ′C( ) = P ′C( )T ′C → C( )

where P(C) is the stationary probability of configuration C. Indeed, at equilibrium we find that, if
E’ > E,

P C( )exp −
′E − E( )
kT

⎛
⎝⎜

⎞
⎠⎟
= P ′C( )

P ′C( )
P C( ) = exp −

′E − E( )
kT

⎛
⎝⎜

⎞
⎠⎟

Boltzmann’s 
distribution
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Finally, we can write:

T C→ ′C( ) = min 1, P ′C( )
P C( )

⎡

⎣
⎢

⎤

⎦
⎥

This definition of the transition probability is the starting point for an important further step, 

the Metropolis-Hastings algorithm.
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8. MCMC – definition of the Metropolis-Hastings (M-H) algorithm (1970)

• we define the transition probability 

and the target density  

• we take state

• we choose randomly another state     and we accept it                              with 
probability

x = xn

y

α x,y( ) = min 1,π y( )q y,x( )
π x( )q x,y( )

⎧
⎨
⎩

⎫
⎬
⎭

π x( )

y→ xn+1( )
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P (x ! y) = q(x,y)↵(x,y)
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Note that if the proposal function q is symmetrical, then the acceptance probability takes 
on the simpler form

and it depends on the target density only. 

α x,y( ) = min 1,π y( )q y,x( )
π x( )q x,y( )

⎧
⎨
⎩

⎫
⎬
⎭
→ min 1,

π y( )
π x( )

⎧
⎨
⎩

⎫
⎬
⎭
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The M-H  algorithm defines a Markov chain, and it is easy to show that detailed balance holds. The 
transition probability is 

• case 

P x→ y( ) = q x,y( )α x,y( ) = q x,y( )min 1,π y( )q y,x( )
π x( )q x,y( )

⎧
⎨
⎩

⎫
⎬
⎭

π y( )q y,x( )
π x( )q x,y( ) ≥ 1

α x,y( ) = 1; α y,x( ) = π x( )q x,y( )
π y( )q y,x( )

P x→ y( ) = q x,y( )

P y→ x( ) = q y,x( )π x( )q x,y( )
π y( )q y,x( )

π x( )P x→ y( ) = π x( )q x,y( )

π y( )P y→ x( ) = π y( )q y,x( )π x( )q x,y( )
π y( )q y,x( ) = π x( )q x,y( )
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Detailed balance holds in both cases and 
therefore is stationaryπ x( )

π y( )q y,x( )
π x( )q x,y( ) < 1

α x,y( ) = π y( )q y,x( )
π x( )q x,y( ) ; α y,x( ) = 1

P x→ y( ) = q x,y( )π y( )q y,x( )
π x( )q x,y( )

P y→ x( ) = q y,x( )

π x( )P x→ y( ) = π x( )q x,y( )π y( )q y,x( )
π x( )q x,y( ) = π y( )q y,x( )

π y( )P y→ x( ) = π y( )q y,x( )

• case
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The following figure shows a simulation with the MCMC algorithm and the distribution

(a three-component mixture model)
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MCMC simulation of a 2D three-component mixture model
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↵ip
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100000 steps
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100000 steps
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100 steps
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1000 steps
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4000 steps
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10000 steps
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Notice that when the peaks are very narrow, the random walker may have problems visiting all of the peaks
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p(x, y) =
3X

i=1

↵ip
2⇡�2

i

exp


� (x� µx,i)2 + (y � µy,i)2

2�2
i

�

↵1 = 0.5; µx,1 = 0; µy,1 = 0; �1 = 0.0725;
↵2 = 0.3; µx,2 = 1; µy,2 = 1.; �2 = 0.125;
↵3 = 0.2; µx,3 = 2; µy,3 = 0.1; �3 = 0.125;
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100000 steps10000 steps

With isolated, narrow peaks, increasing the number of steps may not suffice
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100000 steps, subdivided into 10 parallel chains with random starting points
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The starting points of the chains are uniformly 
distributed in the plot region, however the "regions 
of influence" of each peak vary considerably.

This leads to more chains being attracted into the 
lower peaks, with the result that the distribution is 
somewhat deformed (wrong alpha's in the mixture 
model) 

original

MCMC result (deformed)

Many techniques have been developed 
to avoid these pitfalls
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Example of application of the MCMC technique in radiobiology

Survival curve for HeLa cells in culture exposed to x-rays. (From Puck TT, Markus Pl: Action of 
x-rays on mammalian cells. J Exp Med 103:653-666, 1956)
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Phenomenology: the linear-quadratic law

S(D) ⇡ e�↵D��D2
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Example: Target theory

Simple Poisson model: 

Probability of hitting n times a given target, when the average number of good hits is a:

Probability missing the target: 

Average number of hits:

P (n) =
an

n!
e�a

P (0) = e�a

a = D/D0

S(D) = P (0, D) = e�D/D0
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Multitarget model, asymptotic behavior and threshold effect. 

If there are multiple targets, say n targets, all of which must be hit to kill a cell, then the probability of missing 
at least one of them – i.e., the survival probability – is

then, for large dose

i.e., 

which is a linear relation with intercept ln n, and slope -1/D0.

S(D) = 1� (1� e�D/D0)n

S(D) ⇡ ne�D/D0

lnS(D) ⇡ lnn�D/D0
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Notice that

and that 

The derivatives differ in the origin, and the multitarget model fails to reproduce 
the observed linear-quadratic law. 


d

dD
e�↵D��D2

�

D=0

= (�↵� 2�D)e�↵D��D2
���
D=0

= �↵

d

dD

h
1� (1� e�D/D0)n

i

D=0
= �n

e�D/D0

D0
(1� e�D/D0)n�1

����
D=0

= 0



The RCR (Repairable-Conditionally Repairable Damage) model

In this case the surviving fraction is 

This is a 3-parameter expression, which is not easy to fit to data when the data set is 
small. 
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S = exp −aD( ) + bDexp −cD( )
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1a. Simple Gaussian likelihood for the LQ model

1b. Chose exponential priors for the parameters

1c. Complete posterior pdf

1d. Use MCMC to find the MAP estimate (and any moment of the pdf)

L α ,β( ) = exp −
Sk − S α ,β( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏

p α ,β Sk{ }, I( ) = exp −
Sk − S α ,β( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
exp −0.1α( )exp −0.1β( )
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α

β

sample points for the 
posterior distribution
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2a. Simple Gaussian likelihood for the RCR model

2b. Chose exponential priors for the parameters

2c. Complete posterior pdf

2d. Use MCMC to find the MAP estimate (and any moment of the pdf)

L a,b,c( ) = exp −
Sk − S a,b,c( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏

p a,b,c Sk{ }, I( ) = exp −
Sk − S a,b,c( )( )2

2σ k
2

⎛

⎝
⎜

⎞

⎠
⎟

k
∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e−0.2ae−0.2be−0.2c
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Path in (a,b,c) space
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Fit showing individual components: unsatisfactory result
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S = exp −aD( ) + bDexp −cD( )
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Revise priors to include constraint on derivative

(priors vanish where derivative in the origin is positive)
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“Straight line fit” with the MCMC
An example with Gaussian errors and exponential priors. 
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model y = ax+ b

a

b
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MCMC software

Course Webpage

https://wwwusers.ts.infn.it/~milotti/Didattica/Bayes/Bayes.html
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https://causascientia.org/software/MacMCMC/MacMCMC.html

https://causascientia.org/software/MacMCMC/MacMCMC.html
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https://docs.pymc.io

https://docs.pymc.io/
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practical demo with an MCMC program (MacMCMC) 


