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Our next important topic: Bayesian estimates often require complex
numerical integrals. How do we confront this problem?

» enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective
Introduction to Markov chains and to Random Walks (RW)
. Simulated annealing

. The Metropolis algorithm

Markov Chain Monte Carlo (MCMC)

. The Gibbs sampler

10. The efficiency of MCMC algorithms

11. Affine-invariant MCMC algorithms (EMCEE)
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9. The Gibbs sampler

(adapted from Casella and George, Explaining the Gibbs sampler Am.Stat. 46 (1992) 167 )

Let's start with an example, and consider the following joint distribution:

n

flzy)oc | )y n-ath-l

r+oa—1 (1
We see that

f(x|y) ~ Binomial(n, y)
f(y|lz) ~ Beta(x + a,n — z + )

Next we set up a simple Markov chain procedure ...

Edoardo Milotti - Bayesian Methods - May 2023

— ) , +=0,...



We generate a "Gibbs sequence" of random variables

Y, X, Y, X, Y, X, ..., Y, X,

where the initial value is specified and the others are computed with the rule
Xj ~f(x|Y; = yj)
;+1 Nf(y Xj’ = xj!)

(Gibbs sampling).

We observe that for large enough k, the final X values have a fixed distribution
that corresponds to the marginal pdf of the x variate.
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Figure 1. Comparison of Two Histograms of Samples of Size
m = 500 From the Beta-Binomial Distribution Withn = 16, a = 2,
and 3 = 4. The black histogram sample was obtained using Gibbs
sampling with k = 10. The white histogram sample was generated
directly from the beta-binomial distribution.



Should we expect this result?

Consider the following expectation value
By [f(sly)] = /Y (aly) () dy = /Y f(a,y)dy = f(x)
therefore we can estimate f(x) with the sum
f) = = 3 x| v)

where the y's are generated according to their marginal distribution; finally the Gibbs sampling provides representative
samples that correspond to the marginal distribution of the x's. (for a mathematically accurate proof, check the paper by
Casella&George)
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Does Gibbs sampling converge?

We consider the following case: two discrete random variables with marginally Bernoulli distributions and with a joint
probability distribution described by this matrix

X
0 1
0 P1 J 2
Y
1 P3 Pa

pi=0,py + p, + p3+p,=1

_fx,y(an) fx,y(lao) pl p2
_fx,y(oal) fx,y(lal)_ P3 D4

b ——
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fo = 1£0) (D)) =1[p1 + ps p2 + pdl

from the usual formula for
conditional probabilities

f(z,y)

£.,(0,0)  £.,(1,0)
£o,(0,1) fo,(1,1)

-
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P
D3

Pz 7

P1 t+ D3
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P1 + D3
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Since we are only interested in the X sequence

P(X{=x1|X(')=x0)=2P(X{=x1|Y{=y)

y

X P(Y] = y| X5 = xp).

-

the transition matrix for the X sequence is
A = AypAyy

From the theory of Markov chains, we know that iterating this produces a fixed probability distribution, i.e., our
marginal distribution for X.
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So, what's the use of all this?

Consider the case where we want to compute the marginal pdf

f(x)=j...ff(x,yl,...,yp)dyl...dyp

in a situation where the multidimensional integral can be hard to compute.

The Gibbs sampler completely bypasses the calculation of the multidimensional integral and affords an
easy path to marginalization.

Indeed, the procedure can be easily extended to multidimensional distributions, for example with two
nuisance variables we produce the sequence

’ ’ ’ ’ ’ ’ ’ ’ ’
YO, ZOa XO) Yl’ Zla Xla YZ’ ZZa X27 . v

by means of the conditional PDFs
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10. The efficiency of MCMC methods

The effective use of MCMC programs requires the fine-tuning of many aspects

e Duration of burn-in (initialization)
* Number of parallel chains (random walkers)
* Selection of jumping rule (proposal function)

* Selection of convergence rule
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Statistical Science
1992, Vol. 7, No. 4, 457-511

Inference from lterative Simulation
Using Multiple Sequences

Andrew Gelman and Donald B. Rubin

Abstract. The Gibbs sampler, the algorithm of Metropolis and similar
iterative simulation methods are potentially very helpful for summarizing
multivariate distributions. Used naively, however, iterative simulation
can give misleading answers. Our methods are simple and generally
applicable to the output of any iterative simulation; they are designed
for researchers primarily interested in the science underlying the data
and models they are analyzing, rather than for researchers interested in
the probability theory underlying the iterative simulations themselves.
Our recommended strategy is to use several independent sequences, with
starting points sampled from an overdispersed distribution. At each step
of the iterative simulation, we obtain, for each univariate estimand of
interest, a distributional estimate and an estimate of how much sharper
the distributional estimate might become if the simulations were contin-
ued indefinitely. Because our focus is on applied inference for Bayesian
posterior distributions in real problems, which often tend toward normal-
ity after transformations and marginalization, we derive our results as
normal-theory approximations to exact Bayesian inference, conditional
on the observed simulations. The methods are illustrated on a random-
effects mixture model applied to experimental measurements of reaction
times of normal and schizophrenic patients.

Key words and phrases: Bayesian inference, convergence of stochastic
processes, EM, ECM, Gibbs sampler, importance sampling, Metropolis
algorithm, multiple imputation, random-effects model, SIR.



1.3 Our Approach

Our method is composed of two major steps. First, an
estimate of the target distribution is created, centered
about its mode (or modes, which are typically found
by an optimization algorithm) and “overdispersed” in
the sense of being more variable than the target distri-
bution. The approximate distribution is then used to
start several independent sequences of the iterative
simulation. The second major step is to analyze the
multiple sequences to form a distributional estimate
of what is known about the target random variable,
given the simulations thus far. This distributional esti-
mate, which is in the form of a Student’s ¢ distribution
for each scalar estimand, is somewhere between its
starting and target distributions and provides the ba-
sis for an estimate of how close the simulation process
is to convergence — that is, how much sharper the distri-
butional estimate might become if the simulations were
run longer.
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The G-R monitoring index

* m chains (walkers) and n samples/chain

* summary variable y with mean pu and st. dev. o under the target distribution

V;; is the value of the summary variable at the /-th iteration within the j-th chain
* we evaluate

S

™m
1) Z Z w]@ within-sequence variance

71=1 1=1

B/n=—

m
E fgb]z— . between-sequence variance

—1

3

e o can be estimated from these variances

~1._ B
o= W+ =
n n




The G-R monitoring index (ctd)

 the variance | B
Ve n T

6% = W+ —

n n

* would be an unbiased estimate of the true variance if the starting points were drawn from the target
distribution, but is an overestimate if the starting distribution is overdispersed

* taking the variability of the mean into account yields a different estimate of the variance
V—52 4 =
mn
» the so-called potential scale reduction factor (PSRF) can be interpreted as a convergence diagnostic
(when large it can be further decreased by continuing the simulation, when close to 1 it shows that the
set of simulations is close to the target distribution)
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CHAPTER III*

Fluctuations in Coin Tossing
and Random Walks

This chapter digresses from our main topic, which is taken up again
only in chapter V. Its material has traditionally served as a first orientation
and guide to more advanced theories. Simple methods will soon lead us
to results of far-reaching theoretical and practical importance. We shall
encounter theoretical conclusions which not only are unexpected but
actually come as a shock to intuition and common sense. They will reveal
that commonly accepted notions concerning chance fluctuations are without
foundation and that the implications of the law of large numbers are
widely misconstrued. For example, in various applications it is assumed
that observations on an individual coin-tossing game during a long time
interval will yield the same statistical characteristics as the observation of
the results of a huge number of independent games at one given instant.
This is not so. Indeed, using a currently popular jargon we reach the
conclusion that in a population of normal coins the majority is necessarily
maladjusted. [For empirical illustrations see section 6 and example (4.5).]
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6. AN EXPERIMENTAL ILLUSTRATION

Figure 4 represents the result of a computer experiment simulating
10,000 tosses of a coin; the same material is tabulated in example I, (6.c).
The top line contains the graph of the first 550 trials; the next two lines
represent the entire record of 10,000 trials the scale in the horizontal
direction being changed in the ratio 1:10. The scale in the vertical
direction is the same in the two graphs.

When looking at the graph most people feel surprised by the length of
the intervals between successive crossings of the axis. As a matter of fact,
the graph represents a rather mild case history and was chosen as the
mildest among three available records. A more startling example is
obtained by looking at the same graph in the reverse direction; that is,
reversing the order in which the 10,000 trials actually occurred (see section
8). Theoretically, the series as graphed and the reversed series are equally
legitimate as representative of an ideal random walk. The reversed random
walk has the following characteristics. Starting from the origin

the path stays on the

negative side positive side
for the first 7804 steps next 8 steps
next 2 steps next 34 steps

next 30 steps next 2 steps
next 48 steps next 6 steps
next 2046 steps

Total of 9930 steps Total of 70 steps

Fraction of time: 0.993 Fraction of time: 0.007

This looks absurd, and yet the probability that in 10,000 tosses of a
perfect coin the lead is at one side for more than 9930 trials and at the
other for fewer than 70 exceeds 1. In other words, on the average one
record out of ten will look worse than the one just described. By contrast,
the probability of a balance better than in the graph is only 0.072.

The original record of figure 4 contains 78 changes of sign and 64 other
returns to the origin. The reversed series shows 8 changes of sign and 6
other returns to the origin. Sampling of expert opinion revealed that even
trained statisticians expect much more than 78 changes of sign in 10,000
trials, and nobody counted on the possibility of only 8 changes of sign.
Actually the probability of not more than 8 changes of sign exceeds 0.14,
whereas the probability of more than 78 changes of sign is about 0.12.
As far as the number of changes of sign is concerned the two records stand
on a par and, theoretically, neither should cause surprise. If they seem
startling, this is due to our faulty intuition and to our having been exposed
to too many vague references to a mysterious “law of averages.”
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Figure 4. The record of 10,000 tosses of an ideal coin (described in section 6).
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11. Affine-invariant MCMC algorithms

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PAcIFIC, 125:306-312, 2013 March
© 2013. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

emcee: The MCMC Hammer

DANIEL FOREMAN-MACKEY,! DAVID W. HOGG,"* DUSTIN LANG,** AND JONATHAN GOODMAN?’
Received 2013 January 09; accepted 2013 January 30; published 2013 February 25

ABSTRACT. We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has
already been used in several published projects in the astrophysics literature. The algorithm behind emcee has
several advantages over traditional MCMC sampling methods and it has excellent performance as measured by
the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that
it requires hand-tuning of only 1 or 2 parameters compared to ~N? for a traditional algorithm in an N-dimensional
parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the
parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra
effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.
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* Optimizing a MCMC in a given parameter space often means that we use a proposal distribution that is tuned to
the target distribution.

* This proposal distribution is often a multivariate Gaussian with
an n x n covariance matrix that must be tuned accordingly 0.8}
1 1 o 0.6}
T1yevoyXTp) = exp | —=x" V7 'x
plass ) = ey o (X V%)
with 0.2f
0% pP1,20102 -+  P1n010n x' 0
P1,20102 0% "t P2,n020q
V = ) -0.2
P1n010n  P2,n020n - o -04f
1 -0.6
* The covariance matrix has 5n(n + 1) indipendent elements;
-0.8
tuning the proposal distribution means tuning these i . . .
-1 -0.5 0 0.5

independent elements (hyperparameters) with a long (and
computationally expensive) burn-in phase.

>



Consider the following highly anisotropic pdf

p(x) o exp <_ (71 —22)* (21 + g;2)2>

With the variable transformation

which has the Jacobian

1
In the n-dimensional parameter space there are only 2 hyperparameters to tune (mean, variance) instead of §n(n + 1)



The affine transformation is implemented as follows, with an ensemble of K walkers {X,}

Xip(t) > Y =X, + Z[X}(t) — X|]

where the indexj is drawn at random from the set of all the all the indexes excluding k, and Z is a random variable from
a distribution g such that

1 - 1
g(Z) x \/_E lf Ze [5 , CL]
0 otherwise

and acceptance probability

. — min<1, ZN p&('j(if)))

which satisfies detailed balance.
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https://emcee.readthedocs.io/en/stable/

emcee

Q. Search the docs ...

USER GUIDE

Installation

The Ensemble Sampler

Moves

Blobs

Backends

Autocorrelation Analysis
Upgrading From Pre-3.0 Versions

FAQ

TUTORIALS
Quickstart

Fitting a model to data
Parallelization

Autocorrelation analysis &
convergence

Saving & monitoring progress

Using different moves

Theme by the Executable Book Project

emcee

emcee is an MIT licensed pure-Python implementation of Goodman & Weare's Affine Invariant
Markov chain Monte Carlo (MCMC) Ensemble sampler and these pages will show you how to use
it.

This documentation won't teach you too much about MCMC but there are a lot of resources
available for that (try this one). We also published a paper explaining the emcee algorithm and
implementation in detail.

emcee has been used in quite a few projects in the astrophysical literature and it is being actively
developed on GitHub.

GitHub dfm/emcee license MIT [ arXiv [1202.3665 | coverage '96%

Basic Usage

If you wanted to draw samples from a 5 dimensional Gaussian, you would do something like:
import numpy as np
import emcee

def log_prob(x, ivar):
return -0.5 * np.sum(ivar * Xx *x 2)

ndim, nwalkers = 5, 100

ivar = 1. / np.random.rand(ndim)

p@ = np.random.randn(nwalkers, ndim)

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(p@, 10000)

A more complete example is available in the Quickstart tutorial.

i= Contents

Basic Usage
How to Use This Guide
License & Attribution

Changelog


https://emcee.readthedocs.io/en/stable/

Model selection

The generic purpose of a model selection statistic is to set up a tension between the
predictiveness of a model (for instance indicated by the number of free parameters) and its
ability to fit observational data. Oversimplistic models offering a poor fit should of course
be thrown out, but so should more complex models that offer poor predictive power.

There are two main types of model selection statistic that have been used in the literature
so far. Information criteria look at the best-fitting parameter values and attach a penalty
for the number of parameters; they are essentially a technical formulation of “chi-squared
per degrees of freedom” arguments. By contrast, the Bayesian evidence applies the same
type of likelihood analysis familiar from parameter estimation, but at the level of models
rather than parameters. It depends on goodness of fit across the entire model parameter

space.

(Liddle & al., 2006)
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Akaike Information Criterion (AIC).

This was derived by Hirotugu Akaike in 1974, and takes the form

where k is the number of parameters in the model. The subscript “max” indicates that one should find the
parameter values yielding the highest possible likelihood within the model. This second term acts as a kind of
“Occam factor”; initially, as parameters are added, the fit to data improves rapidly until a reasonable fit is
achieved, but further parameters then add little and the penalty term 2k takes over. The generic shape of
the AIC as a function of number of parameters is a rapid fall, a minimum, and then a rise. The preferred model
sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an approximate minimization of
the Kullback—Leibler information entropy which measures the distance between two probability
distributions.

(Liddle & al., 2006)
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Bayesian Information Criterion (BIC).

This was derived by Gideon Schwarz in 1978, and strongly resembles the AIC. It is given by

BIC=-2InLl,.« +kInN

where N is the number of datapoints. Since a typical dataset will have InN > 2, the BIC imposes a stricter
penalty against extra parameters than the AlC.

It was derived as an approximation to the Bayesian evidence, ... but the assumptions required are very
restrictive and unlikely to hold in practice, rendering the approximation quite crude.

(Liddle & al., 2006)
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible given some data, without necessarily
considering preferred values of model parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing models using Bayes' theorem:

~ P(D|M;, I)P(M;]|T)
P(M;|D,I) = S . P(D| My, I)P(Mg|I)

and select the best model using the odds ratio

P(M;|D,I)  P(D|M;, I)P(M;|I)

Oij =
2J
or the Bayes factor, if we assume equal prior probabilities for the different models:

v P(D’Mjal)
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Thus, we see that the Bayes factor is a ratio of evidences

5, _ P(DIM, )
" P(D|M;, 1)

As usual, each evidence is obtained by marginalizing the likelihood with respect to the (potentially different)
parameters:

©;



The evidence of a model is thus the average likelihood of the model in the prior.

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model, but
asks “of all the parameter values you thought were viable before the data came along, how
well on average did they fit the data?”. Literally, it is the likelihood of the model given the
data.

The evidence rewards predictability of models, provided they give a good fit to the data,
and hence gives an axiomatic realization of Occam's razor.

A model with little parameter freedom is likely to fit data over much of its parameter space,
whereas a model that could match pretty much any data that might have cropped up will
give a better fit to the actual data but only in a small region of its larger parameter space,
pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using — wherever possible — the Bayesian evidence, which is a full
implementation of Bayesian inference and can be directly interpreted in terms of model probabilities. It is
computationally challenging to compute, being a highly peaked multidimensional integral, but recent
algorithm development has made it feasible in cosmological contexts.

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is much simpler to
compute as one need only find the point of maximum likelihood for each model. However, interpreting it can
be difficult. Its main usefulness is as an approximation to the evidence, but this holds only for Gaussian
likelihoods and provided the datapoints are independent and identically distributed. The latter condition
holds poorly for the current global cosmological dataset, though it can potentially be improved by binning of
the data, hence decreasing the N in the penalty term.

The AIC has been widely used outside astrophysics but is of debatable utility. It has been shown to be
“dimensionally inconsistent”, meaning that it is not guaranteed to give the right result even in the limit of
infinite unbiased data. It may be useful for checking the robustness of conclusions drawn using the BIC. The
evidence and BIC are dimensionally consistent.

(Liddle & al., 2006)
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Bayesian classification

this likelihood is defined by
data X, classes C training data

4

P(x|C)
P(X)

the prior is also defined by
training data

P(C|X)= P(C)

we canh use the prior learning to assign a class to new data

Pl X|C
Ckzarggnax I(D(‘X)k)P(Ck)zarggnaxP(X\Ck)P(Ck)
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Consider a vector of N attributes given as Boolean variables

X = {x;} and classify the data vectors with a single Boolean variable.

The learning procedure must yield:

it is easy to obtain it as an empirical distribution from
an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N+!
different values, and we must estimate 2(2N-1)
parameters ... for instance, with N = 30 there are more
than 2 billion parameters!
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How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,’s:
naive Bayesian learning

for instance, with just two attributes

P(x.x|y) = Px[x.y) P(x|y)= P(x]y)P(x]|y)

conditional independence assumption

with more than 2 attributes

P(X\y)zﬁp(xk\ﬁ
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Therefore:

y = arg max

G L




More general discrete inputs

If any of the N x variables has J different values, e if there are K
classes, then we must estimate in all NK(J-1) free parameters with
the Naive Bayes Classifier (this includes normalization) (compare

this with the K(JN-1) parameters needed by a complete classifier)
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Continuous inputs and discrete classes — the Gaussian case

2
1 X, — I,
P('xn yk): 277:62 CXp _( 262kk)
nk | n _

here we must estimate 2NK parameters + the shape of the

distribution P(y) (this adds up to another K-1 parameters)
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Gaussian special case with class-independent variance and Boolean
classification (two classes only):

P(X|y = O)P(y = O)
X|y = O)P(y = O)+P(X|y = l)P(y = 1)

P(y=O|X): P(

1 ('xn o aLLnO )2
P(x|y=0)= -
(w[y=0) 2no? exp_ 20, |
1 _ (xn _ ILLnl )2 _
P :1 — —
(xn y ) 27:52 eXp_ - _







logistic shape

N
W, + anxn)

ex
P(y=1x)=1-P(y=0Jx)= =
1+ exp(wo + anxnj
n=1
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Finally, an input vector belongs to classy = 0 if

P(y=0|x)
P(y=1[x)

B

> 1

1
P(y=0[x)= v
1+exp(w0 +anxnj
n=1 N
eXP(Wo +iwnxnj » eXp(WO ' Zf e
P(y: 1|X): o

N
1+ exp(wo + anxn)

n=1

N
» wo+ Y wx <0
n=1
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