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Our next important topic: Bayesian estimates often require complex 
numerical integrals. How do we confront this problem? 

enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling perspective
5. Introduction to Markov chains and to Random Walks (RW)
6. Simulated annealing
7. The Metropolis algorithm
8. Markov Chain Monte Carlo (MCMC)
9. The Gibbs sampler
10. The efficiency of MCMC algorithms
11. Affine-invariant MCMC algorithms (EMCEE)
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Let's start with an example, and consider the following joint distribution: 

We see that

Next we set up a simple Markov chain procedure ... 

<latexit sha1_base64="IPp5sp8i190tWm+xTDvSzpauGrY="></latexit>
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f(x|y) ⇠ Binomial(n, y)

f(y|x) ⇠ Beta(x+ ↵, n� x+ �)

9. The Gibbs sampler
(adapted from Casella and George, Explaining the Gibbs sampler Am.Stat. 46 (1992) 167 )
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We generate a "Gibbs sequence" of random variables

where the initial value is specified and the others are computed with the rule

(Gibbs sampling). 

We observe that for large enough k, the final X values have a fixed distribution 
that corresponds to the marginal pdf of the x variate.

Thus, by taking rn large enough, any population char- 
acteristic, even the density itself, can be obtained to 
any degree of accuracy. 

To understand the workings of the Gibbs sampler, 
we first explore it in the two-variable case. Starting with 
a pair of random variables (X, Y), the Gibbs sampler 
generates a sample from f (x) by sampling instead from 
the conditional distributions f(x I y) and fO, I x), dis- 
tributions that are often known in statistical models. 
This is done by generating a "Gibbs sequence" of ran- 
dom variables 

Y;), x;), Y;, x ; ,  y;, x;, . . 
The initial value Y;) = y;) is specified, and the rest of 
(2.3) is obtained iteratively by alternately generating 
values from 

X,' - f (xI  Yi' = y;) 

We refer to this generation of (2.3) as Gibbs sampling. 
It turns out that under reasonably general conditions, 
the distribution of Xk converges to f (x) (the true mar- 
ginal of X) as k + a.Thus, for k large enough, the 
final observation in (2.3), namely Xk = x;, is effec- 
tively a sample point from f(x). 

The convergence (in distribution) of the Gibbs se- 
quence (2.3) can be exploited in a variety of ways to 
obtain an approximate sample from f(x). For example, 
Gelfand and Smith (1990) suggest generating m inde- 
pendent Gibbs sequences of length k, and then using 
the final value of Xk from each sequence. If k is chosen 
large enough, this yields an approximate iid sample 
from f(x). Methods for choosing such k, as well as 
alternative approaches to extracting information from 
the Gibbs sequence, are discussed in Section 5. For the 
sake of clarity and consistency, we have used only the 
preceding approach in all of the illustrative examples 
that follow. 

Example 1. For the following joint distribution of 
X and Y, 

suppose we are interested in calculating some charac- 
teristics of the marginal distribution f(x) of X. The Gibbs 
sampler allows us to generate a sample from this mar- 
ginal as follows. From (2.5) it follows (suppressing the 
overall dependence on n, a ,  and p)  that 

f(x I y) is Binomial (n, y) (2.6a) 

f(y I x) is Beta (x + a ,  n - x + p). (2.6b) 

If we now apply the iterative scheme (2.4) to the dis- 
tributions (2.6), we can generate a sample XI, X,, . . . , 
Xm from f (x) and use this sample to estimate any desired 
characteristic. 

As the reader may have already noticed, Gibbs sam- 
pling is actually not needed in this example, since f (x) 
168 The American Statistician, August 1992, Vol. 46, No. 3 

can be obtained analytically from (2.5) as 

the beta-binomial distribution. Here, characteristics of 
f(x) can be directly obtained from (2.7), either analyt- 
ically or by generating a sample from the marginal and 
not fussing with the conditional distributions. However, 
this simple situation is useful for illustrative purposes. 
Figure 1 displays histograms of two samples x,, . . . , 
xm of size m = 500 from the beta-binomial distribution 
of (2.7) with n = 16, a = 2, and /3 = 4. 

The two histograms are very similar, giving credence 
to the claim that the Gibbs scheme for random variable 
generation is indeed generating variables from the mar- 
ginal distribution. 

One feature brought out by Example 1 is that the 
Gibbs sampler is really not needed in any bivariate 
situation where the joint distribution f(x, y) can be 
calculated, since f(x) = f(x, y)lf(y I x). However, as 
the next example shows, Gibbs sampling may be indis- 
pensable in situations where f(x, y), f (x), or f (y) cannot 
be calculated. 

Example 2. Suppose X and Y have conditional dis- 
tributions that are exponential distributions restricted 
to the interval (0, B), that is, 

f(y I x) rn xe-", 0 < y < B < m, (2.8b) 

where B is a known positive constant. The restriction 
to the interval (0, B) ensures that the marginal f(x) 
exists. Although the form of this marginal is not easily 
calculable, by applying the Gibbs sampler to the con- 
ditionals in (2.8) any characteristic o f f  ( x )  can be ob- 
tained. 

Figure 1. Comparison of Two Histograms of Samples of Size 
m = 500 From the Beta-Binomial Distribution With n = 16, a = 2, 
and p = 4. The black histogram sample was obtained using Gibbs 
sampling with k = 10. The white histogram sample was generated 
directly from the beta-binomial distribution. 
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black = Gibbs sampling
white = theoretical expectation
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Should we expect this result? 

Consider the following expectation value 

therefore we can estimate f(x) with the sum

where the y's are generated according to their marginal distribution; finally the Gibbs sampling provides representative 
samples that correspond to the marginal distribution of the x's. (for a mathematically accurate proof, check the paper by 
Casella&George) 
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Ey[f(x|y)] =
Z

Y
f(x|y)f(y)dy =

Z

Y
f(x, y)dy = f(x)

In Figure 2 we display a histogram of a sample of 
size m = 500 from f(x) obtained by using the final 
values from Gibbs sequences of length k = 15. 

In Section 4 we see that if B is not finite, then the 
densities in (2.8) are not a valid pair of conditional 
densities in the sense that there is no joint density 
f(x, y) to which they correspond, and the Gibbs se- 
quence fails to converge. 

Gibbs sampling can be used to estimate the density 
itself by averaging the final conditional densities from 
each Gibbs sequence. From (2.3), just as the values 
XL = x; yield a realization of XI,  . . . ,X, -f (x), the 
values Yk = y; yield a realization of Y,, . . . , Y, -
f (y). Moreover, the average of the conditional densities 
f(x I Y; = y;) will be a close approximation to f(x), 
and we can estimate f (x) with 

where y,, . . . ,y, is the sequence of realized values of 
final Y observations from each Gibbs sequence. The 
theory behind the calculation in (2.9) is that the ex- 
pected value of the conditional density is 

a calculation mimicked by (2.9), since y,, . . . ,y, ap-
proximate a sample from f (y). For the densities in (2.8), 
this estimate of f(x) is shown in Figure 2. 

Example 1(continued): The density estimate meth- 
odology of (2.9) can also be used in discrete distribu- 
tions, which we illustrate for the beta-binomial of Ex- 
ample 1.Using the observations generated to construct 
Figure 1, we can, analogous to (2.9), estimate the mar- 
ginal probabilities of X using 

o 0.4 0.8 1.2 1.6 2.0 2.4 

Figure 2. Histogram for x of a Sample of Size m = 500 From 
the Pair of Conditional Distributions in (2.8), With B = 5, Obtained 
Using Gibbs Sampling With k = 15 Along With an Estimate of the 
Marginal Density Obtained From Equation (2.9) (solid line). The 
dashed line is the true marginal density, as explained in Section 
4.1. 
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Figure 3. Comparison of Two Probability Histograms of the Beta-  
Binomial Distribution With n = 16, a = 2, and p = 4. The black  
histogram represents estimates of the marginal distribution of X  
using Equation (2.1 I), based on a sample of Size m = 500 from  
the pair of conditional distributions in (2.6). The Gibbs sequence  
had length k = 10. The white histogram represents the exact beta-  
binomial ~robabilities.  

Figure 3 displays these probability estimates overlayed 
with the exact beta-binomial probabilities for compar- 
ison. 

The density estimates (2.9) and (2.11) illustrate an 
important aspect of using the Gibbs sampler to evaluate 
characteristics of f (x). The quantities f (x I y,), . . . , 
f (x I y,), calculated using the simulated values y,, . . . 
,y,, carry more information about f(x) than x,, . . . , 
x, alone, and will yield better estimates. For example, 
an estimate of the mean of f(x) is (lim) C?!, x;, but a 
better estimate is (llm) Cy!"=,(X I y,), as long as these 
conditional expectations are obtainable. The intuition 
behind this feature is the Rao-Blackwell theorem (il- 
lustrated by Gelfand and Smith 1990), and established 
analytically by Liu, Wong, and Kong (1991). 

3. A SIMPLE CONVERGENCE PROOF 

It is not immediately obvious that a random variable 
with distribution f(x) can be produced by the Gibbs 
sequence of (2.3) or that the sequence even converges. 
That this is so relies on the Markovian nature of the 
iterations, which we now develop in detail for the simple 
case of a 2 x 2 table with multinomial sampling. 

Suppose X and Y are each (marginally) Bernoulli 
random variables with joint distribution 

The American Statistician, August 1992, Vol. 46, No. 3 169 
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Does Gibbs sampling converge?

We consider the following case: two discrete random variables with marginally Bernoulli distributions and with a joint 
probability distribution described by this matrix
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or, in terms of the joint probability function, 

For this distribution, the marginal distribution of x is 
given by 

a Bernoulli distribution with success probability p, + 
P4. 

The conditional distributions of X I Y = y and Y I X 
= x are straightforward to calculate. For example the 
distribution of X I Y = 1is Bernoulli with success prob- 
ability p4/(p, + p4). All of the conditional probabilities 
can be expressed in two matrices, 

and 

where Aylx has the conditional probabilities of Y given 
X = x, and Aylx has the conditional probabilities of X 
given Y = y. 

The iterative sampling scheme applied to this distri- 
bution yields (2.3) as a sequence of 0's and 1's. The 
matrices Ax[, and AyIx may be thought of as transition 
matrices giving the probabilities of getting to x states 
from y states and vice versa, that is, P(X = x I Y = 
y) = probability of going from state y to state x. 

If we are only interested in generating the marginal 
distribution of X, we are mainly concerned with the X'  
sequence from (2.3). To go from X;, +X; we have to 
go through Y; ,  so the iteration sequence is 
X;, + Y; +Xi, and XA +X; forms a Markov chain 
with transition probability 

P(x ;  = XI I x;,= x,) = C P(X; = X I  / Y; = y) 
Y 

X P(Y; = y I Xh = x,). (3.2) 
The transition probability matrix of the X'  sequence, 
A,,,, is given by 

Axlx = AylxAxly, 
and now we can easily calculate the probability distri- 
bution of any XL in the sequence. That is, the transition 
matrix that gives P(XL = xk I X;, = x,) is (Axlx)k. Fur-
thermore, if we write 

to denote the marginal probability distribution of XL, 
then for any k, 

It is well known (see, for example, Hoel, Port, and 

Stone 1972), that as long as all the entries of Axlx are 
positive, then (3.3) implies that for any initial proba- 
bility f,, as k + m, fk converges to the unique distri- 
bution f that is a stationary point of (3.3), and satisfies 

Thus, if the Gibbs sequence converges, the f that 
satisfies (3.4) must be the marginal distribution of X. 
Intuitively, there is nowhere else for this iteration to 
go; in the long run we will get X's in the proportion 
dictated by the marginal distribution. However, it is 
straightforward to check that (3.4) is satisfied by fx of 
(3.I ) ,  that is, 

As k + m, the distribution of XL gets closer to fx, so if 
we stop the iteration scheme (2.3) at a large enough 
value of k, we can assume that the distribution of XL 
is approximately fx. Moreover, the larger the value of 
k, the better the approximation. This topic is discussed 
further in Section 5. 

The algebra for the 2 x 2 case immediately works 
for any n x m joint distribution of X's and Y's. We 
can analogously define the n x n transition matrix 
Axlx whose stationary distribution will be the marginal 
distribution of X. If either (or both) of X and Y are 
continuous, then the finite dimensional arguments will 
not work. However, with suitable assumptions, all of 
the theory still goes through, so the Gibbs sampler still 
produces a sample from the marginal distribution of X. 
Equation (3.2) would now represent the conditional 
density of Xi given X;,, and could be written 

(Sometimes it is helpful to use subscripts to denote the 
density.) Then, step by step, we could write the con- 
ditional densities of X;IX;,, XAIXA, XAIX,!,, ..:. Similar to 
the k-step transition matrix (Axlx)k, we derive an "in- 
finite transition matrix" with entries that satisfy the 
relationship 

which is the continuous version of (3.3). The density 
fXklXii-l represents a one-step transition, and the other 
two densities play the role of fk and fk_, .  As k +m, it 
again follows that the stationary point of (3.5) is the 
marginal density of X, the density to which fx;lxL-lcon-
verges. 

4. CONDITIONALS DETERMINE MARGINALS 

Gibbs sampling can be thought of as a practical im- 
plementation of the fact that knowledge of the condi- 
tional distributions is sufficient to determine a joint 
distribution (if it exists!). In the bivariate case, the de- 
rivation of the marginal from the conditionals is fairly 
straightforward. Complexities in the multivariate case, 
however, make these connections more obscure. We 

170 The American Statistician, August 1992, Vol. 46, No. 3 



Edoardo Milotti - Bayesian Methods - May 2023 8

or, in terms of the joint probability function, 

For this distribution, the marginal distribution of x is 
given by 

a Bernoulli distribution with success probability p, + 
P4. 

The conditional distributions of X I Y = y and Y I X 
= x are straightforward to calculate. For example the 
distribution of X I Y = 1is Bernoulli with success prob- 
ability p4/(p, + p4). All of the conditional probabilities 
can be expressed in two matrices, 

and 

where Aylx has the conditional probabilities of Y given 
X = x, and Aylx has the conditional probabilities of X 
given Y = y. 

The iterative sampling scheme applied to this distri- 
bution yields (2.3) as a sequence of 0's and 1's. The 
matrices Ax[, and AyIx may be thought of as transition 
matrices giving the probabilities of getting to x states 
from y states and vice versa, that is, P(X = x I Y = 
y) = probability of going from state y to state x. 

If we are only interested in generating the marginal 
distribution of X, we are mainly concerned with the X'  
sequence from (2.3). To go from X;, +X; we have to 
go through Y; ,  so the iteration sequence is 
X;, + Y; +Xi, and XA +X; forms a Markov chain 
with transition probability 

P(x ;  = XI I x;,= x,) = C P(X; = X I  / Y; = y) 
Y 

X P(Y; = y I Xh = x,). (3.2) 
The transition probability matrix of the X'  sequence, 
A,,,, is given by 

Axlx = AylxAxly, 
and now we can easily calculate the probability distri- 
bution of any XL in the sequence. That is, the transition 
matrix that gives P(XL = xk I X;, = x,) is (Axlx)k. Fur-
thermore, if we write 

to denote the marginal probability distribution of XL, 
then for any k, 

It is well known (see, for example, Hoel, Port, and 

Stone 1972), that as long as all the entries of Axlx are 
positive, then (3.3) implies that for any initial proba- 
bility f,, as k + m, fk converges to the unique distri- 
bution f that is a stationary point of (3.3), and satisfies 

Thus, if the Gibbs sequence converges, the f that 
satisfies (3.4) must be the marginal distribution of X. 
Intuitively, there is nowhere else for this iteration to 
go; in the long run we will get X's in the proportion 
dictated by the marginal distribution. However, it is 
straightforward to check that (3.4) is satisfied by fx of 
(3.I ) ,  that is, 

As k + m, the distribution of XL gets closer to fx, so if 
we stop the iteration scheme (2.3) at a large enough 
value of k, we can assume that the distribution of XL 
is approximately fx. Moreover, the larger the value of 
k, the better the approximation. This topic is discussed 
further in Section 5. 

The algebra for the 2 x 2 case immediately works 
for any n x m joint distribution of X's and Y's. We 
can analogously define the n x n transition matrix 
Axlx whose stationary distribution will be the marginal 
distribution of X. If either (or both) of X and Y are 
continuous, then the finite dimensional arguments will 
not work. However, with suitable assumptions, all of 
the theory still goes through, so the Gibbs sampler still 
produces a sample from the marginal distribution of X. 
Equation (3.2) would now represent the conditional 
density of Xi given X;,, and could be written 

(Sometimes it is helpful to use subscripts to denote the 
density.) Then, step by step, we could write the con- 
ditional densities of X;IX;,, XAIXA, XAIX,!,, ..:. Similar to 
the k-step transition matrix (Axlx)k, we derive an "in- 
finite transition matrix" with entries that satisfy the 
relationship 

which is the continuous version of (3.3). The density 
fXklXii-l represents a one-step transition, and the other 
two densities play the role of fk and fk_, .  As k +m, it 
again follows that the stationary point of (3.5) is the 
marginal density of X, the density to which fx;lxL-lcon-
verges. 

4. CONDITIONALS DETERMINE MARGINALS 

Gibbs sampling can be thought of as a practical im- 
plementation of the fact that knowledge of the condi- 
tional distributions is sufficient to determine a joint 
distribution (if it exists!). In the bivariate case, the de- 
rivation of the marginal from the conditionals is fairly 
straightforward. Complexities in the multivariate case, 
however, make these connections more obscure. We 

170 The American Statistician, August 1992, Vol. 46, No. 3 

or, in terms of the joint probability function, 

For this distribution, the marginal distribution of x is 
given by 

a Bernoulli distribution with success probability p, + 
P4. 

The conditional distributions of X I Y = y and Y I X 
= x are straightforward to calculate. For example the 
distribution of X I Y = 1is Bernoulli with success prob- 
ability p4/(p, + p4). All of the conditional probabilities 
can be expressed in two matrices, 

and 

where Aylx has the conditional probabilities of Y given 
X = x, and Aylx has the conditional probabilities of X 
given Y = y. 

The iterative sampling scheme applied to this distri- 
bution yields (2.3) as a sequence of 0's and 1's. The 
matrices Ax[, and AyIx may be thought of as transition 
matrices giving the probabilities of getting to x states 
from y states and vice versa, that is, P(X = x I Y = 
y) = probability of going from state y to state x. 

If we are only interested in generating the marginal 
distribution of X, we are mainly concerned with the X'  
sequence from (2.3). To go from X;, +X; we have to 
go through Y; ,  so the iteration sequence is 
X;, + Y; +Xi, and XA +X; forms a Markov chain 
with transition probability 

P(x ;  = XI I x;,= x,) = C P(X; = X I  / Y; = y) 
Y 

X P(Y; = y I Xh = x,). (3.2) 
The transition probability matrix of the X'  sequence, 
A,,,, is given by 

Axlx = AylxAxly, 
and now we can easily calculate the probability distri- 
bution of any XL in the sequence. That is, the transition 
matrix that gives P(XL = xk I X;, = x,) is (Axlx)k. Fur-
thermore, if we write 

to denote the marginal probability distribution of XL, 
then for any k, 

It is well known (see, for example, Hoel, Port, and 

Stone 1972), that as long as all the entries of Axlx are 
positive, then (3.3) implies that for any initial proba- 
bility f,, as k + m, fk converges to the unique distri- 
bution f that is a stationary point of (3.3), and satisfies 

Thus, if the Gibbs sequence converges, the f that 
satisfies (3.4) must be the marginal distribution of X. 
Intuitively, there is nowhere else for this iteration to 
go; in the long run we will get X's in the proportion 
dictated by the marginal distribution. However, it is 
straightforward to check that (3.4) is satisfied by fx of 
(3.I ) ,  that is, 

As k + m, the distribution of XL gets closer to fx, so if 
we stop the iteration scheme (2.3) at a large enough 
value of k, we can assume that the distribution of XL 
is approximately fx. Moreover, the larger the value of 
k, the better the approximation. This topic is discussed 
further in Section 5. 

The algebra for the 2 x 2 case immediately works 
for any n x m joint distribution of X's and Y's. We 
can analogously define the n x n transition matrix 
Axlx whose stationary distribution will be the marginal 
distribution of X. If either (or both) of X and Y are 
continuous, then the finite dimensional arguments will 
not work. However, with suitable assumptions, all of 
the theory still goes through, so the Gibbs sampler still 
produces a sample from the marginal distribution of X. 
Equation (3.2) would now represent the conditional 
density of Xi given X;,, and could be written 

(Sometimes it is helpful to use subscripts to denote the 
density.) Then, step by step, we could write the con- 
ditional densities of X;IX;,, XAIXA, XAIX,!,, ..:. Similar to 
the k-step transition matrix (Axlx)k, we derive an "in- 
finite transition matrix" with entries that satisfy the 
relationship 

which is the continuous version of (3.3). The density 
fXklXii-l represents a one-step transition, and the other 
two densities play the role of fk and fk_, .  As k +m, it 
again follows that the stationary point of (3.5) is the 
marginal density of X, the density to which fx;lxL-lcon-
verges. 

4. CONDITIONALS DETERMINE MARGINALS 

Gibbs sampling can be thought of as a practical im- 
plementation of the fact that knowledge of the condi- 
tional distributions is sufficient to determine a joint 
distribution (if it exists!). In the bivariate case, the de- 
rivation of the marginal from the conditionals is fairly 
straightforward. Complexities in the multivariate case, 
however, make these connections more obscure. We 

170 The American Statistician, August 1992, Vol. 46, No. 3 

marginal 
distribution

or, in terms of the joint probability function, 

For this distribution, the marginal distribution of x is 
given by 

a Bernoulli distribution with success probability p, + 
P4. 

The conditional distributions of X I Y = y and Y I X 
= x are straightforward to calculate. For example the 
distribution of X I Y = 1is Bernoulli with success prob- 
ability p4/(p, + p4). All of the conditional probabilities 
can be expressed in two matrices, 

and 

where Aylx has the conditional probabilities of Y given 
X = x, and Aylx has the conditional probabilities of X 
given Y = y. 

The iterative sampling scheme applied to this distri- 
bution yields (2.3) as a sequence of 0's and 1's. The 
matrices Ax[, and AyIx may be thought of as transition 
matrices giving the probabilities of getting to x states 
from y states and vice versa, that is, P(X = x I Y = 
y) = probability of going from state y to state x. 

If we are only interested in generating the marginal 
distribution of X, we are mainly concerned with the X'  
sequence from (2.3). To go from X;, +X; we have to 
go through Y; ,  so the iteration sequence is 
X;, + Y; +Xi, and XA +X; forms a Markov chain 
with transition probability 

P(x ;  = XI I x;,= x,) = C P(X; = X I  / Y; = y) 
Y 

X P(Y; = y I Xh = x,). (3.2) 
The transition probability matrix of the X'  sequence, 
A,,,, is given by 

Axlx = AylxAxly, 
and now we can easily calculate the probability distri- 
bution of any XL in the sequence. That is, the transition 
matrix that gives P(XL = xk I X;, = x,) is (Axlx)k. Fur-
thermore, if we write 

to denote the marginal probability distribution of XL, 
then for any k, 

It is well known (see, for example, Hoel, Port, and 

Stone 1972), that as long as all the entries of Axlx are 
positive, then (3.3) implies that for any initial proba- 
bility f,, as k + m, fk converges to the unique distri- 
bution f that is a stationary point of (3.3), and satisfies 

Thus, if the Gibbs sequence converges, the f that 
satisfies (3.4) must be the marginal distribution of X. 
Intuitively, there is nowhere else for this iteration to 
go; in the long run we will get X's in the proportion 
dictated by the marginal distribution. However, it is 
straightforward to check that (3.4) is satisfied by fx of 
(3.I ) ,  that is, 

As k + m, the distribution of XL gets closer to fx, so if 
we stop the iteration scheme (2.3) at a large enough 
value of k, we can assume that the distribution of XL 
is approximately fx. Moreover, the larger the value of 
k, the better the approximation. This topic is discussed 
further in Section 5. 

The algebra for the 2 x 2 case immediately works 
for any n x m joint distribution of X's and Y's. We 
can analogously define the n x n transition matrix 
Axlx whose stationary distribution will be the marginal 
distribution of X. If either (or both) of X and Y are 
continuous, then the finite dimensional arguments will 
not work. However, with suitable assumptions, all of 
the theory still goes through, so the Gibbs sampler still 
produces a sample from the marginal distribution of X. 
Equation (3.2) would now represent the conditional 
density of Xi given X;,, and could be written 

(Sometimes it is helpful to use subscripts to denote the 
density.) Then, step by step, we could write the con- 
ditional densities of X;IX;,, XAIXA, XAIX,!,, ..:. Similar to 
the k-step transition matrix (Axlx)k, we derive an "in- 
finite transition matrix" with entries that satisfy the 
relationship 

which is the continuous version of (3.3). The density 
fXklXii-l represents a one-step transition, and the other 
two densities play the role of fk and fk_, .  As k +m, it 
again follows that the stationary point of (3.5) is the 
marginal density of X, the density to which fx;lxL-lcon-
verges. 

4. CONDITIONALS DETERMINE MARGINALS 

Gibbs sampling can be thought of as a practical im- 
plementation of the fact that knowledge of the condi- 
tional distributions is sufficient to determine a joint 
distribution (if it exists!). In the bivariate case, the de- 
rivation of the marginal from the conditionals is fairly 
straightforward. Complexities in the multivariate case, 
however, make these connections more obscure. We 

170 The American Statistician, August 1992, Vol. 46, No. 3 

transition 
probabilities

from the usual formula for 
conditional probabilities

<latexit sha1_base64="6T+dOfp5Gxlkn1jUVoG9qBiNMUE="></latexit>

fy|x(y|x) =
f(x, y)

fx(x)



Edoardo Milotti - Bayesian Methods - May 2023 9
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So, what's the use of all this?

Consider the case where we want to compute the marginal pdf 

in a situation where the multidimensional integral can be hard to compute. 

The Gibbs sampler completely bypasses the calculation of the multidimensional integral and affords an 
easy path to marginalization. 

Indeed, the procedure can be easily extended to multidimensional distributions, for example with two 
nuisance variables we produce the sequence

by means of the conditional PDFs 

Explaining the Gibbs Sampler 
GEORGE CASELLA and EDWARD I. GEORGE* 

Computer-intensive algorithms, such as the Gibbs sam- 
pler, have become increasingly popular statistical tools, 
both in applied and theoretical work. The properties of 
such algorithms, however, may sometimes not be ob- 
vious. Here we give a simple explanation of how and 
why the Gibbs sampler works. We analytically establish 
its properties in a simple case and provide insight for 
more complicated cases. There are also a number of 
examples. 

KEY WORDS: Data augmentation; Markov chains; 
Monte Carlo methods; Resampling techniques. 

1. INTRODUCTION 
The continuing availability of inexpensive, high-speed 

computing has already reshaped many approaches to 
statistics. Much work has been done on algorithmic 
approaches (such as the EM algorithm; Dempster, Laird, 
and Rubin 1977), or resampling techniques (such as the 
bootstrap; Efron 1982). Here we focus on a different 
type of computer-intensive statistical method, the Gibbs 
sampler. 

The Gibbs sampler enjoyed an initial surge of pop- 
ularity starting with the paper of Geman and Geman 
(1984), who studied image-processing models. The roots 
of the method, however, can be traced back to at least 
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 
(1953), with further development by Hastings (1970). 
More recently, Gelfand and Smith (1990) generated 
new interest in the Gibbs sampler by revealing its po- 
tential in a wide variety of conventional statistical 
problems. 

The Gibbs sampler is a technique for generating ran- 
dom variables from a (marginal) distribution indirectly, 
without having to calculate the density. Although 
straightforward to describe, the mechanism that drives 
this scheme may seem mysterious. The purpose of this 
article is to demystify the workings of these algorithms 
by exploring simple cases. In such cases, it is easy to 
see that Gibbs sampling is based only on elementary 
properties of Markov chains. 

Through the use of techniques like the Gibbs sam- 
pler, we are able to avoid difficult calculations, replac- 
ing them instead with a sequence of easier calculations. 
These methodologies have had a wide impact on prac- 
tical problems, as discussed in Section 6. Although most 
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applications of the Gibbs sampler have been in Bayesian 
models, it is also extremely useful in classical (likeli- 
hood) calculations [see Tanner (1991) for many ex-
amples]. Furthermore, these calculational methodolo- 
gies have also had an impact on theory. By freeing 
statisticians from dealing with complicated calculations, 
the statistical aspects of a problem can become the main 
focus. This point is wonderfully illustrated by Smith and 
Gelfand (1992). 

In the next section we describe and illustrate the ap- 
plication of the Gibbs sampler in bivariate situations. 
Section 3 is a detailed development of the underlying 
theory, given in the simple case of a 2 x 2 table with 
multinomial sampling. From this detailed development, 
the theory underlying general situations is more easily 
understood, and is also outlined. Section 4 elaborates 
the role of the Gibbs sampler in relating conditional 
and marginal distributions and illustrates some higher 
dimensional generalizations. Section 5 describes many 
of the implementation issues surrounding the Gibbs 
sampler, and Section 6 contains a discussion and de- 
scribes many applications. 

2. ILLUSTRATING THE GIBBS SAMPLER 

Suppose we are given a joint density f(x, y , ,  . . . , 
y,), and are interested in obtaining characteristics of 
the marginal density 

such as the mean or variance. Perhaps the most natural 
and straightforward approach would be to calculate f (x) 
and use it to obtain the desired characteristic. However, 
there are many cases where the integrations in (2.1) are 
extremely difficult to perform, either analytically or nu- 
merically. In such cases the Gibbs sampler provides an 
alternative method for obtaining f(x). 

Rather than compute or approximate f(x) directly, 
the Gibbs sampler allows us effectively to generate a 
sample XI,  . . . ,X,, - f(x) without requiring f(x). By 
simulating a large enough sample, the mean, variance, 
or any other characteristic off  (x) can be calculated to 
the desired degree of accuracy. 

It is important to realize that, in effect, the end result 
of any calculations, although based on simulations, are 
the population quantities. For example, to calculate the 
mean of f(x), we could use ( l /m)C~=l Xi, and the fact 
that 
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marginal of interest. Such methodologies are part of 
the general techniques of substitution sampling (see 
Gelfand and Smith 1990, for an explanation). Here we 
merely illustrate two versions of this technique. 

In the case of two variables, all substitution sampling 
algorithms are the same. The three variable case, how- 
ever, is sufficiently complex to illustrate the differences 
between algorithms, yet sufficiently simple to allow us 
to write things out in detail. Generalizing to cases of 
more than three variables is reasonably straightforward. 

Suppose we would like to calculate the marginal dis- 
tribution fx(x) in a problem with random variables X ,  
Y, and 2 .  A fixed-point integral equation like (4.1) can 
be derived if we consider the pair (Y, 2 )  as a single 
random variable. We have 

analogous to (4.1). Cycling between fxlyzandfyzlxwould 
again result in a sequence of random variables con-
verging in distribution to fx(x). This is the idea behind 
the Data Augmentation Algorithm of Tanner and Wong 
(1987). By sampling iteratively from fxlYz and fyzlx, 
they show how to obtain successively better approxi- 
mations to fx(x). 

In contrast, the Gibbs sampler would sample itera- 
tively from fxlYz, fylxz,and fijxy. That is, the jth it- 
eration would be 

x; - f(x 1 Y; = y'I '  2'I = z ' )I 

Yitl - f(y I X,' = x;, 2; = 2,') 

The iteration scheme of (4.6) produces a Gibbs se-
quence 

Y 2 ,  x Y z x Y 2 ,  x . . . , (4.7) 
with the property that, for large k, X i  = xk is effec- 
tively a sample point from f(x). Although it is not im- 
mediately evident, the iteration in (4.6) will also solve 
the fixed-point equation (4.5). In fact, a defining char- 
acteristic of the Gibbs sampler is that it always uses the 
full set of univariate conditionals to define the iteration. 
Besag (1974) established that this set is sufficient to 
determine the joint (and any marginal) distribution, and 
hence can be used to solve (4.5). 

As an example of a three-variable Gibbs problem, 
we look at a generalization of the distribution examined 
in Example 1. 

Example 3. In the distribution (2.5), we now let n 
be the realization of a Poisson random variable with 
mean A ,  yielding the joint distribution 

Again, suppose we are interested in the marginal dis- 
tribution of X.  Unlike Example 1, here we cannot cal- 
culate the marginal distribution of X in closed form. 

o 2 6 10 14 18 

Figure 5. Estimates of Probabilities of the Marginal Distribution 
of X Using Equation (2.1 I), Based on a Sample of Size m = 500 
From the Three Conditional Distributions in (4.9) With A = 16, a = 
2, and p = 4. The Gibbs sequences had length k = 10. 

However, from (4.8) it is reasonably straightforward to 
calculate the three conditional densities. Suppressing 
dependence on A ,  a ,  and p ,  

f(x I y, n) is binomial (n, y) 

f (y  Ix,  n) is beta (x + a, n - x + p) 

If we now apply the iterative scheme (4.6) to the dis- 
tributions in (4.9), we can generate a sequknce XI ,  X,, 
. . . , X,, from f(x) and use this sequence to estimate 
the desired characteristic. The density estimate of 
P (X  = x), using Equation (2.11) can also be con-
structed. This is done and is given in Figure 5. This 
figure can be compared to Figure 3, but here there is 
a longer right tail from the Poisson variability. 

The model (4.9) can have practical applications. For 
example, conditional on n and y, let x represent the 
number of successful hatchings from n insect eggs, where 
each egg has success probability y. Both n and y fluc- 
tuate across insects, which is modeled in their respective 
distributions, and the resulting marginal distribution of 
X i s  a typical number of successful hatchings among all 
insects. 

5. EXTRACTING INFORMATION FROM 
GIBBS SEQUENCE 

Some of the more important issues in Gibbs sampling 
surround the implementation and comparison of the 
various approaches to extracting information from the 
Gibbs sequence in (2.3). These issues are currently a 
topic of much debate and research. 

5.1 Detecting Convergence 

As illustrated in Section 3, the Gibbs sampler gen- 
erates a Markov chain of random variables which con- 
verge to the distribution of interest f(x). Many of the 
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10. The efficiency of MCMC methods

The effective use of MCMC programs requires the fine-tuning of many aspects

• Duration of burn-in (initialization)

• Number of parallel chains (random walkers)

• Selection of jumping rule (proposal function)

• Selection of convergence rule

• ...
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The G-R monitoring index

• m chains (walkers) and n samples/chain
• summary variable y with mean µ and st. dev. s under the target distribution
• yji is the value of the summary variable at the i-th iteration within the j-th chain
• we evaluate

• s can be estimated from these variances
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The G-R monitoring index (ctd)

• the variance

• would be an unbiased estimate of the true variance if the starting points were drawn from the target 
distribution, but is an overestimate if the starting distribution is overdispersed

• taking the variability of the mean into account yields a different estimate of the variance 

• the so-called potential scale reduction factor (PSRF) can be interpreted as a convergence diagnostic 
(when large it can be further decreased by continuing the simulation, when close to 1 it shows that the 
set of simulations is close to the target distribution)
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86 RANDOM WALKS [III. 6 

(b) The probabiIity that in 10,000 trials no change ofsign occurs is about 
0.0160. The probabilities X r for exactly r changes decrease very slowly; 
for r = 10,20,30 the values are X r = 0.0156, 0.0146, and 0.0130. The 
probabiIity that in 10,000 trials the lead changes at most lO times is about 
0.0174; in other words, one out ofsix such series will show not more than 
lO changes of lead. 

A pleasing property of the identity (5.1) is that it enabies us to appIy the normal 
approximation derived in section 2. Suppose that n is Iarge and a; a fixed positive 
number. The probability that fewer than changes of sign occur before epoch n 
is practically the same as 2P{Sn < and according to (2.8) the Iast probability 
tends to 91(2w) - l as n -o- 00. We have thus 

Theorem 2. (Normal approximalion.) The probabilily thal fewer Ihan changes 
of sign occur before epoch n lends lo 291(2x) - 1 as n -+ 00. 

It follows that the median for the number of changes of sign is about 
this means that for n sufficiently Iarge it is about as likely that there occur fewer than 

changes of sign than that occur more. With probabiIity l'. there will be fewer 
than 0.0628 v;; changes of sign, etc. H 

6. AN EXPERIMENTAL ILLUSTRATION 

Figure 4 represents the result of a computer experiment simulating 
10,000 tosses of a coin; the same material is tabulated in example I, (6.c). 
The top line contains the graph of the first 550 trials; the next two lines 
represent the entire record of 10,000 trials the scale in the horizontal 
direction being changed in the ratio 1: lO. The scale in the vertical 
direction is the same in the two graphs. 

When 100king at the graph most people feel surprised by the length of 
the intervals between successive crossings of the axis. As a matter of fact, 
the graph represents a rather mild case history and was chosen as the 
mildest among three available records. A more startling example is 
obtained by looking at the same graph in the reverse direction; that is, 
reversing the order in which the 10,000 trials actually occurred (see section 
8). Theoretical1y, the series as graphed and the reversed series are equally 
legitimate as representative of an ideaI random walk. The reversed random 

14 This approximation gives ,l. for the probability of at most 6 equalizations in 10,000 
triais. This is an underestimate, the true value being about 0.112. 

88 RANDOM WALKS [111.7 

waIk has the foIIowing characteristics. Starting from the origin 

the path stays on the 
negative side 

far the first 7804 steps 
next 2 steps 
next 30 steps 
next 48 steps 
next 2046 steps 

Total of9930 steps 
Fraction oftime: 0.993 

positive side 
next 8 steps 
next 54 steps 
next 2 steps 
next 6 steps 

Total of70 steps 
Fraction of time: 0.007 

This looks absurd, and yet the probability that in 10,000 tosses of a 
perfect coin the Iead is at one side for more than 9930 triaIs and at the 
other for fewer than 70 exceeds -lo. In other words, on the average one 
record out 0/ ten willlook worse than the one just described. By contrast, 
the probability of a baIance better than in the graph is onIy 0.072. 

The originaI record of figure 4 contains 78 changes of sign and 64 other 
returns to the origino The reversed series shows 8 changes of sign and 6 
other returns to the origino Sampling of expert opinion revealed that even 
trained statisticians expect much more than 78 changes of sign in 10,000 
triaIs, and nobody counted on the possibility of only 8 changes of sign. 
ActuaIIy the probability of not more than 8 changes of sign exceeds 0.14, 
whereas the probabiIity of more than 78 changes of sign is about 0.12. 
As far as the number of changes of sign is concerned the two records stand 
on a par and, theoreticaIIy, neither shouId cause surprise. If they seem 
startling, this is due to our faulty intuition and to our having been exposed 
to too many vague references to a mysterious "law of averages." 

7. MAXIMA AND FIRST PASSAGES 

Most of our conclusions so far are based on the basic lemma 3. I, which 
in turn is a simpIe coroIIary to the reflection principIe. We now turn our 
attention to other interesting consequences of this principIe. 

Instead of paths that remai n above the x-axis we consider paths that 
remain beIow the line x = r, that is, paths satisfying the condition 

(7.1) So < r, SI < r, ... , Sn < r. 
We say in this case that the maximum ofthe path is < r. (The maximum 
is O be cause So = O.) Let A = (n, k) be a point with ordinate 
k S r. A path from O to A touches or crosses the line x = r if it 
violates the condition (7. I). By the reflection principIe the number of such 

88 RANDOM WALKS [111.7 

waIk has the foIIowing characteristics. Starting from the origin 

the path stays on the 
negative side 

far the first 7804 steps 
next 2 steps 
next 30 steps 
next 48 steps 
next 2046 steps 

Total of9930 steps 
Fraction oftime: 0.993 

positive side 
next 8 steps 
next 54 steps 
next 2 steps 
next 6 steps 

Total of70 steps 
Fraction of time: 0.007 

This looks absurd, and yet the probability that in 10,000 tosses of a 
perfect coin the Iead is at one side for more than 9930 triaIs and at the 
other for fewer than 70 exceeds -lo. In other words, on the average one 
record out 0/ ten willlook worse than the one just described. By contrast, 
the probability of a baIance better than in the graph is onIy 0.072. 

The originaI record of figure 4 contains 78 changes of sign and 64 other 
returns to the origino The reversed series shows 8 changes of sign and 6 
other returns to the origino Sampling of expert opinion revealed that even 
trained statisticians expect much more than 78 changes of sign in 10,000 
triaIs, and nobody counted on the possibility of only 8 changes of sign. 
ActuaIIy the probability of not more than 8 changes of sign exceeds 0.14, 
whereas the probabiIity of more than 78 changes of sign is about 0.12. 
As far as the number of changes of sign is concerned the two records stand 
on a par and, theoreticaIIy, neither shouId cause surprise. If they seem 
startling, this is due to our faulty intuition and to our having been exposed 
to too many vague references to a mysterious "law of averages." 

7. MAXIMA AND FIRST PASSAGES 

Most of our conclusions so far are based on the basic lemma 3. I, which 
in turn is a simpIe coroIIary to the reflection principIe. We now turn our 
attention to other interesting consequences of this principIe. 

Instead of paths that remai n above the x-axis we consider paths that 
remain beIow the line x = r, that is, paths satisfying the condition 

(7.1) So < r, SI < r, ... , Sn < r. 
We say in this case that the maximum ofthe path is < r. (The maximum 
is O be cause So = O.) Let A = (n, k) be a point with ordinate 
k S r. A path from O to A touches or crosses the line x = r if it 
violates the condition (7. I). By the reflection principIe the number of such 

00 
-...l 

J.". _.'-'-. .............. .... "",,." ... _, .. M- .. ___ ...... .... .. .' ........ '''''--''--.J-v---., •. _ ........ ....... (.-\. .............. , .......... ,-...J ....... -. •• """.y---
100 

200 300 400 500 

:.- " ... t .. ti 
o • - ., 0. __ . . ,. ,. ."0..0 · ,- _ . 

•• o ./. •• • • ,.. • 

.;;,_, se. _..... 2000 ,.,.... • . - ., . ... ...... . . . 0-500 .J • :,0 "" ..... 
'. ,'" • • o'."} JJ ." ',.. .. .'0-_·"0 · · ,. "" ·0 ••• ..... o" .. , 

1000 3000 4000 5000 6000 

". , : -:. , ..... -,... .... ... 
i'w. • .. • .,.,. ••• , •• , • 't 

, .. ,..... .: Jl&Y ." ....... ,.. lA ... , . ., .. ,.... -..,. .... 
• fI-. " ...... • . ... . .. --. ... . 

• : •• - • ."tI' • • • 
• .y •• .. 

6000 7000 8000 9000 10,000 

Figure 4. The record of 10,000 tosses or an ideaI coin (described in section 6). 
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11. Affine-invariant MCMC algorithms

emcee: The MCMC Hammer
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ABSTRACT. We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has
already been used in several published projects in the astrophysics literature. The algorithm behind emcee has
several advantages over traditional MCMC sampling methods and it has excellent performance as measured by
the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that
it requires hand-tuning of only 1 or 2 parameters compared to ∼N2 for a traditional algorithm in an N-dimensional
parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the
parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra
effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

Note: If you want to get started immediately with the emcee package, start at Appendix A or visit the online
documentation at http://dan.iel.fm/emcee. If you are sampling with emcee and having low-acceptance-rate or
other issues, there is some advice in § 4.

1. INTRODUCTION

Probabilistic data analysis—including Bayesian inference—
has transformed scientific research in the past decade. Many of
the most significant gains have come from numerical methods
for approximate inference, especially Markov chain Monte
Carlo (MCMC). For example, many problems in cosmology
and astrophysics6 have directly benefited from MCMC because
the models are often expensive to compute, there are many free
parameters, and the observations are usually low in signal-
to-noise.

Probabilistic data analysis procedures involve computing
and using either the posterior probability density function
(PDF) for the parameters of the model or the likelihood func-
tion. In some cases it is sufficient to find the maximum of one of
these, but it is often necessary to understand the posterior PDF
in detail. MCMC methods are designed to sample from—and
thereby provide sampling approximations to—the posterior
PDF efficiently even in parameter spaces with large numbers

of dimensions. This has proven useful in too many research
applications to list here but the results from the NASA
Wilkinson Microwave Anisotropy Probe (WMAP) cosmology
mission provide a dramatic example (for example, Dunkley et al.
2005).

Arguably the most important advantage of Bayesian data
analysis is that it is possible to marginalize over nuisance pa-
rameters. A nuisance parameter is one that is required in order to
model the process that generates the data, but is otherwise of
little interest. Marginalization is the process of integrating over
all possible values of the parameter and hence propagating the
effects of uncertainty about its value into the final result. Often
we wish to marginalize over all nuisance parameters in a model.
The exact result of marginalization is the marginalized proba-
bility function pðΘjDÞ of the set (list or vector) of model pa-
rameters Θ given the set of observations D

pðΘjDÞ ¼
Z

pðΘ;αjDÞdα; (1)

where α is the set (list or vector) of nuisance parameters. Be-
cause the nuisance parameter set α can be very large, this inte-
gral is often extremely daunting. However, a MCMC-generated
sampling of values ðΘt;αtÞ of the model and nuisance param-
eters from the joint distribution pðΘ;αjDÞ automatically pro-
vides a sampling of values Θt from the marginalized
PDF pðΘjDÞ.

In addition to the problem of marginalization, in many prob-
lems of interest the likelihood or the prior is the result of an
expensive simulation or computation. In this regime, MCMC

1 Center for Cosmology and Particle Physics, Department of Physics, New
York University, 4 Washington Place, New York, NY 10003; danfm@nyu.edu.

2 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg,
Germany.

3 McWilliams Center for Cosmology, Department of Physics, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213.

4 Princeton University Observatory, Princeton, NJ 08544.
5 Courant Institute, New York University, 251 Mercer Street, New York, NY

10012.
6The methods and discussion in this document have general applicability, but

we will mostly present examples from astrophysics and cosmology, the fields in
which we have most experience.
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• Optimizing a MCMC in a given parameter space often means that we use a proposal distribution that is tuned to 
the target distribution. 

• This proposal distribution is often a multivariate Gaussian with 
an n x n covariance matrix that must be tuned accordingly

with

• The covariance matrix has  indipendent elements; 

tuning the proposal distribution means tuning these
independent elements (hyperparameters) with a long (and 
computationally expensive) burn-in phase.

66 JONATHAN GOODMAN AND JONATHAN WEARE

Figure 1. Contours of the Gaussian density defined in expression (3).

Single-variable MCMC strategies such as Metropolis or heat bath (Gibbs sampler)
[13; 10] would be forced to make perturbations of order

p
✏ and would have slow

equilibration. A better MCMC sampler would use perturbations of order
p

✏ in the
(1, �1) direction and perturbations of order one in the (1, 1) direction.

On the other hand, the affine transformation

y1 = x1 � x2p
✏

, y2 = x1 + x2,

turns the challenging sampling problem (3) into the easier problem

⇡A(y) / e�(y2
1 + y2

2)/2. (4)

Sampling the well scaled transformed density (4) does not require detailed cus-
tomization. An affine invariant sampler views the two densities as equally difficult.
In particular, the performance of an affine invariant scheme on the skewed density
(3) is independent of ✏. More generally, if an affine invariant sampler is applied to a
nondegenerate multivariate normal ⇡(x)/e�xt H x/2, the performance is independent
of H .

We consider general MCMC samplers of the form X (t + 1) = R(X (t), ⇠(t), ⇡),
where X (t) is the sample after t iterations, ⇠(t) is a sequence of iid (independent
identically distributed) random variables1, and ⇡ is a probability density. General

1The probability space for ⇠ is not important. A Monte Carlo code would typically take ⇠(t) to be
an infinite sequence of independent uniform [0, 1] random variables.
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Consider the following highly anisotropic pdf

With the variable transformation

which has the Jacobian  

Then, we find that this affine transformation transforms the original Gaussian into the simpler Gaussian

In the n-dimensional parameter space there are only 2 hyperparameters to tune (mean, variance) instead of  
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The affine transformation is implemented as follows, with an ensemble of K walkers {Xk}

where the index j is drawn at random from the set of all the all the indexes excluding k, and Z is a random variable from 
a distribution g such that    

and acceptance probability 

which satisfies detailed balance.

The Metropolis–Hastings (M–H) Algorithm.—The sim-
plest and most commonly used MCMC algorithm is the M–H
method (Algorithm 1; MacKay 2003; Gregory 2005; Press et al.
2007; Hogg et al. 2010). The iterative procedure is as follows:
(1) Given a position XðtÞ sample a proposal position
Y from the transition distribution QðY ;XðtÞÞ, (2) accept this
proposal with probability

min
!
1;

pðY jDÞ
pðXðtÞjDÞ

QðXðtÞ;Y Þ
QðY ;XðtÞÞ

"
: (6)

The transition distribution QðY ;XðtÞÞ is an easy-to-sample
probability distribution for the proposal Y given a position
XðtÞ. A common parameterization of QðY ;XðtÞÞ is a multivar-
iate Gaussian distribution centered on XðtÞ with a general co-
variance tensor that has been tuned for performance. It is worth
emphasizing that if this step is accepted Xðtþ 1Þ ¼ Y ; other-
wise, the new position is set to the previous one Xðtþ 1Þ ¼
XðtÞ (in other words, the position XðtÞ is repeated in the
chain).

The M–H algorithm converges (as t → ∞) to a stationary set
of samples from the distribution but there are many algorithms
with faster convergence and varying levels of implementation
difficulty. Faster convergence is preferred because of the reduc-
tion of computational cost due to the smaller number of likeli-
hood computations necessary to obtain the equivalent level of
accuracy. The inverse convergence rate can be measured by the
autocorrelation function and more specifically, the integrated
autocorrelation time (see § 3). This quantity is an estimate of
the number of steps needed in the chain in order to draw inde-
pendent samples from the target density. A more efficient chain
has a shorter autocorrelation time.

—————————————————————————
Algorithm 1.—The procedure for a single Metropolis–

Hastings MCMC step.
—————————————————————————

1: Draw a proposal Y ∼QðY ;XðtÞÞ
2: q←½pðY ÞQðXðtÞ; Y Þ&=½pðXðtÞÞQðY ;XðtÞÞ& //This line is
generally expensive

3: r←R ∼ ½0; 1&
4: if r ≤ q then
5: Xðtþ 1Þ←Y
6: else
7: Xðtþ 1Þ←XðtÞ
8: end if

—————————————————————————
The stretch move.—GW10 proposed an affine-invariant en-

semble sampling algorithm informally called the “stretch
move.” This algorithm significantly outperforms standard M–H
methods producing independent samples with a much shorter
autocorrelation time (see § 3 for a discussion of the autocorre-

lation time). For completeness and for clarity of notation, we
summarize the algorithm here and refer the interested reader
to the original paper for more details. This method involves si-
multaneously evolving an ensemble of K walkers S ¼ fXkg
where the proposal distribution for one walker k is based on
the current positions of theK ' 1walkers in the complementary
ensemble S½k& ¼ fXj;∀j ≠ kg. Here, “position” refers to a vec-
tor in the N-dimensional, real-valued parameter space.

To update the position of a walker at position Xk, a walker
Xj is drawn randomly from the remaining walkers S½k& and a
new position is proposed:

XkðtÞ → Y ¼ Xj þ Z½XkðtÞ 'Xj&; (7)

where Z is a random variable drawn from a distribution
gðZ ¼ zÞ. It is clear that if g satisfies

gðz'1Þ ¼ zgðzÞ; (8)

the proposal of Equation (7) is symmetric. In this case, the chain
will satisfy detailed balance if the proposal is accepted with
probability

q ¼ min
!
1; ZN'1 pðY Þ

pðXkðtÞÞ

"
; (9)

where N is the dimension of the parameter space. This proce-
dure is then repeated for each walker in the ensemble in series
following the procedure shown in Algorithm 2.

GW10 advocate a particular form of gðzÞ, namely

gðzÞ ∝
(

1ffiffiffi
Z

p if z∈
$
1
a ; a

%

0 otherwise
; (10)

where a is an adjustable scale parameter that GW10 set to 2.

—————————————————————————
Algorithm 2.—A single stretch move update step from GW10.
—————————————————————————

1: for k ¼ 1;…;K do
2: Draw a walker Xj at random from the complementary

ensemble S½k&ðtÞ
3: z←Z ∼ gðzÞ, Equation (10)
4: Y←Xj þ z½XkðtÞ 'Xj&
5: q←zN'1pðY Þ=pðXkðtÞÞ //This line is generally expensive
6: r←R ∼ ½0; 1&
7: if r ≤ q, Equation (9) then
8: Xkðtþ 1Þ←Y
9: else
10: Xkðtþ 1Þ←XkðtÞ
11: end if
12: end for

—————————————————————————
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The generic purpose of a model selection statistic is to set up a tension between the 
predictiveness of a model (for instance indicated by the number of free parameters) and its 
ability to fit observational data. Oversimplistic models offering a poor fit should of course 
be thrown out, but so should more complex models that offer poor predictive power. 

There are two main types of model selection statistic that have been used in the literature 
so far. Information criteria look at the best-fitting parameter values and attach a penalty 
for the number of parameters; they are essentially a technical formulation of “chi-squared 
per degrees of freedom” arguments. By contrast, the Bayesian evidence applies the same 
type of likelihood analysis familiar from parameter estimation, but at the level of models 
rather than parameters. It depends on goodness of fit across the entire model parameter 
space.

(Liddle & al., 2006)

Model selection
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Akaike Information Criterion (AIC). 

This was derived by Hirotugu Akaike in 1974, and takes the form 

where k is the number of parameters in the model. The subscript “max” indicates that one should find the 
parameter values yielding the highest possible likelihood within the model. This second term acts as a kind of 
“Occam factor”; initially, as parameters are added, the fit to data improves rapidly until a reasonable fit is 
achieved, but further parameters then add little and the penalty term 2k takes over. The generic shape of 
the AIC as a function of number of parameters is a rapid fall, a minimum, and then a rise. The preferred model 
sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an approximate minimization of 
the Kullback–Leibler information entropy which measures the distance between two probability 
distributions.

(Liddle & al., 2006)
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Bayesian Information Criterion (BIC).

This was derived by Gideon Schwarz in 1978, and strongly resembles the AIC. It is given by 

where N is the number of datapoints. Since a typical dataset will have lnN > 2, the BIC imposes a stricter 
penalty against extra parameters than the AIC. 

It was derived as an approximation to the Bayesian evidence, ... but the assumptions required are very 
restrictive and unlikely to hold in practice, rendering the approximation quite crude.

(Liddle & al., 2006)
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible given some data, without necessarily 
considering preferred values of model parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing models using Bayes' theorem: 

and select the best model using the odds ratio

or the Bayes factor, if we assume equal prior probabilities for the different models: 
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Thus, we see that the Bayes factor is a ratio of evidences

As usual, each evidence is obtained by marginalizing the likelihood with respect to the (potentially different) 
parameters:
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The evidence of a model is thus the average likelihood of the model in the prior. 

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model, but 
asks “of all the parameter values you thought were viable before the data came along, how 
well on average did they fit the data?”. Literally, it is the likelihood of the model given the 
data. 

The evidence rewards predictability of models, provided they give a good fit to the data, 
and hence gives an axiomatic realization of Occam's razor. 

A model with little parameter freedom is likely to fit data over much of its parameter space, 
whereas a model that could match pretty much any data that might have cropped up will 
give a better fit to the actual data but only in a small region of its larger parameter space, 
pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using – wherever possible – the Bayesian evidence, which is a full
implementation of Bayesian inference and can be directly interpreted in terms of model probabilities. It is
computationally challenging to compute, being a highly peaked multidimensional integral, but recent
algorithm development has made it feasible in cosmological contexts.

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is much simpler to
compute as one need only find the point of maximum likelihood for each model. However, interpreting it can
be difficult. Its main usefulness is as an approximation to the evidence, but this holds only for Gaussian
likelihoods and provided the datapoints are independent and identically distributed. The latter condition
holds poorly for the current global cosmological dataset, though it can potentially be improved by binning of
the data, hence decreasing the N in the penalty term.

The AIC has been widely used outside astrophysics but is of debatable utility. It has been shown to be
“dimensionally inconsistent”, meaning that it is not guaranteed to give the right result even in the limit of
infinite unbiased data. It may be useful for checking the robustness of conclusions drawn using the BIC. The
evidence and BIC are dimensionally consistent.

(Liddle & al., 2006)
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Bayesian classification

data X, classes C
this likelihood is defined by 
training data

Ck = argmax
Ck

P X Ck( )
P X( ) P Ck( ) = argmax

Ck
P X Ck( )P Ck( )

we can use the prior learning to assign a class to new data

the prior is also defined by 
training data
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Consider a vector of N attributes given as Boolean variables 
x = {xi} and classify the data vectors with a single Boolean variable. 

The learning procedure must yield: 

it is easy to obtain it as an empirical distribution from
an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples 
suffice to determine the empirical distribution to better 
than 10%. 

there is a bigger problem here: the arguments have 2N+1

different values, and we must estimate 2(2N-1) 
parameters ... for instance, with N = 30 there are more 
than 2 billion parameters!

P y( )

P x y( )
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How can we reduce the huge complexity of learning? 

we assume the conditional independence of the xn’s:
naive Bayesian learning

for instance, with just two attributes

with more than 2 attributes

P x1, x2 y( ) = P x1 x2 , y( )P x2 y( ) = P x1 y( )P x2 y( )
conditional independence assumption

P x y( ) ≈ P xk y( )
k=1

N

∏
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N

!

P yj( ) P xn yj( )
n=1

N

!
j
"

P yk( )
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More general discrete inputs

If any of the N x variables has J different values, e if there are K

classes, then we must estimate in all NK(J-1) free parameters with 

the Naive Bayes Classifier (this includes normalization) (compare 

this with the K(JN-1) parameters needed by a complete classifier)
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Continuous inputs and discrete classes – the Gaussian case

here we must estimate 2NK parameters + the shape of the 

distribution P(y) (this adds up to another K-1 parameters)

P xn yk( ) = 1
2πσ nk

2
exp −

xn − µnk( )2
2σ nk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Gaussian special case with class-independent variance and Boolean 
classification (two classes only):

P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

P xn y = 0( ) = 1
2πσ n

2
exp −

xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P xn y = 1( ) = 1
2πσ n

2
exp −

xn − µn1( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

=
1

1+
P x y = 1( )P y = 1( )
P x y = 0( )P y = 0( )

=
1

1+ P y = 1( )
P y = 0( ) exp −

xn − µn1( )2
2σ n

2 +
xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

N

∏

=
1

1+ exp ln P y = 1( )
P y = 0( )

⎛
⎝⎜

⎞
⎠⎟
+

µn1 − µn0( )xn
σ n
2 + µn0

2 − µn1
2

2σ n
2

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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w0 = ln
P y = 1( )
P y = 0( )

⎛
⎝⎜

⎞
⎠⎟
+

µn0
2 − µn1

2

2σ n
2

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑

wn =
µn1 − µn0( )

σ n
2

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x( ) = 1− P y = 0 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

logistic shape
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Finally, an input vector belongs to class y = 0 if 

P y = 0 x( )
P y = 1 x( ) > 1

exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟
< 1

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

w0 + wnxn
n=1

N

∑ < 0
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