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Our next important topic: Bayesian estimates often require complex numerical integrals. 
How do we confront this problem? 

          enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling perspective
5. Introduction to Markov chains and to Random Walks (RW)

6. Detailed balance and Boltzmann's H-theorem
7. The Gibbs sampler
8. Simulated annealing and the Traveling Salesman Problem (TSP)
9. The Metropolis algorithm
10. More on Gibbs sampling

11. Image restoration and Markov Random Fields (MRF) 
12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)
13. The efficiency of MCMC methods
14. Affine-invariant MCMC algorithms (emcee)
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13. The efficiency of MCMC methods

The effective use of MCMC programs requires the fine-tuning of many aspects

• Duration of burn-in (initialization)

• Number of parallel chains (random walkers)

• Selection of jumping rule (proposal function)

• Selection of convergence rule

• ...
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The G-R monitoring index

then recommend using the empirical intervals once approximate convergence has been 
reached. When additional information about the target distribution is used, inference can 
be made much more precise, as in the "Rao-Blackwellization" procedure of Gelfand and 
Smith (1990), which uses the analytic form of the conditional target distribution of $ 
given the rest of 8 (see also Tanner and Wong 1987). However, even these procedures 
are ultimately applied by averaging over the iterations of all the simulated sequences, 
after discarding burn-in. 

This suggests that "convergence" can be quantified in terms of the properties of 
the empirical interval, as compared to the true 95% interval from the target distribution, 
which would be attained in the limit as n + co. 

As background, we present the method of Gelman and Rubin (1992a) using our gen- 
eral perspective of comparison of inferences. The method presupposes that m chains have 
been simulated in parallel, each with different starting points which are overdispersed 
with respect to the target distribution. A number of methods have been proposed for gen- 
erating initial values for MCMC samplers. Gelman and Rubin (1992a) proposed using 
a simple mode-finding algorithm to locate regions of high density and sampling from a 
mixture of t-distributions located at these modes to generate suitable starting values. An 
alternative approach was presented by Applegate, Kannan, and Polson (1990) who used 
the method of simulated annealing in this same context; see also Jennison (1993). Having 
obtained suitable starting points, the chains are then run for 2n iterations, of which the 
first n are discarded to avoid the burn-in period. 

Given any individual sequence, and if approximate convergence has been reached, an 
assumption is made that inferences about any quantity of interest is made by computing 
the sample mean and variance from the simulated draws. Thus, the m chains yield m 
possible inferences; to answer the question of whether these inferences are similar enough 
to indicate approximate convergence, Gelman and Rubin (1992a) suggested comparing 
these to the inference made by mixing together the mn draws from all the sequences. 
Consider a scalar summary-that is, a random variable-$, that has mean p and variance 
a2under the target distribution, and suppose that we have some unbiased estimator 
for p. Letting $,t denote the tth of the n iterations of $ in chain j ,  we take jZ = $.., 
and calculate the between-sequence variance B l n ,  and the within-sequence variance W ,  
defined by 

Note that the ANOVA assumption of pooled within variances can be made here because, 
under convergence, the m within-chain variances will indeed be equal. 

Having observed these estimates, we can estimate a2by a weighted average of B 

from Brooks and Gelman, 1998
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• m chains (walkers) and n samples/chain

• mean value of chain j 

• mean of the means of all chains 

• variance of the means of all chains

• averaged variances of individual
chains averaged over all chains
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• the variance

would be an unbiased estimate of the true variance if the starting points were drawn from the target 
distribution, but it is an overestimate if the starting distribution is overdispersed

• taking the variability of the mean into account yields a different estimate of the variance 

• the so-called potential scale reduction factor (PSRF) can be interpreted as a convergence diagnostic –
when large it can be further decreased by continuing the simulation, when close to 1 it shows that the 
set of simulations is close to the target distribution
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(b) The probabiIity that in 10,000 trials no change ofsign occurs is about 
0.0160. The probabilities X r for exactly r changes decrease very slowly; 
for r = 10,20,30 the values are X r = 0.0156, 0.0146, and 0.0130. The 
probabiIity that in 10,000 trials the lead changes at most lO times is about 
0.0174; in other words, one out ofsix such series will show not more than 
lO changes of lead. 

A pleasing property of the identity (5.1) is that it enabies us to appIy the normal 
approximation derived in section 2. Suppose that n is Iarge and a; a fixed positive 
number. The probability that fewer than changes of sign occur before epoch n 
is practically the same as 2P{Sn < and according to (2.8) the Iast probability 
tends to 91(2w) - l as n -o- 00. We have thus 

Theorem 2. (Normal approximalion.) The probabilily thal fewer Ihan changes 
of sign occur before epoch n lends lo 291(2x) - 1 as n -+ 00. 

It follows that the median for the number of changes of sign is about 
this means that for n sufficiently Iarge it is about as likely that there occur fewer than 

changes of sign than that occur more. With probabiIity l'. there will be fewer 
than 0.0628 v;; changes of sign, etc. H 

6. AN EXPERIMENTAL ILLUSTRATION 

Figure 4 represents the result of a computer experiment simulating 
10,000 tosses of a coin; the same material is tabulated in example I, (6.c). 
The top line contains the graph of the first 550 trials; the next two lines 
represent the entire record of 10,000 trials the scale in the horizontal 
direction being changed in the ratio 1: lO. The scale in the vertical 
direction is the same in the two graphs. 

When 100king at the graph most people feel surprised by the length of 
the intervals between successive crossings of the axis. As a matter of fact, 
the graph represents a rather mild case history and was chosen as the 
mildest among three available records. A more startling example is 
obtained by looking at the same graph in the reverse direction; that is, 
reversing the order in which the 10,000 trials actually occurred (see section 
8). Theoretical1y, the series as graphed and the reversed series are equally 
legitimate as representative of an ideaI random walk. The reversed random 

14 This approximation gives ,l. for the probability of at most 6 equalizations in 10,000 
triais. This is an underestimate, the true value being about 0.112. 
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waIk has the foIIowing characteristics. Starting from the origin 

the path stays on the 
negative side 

far the first 7804 steps 
next 2 steps 
next 30 steps 
next 48 steps 
next 2046 steps 

Total of9930 steps 
Fraction oftime: 0.993 

positive side 
next 8 steps 
next 54 steps 
next 2 steps 
next 6 steps 

Total of70 steps 
Fraction of time: 0.007 

This looks absurd, and yet the probability that in 10,000 tosses of a 
perfect coin the Iead is at one side for more than 9930 triaIs and at the 
other for fewer than 70 exceeds -lo. In other words, on the average one 
record out 0/ ten willlook worse than the one just described. By contrast, 
the probability of a baIance better than in the graph is onIy 0.072. 

The originaI record of figure 4 contains 78 changes of sign and 64 other 
returns to the origino The reversed series shows 8 changes of sign and 6 
other returns to the origino Sampling of expert opinion revealed that even 
trained statisticians expect much more than 78 changes of sign in 10,000 
triaIs, and nobody counted on the possibility of only 8 changes of sign. 
ActuaIIy the probability of not more than 8 changes of sign exceeds 0.14, 
whereas the probabiIity of more than 78 changes of sign is about 0.12. 
As far as the number of changes of sign is concerned the two records stand 
on a par and, theoreticaIIy, neither shouId cause surprise. If they seem 
startling, this is due to our faulty intuition and to our having been exposed 
to too many vague references to a mysterious "law of averages." 

7. MAXIMA AND FIRST PASSAGES 

Most of our conclusions so far are based on the basic lemma 3. I, which 
in turn is a simpIe coroIIary to the reflection principIe. We now turn our 
attention to other interesting consequences of this principIe. 

Instead of paths that remai n above the x-axis we consider paths that 
remain beIow the line x = r, that is, paths satisfying the condition 

(7.1) So < r, SI < r, ... , Sn < r. 
We say in this case that the maximum ofthe path is < r. (The maximum 
is O be cause So = O.) Let A = (n, k) be a point with ordinate 
k S r. A path from O to A touches or crosses the line x = r if it 
violates the condition (7. I). By the reflection principIe the number of such 
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14. Affine-invariant MCMC algorithms

emcee: The MCMC Hammer
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ABSTRACT. We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has
already been used in several published projects in the astrophysics literature. The algorithm behind emcee has
several advantages over traditional MCMC sampling methods and it has excellent performance as measured by
the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that
it requires hand-tuning of only 1 or 2 parameters compared to ∼N2 for a traditional algorithm in an N-dimensional
parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the
parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra
effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

Note: If you want to get started immediately with the emcee package, start at Appendix A or visit the online
documentation at http://dan.iel.fm/emcee. If you are sampling with emcee and having low-acceptance-rate or
other issues, there is some advice in § 4.

1. INTRODUCTION

Probabilistic data analysis—including Bayesian inference—
has transformed scientific research in the past decade. Many of
the most significant gains have come from numerical methods
for approximate inference, especially Markov chain Monte
Carlo (MCMC). For example, many problems in cosmology
and astrophysics6 have directly benefited from MCMC because
the models are often expensive to compute, there are many free
parameters, and the observations are usually low in signal-
to-noise.

Probabilistic data analysis procedures involve computing
and using either the posterior probability density function
(PDF) for the parameters of the model or the likelihood func-
tion. In some cases it is sufficient to find the maximum of one of
these, but it is often necessary to understand the posterior PDF
in detail. MCMC methods are designed to sample from—and
thereby provide sampling approximations to—the posterior
PDF efficiently even in parameter spaces with large numbers

of dimensions. This has proven useful in too many research
applications to list here but the results from the NASA
Wilkinson Microwave Anisotropy Probe (WMAP) cosmology
mission provide a dramatic example (for example, Dunkley et al.
2005).

Arguably the most important advantage of Bayesian data
analysis is that it is possible to marginalize over nuisance pa-
rameters. A nuisance parameter is one that is required in order to
model the process that generates the data, but is otherwise of
little interest. Marginalization is the process of integrating over
all possible values of the parameter and hence propagating the
effects of uncertainty about its value into the final result. Often
we wish to marginalize over all nuisance parameters in a model.
The exact result of marginalization is the marginalized proba-
bility function pðΘjDÞ of the set (list or vector) of model pa-
rameters Θ given the set of observations D

pðΘjDÞ ¼
Z

pðΘ;αjDÞdα; (1)

where α is the set (list or vector) of nuisance parameters. Be-
cause the nuisance parameter set α can be very large, this inte-
gral is often extremely daunting. However, a MCMC-generated
sampling of values ðΘt;αtÞ of the model and nuisance param-
eters from the joint distribution pðΘ;αjDÞ automatically pro-
vides a sampling of values Θt from the marginalized
PDF pðΘjDÞ.

In addition to the problem of marginalization, in many prob-
lems of interest the likelihood or the prior is the result of an
expensive simulation or computation. In this regime, MCMC

1 Center for Cosmology and Particle Physics, Department of Physics, New
York University, 4 Washington Place, New York, NY 10003; danfm@nyu.edu.

2 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg,
Germany.

3 McWilliams Center for Cosmology, Department of Physics, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213.

4 Princeton University Observatory, Princeton, NJ 08544.
5 Courant Institute, New York University, 251 Mercer Street, New York, NY

10012.
6The methods and discussion in this document have general applicability, but

we will mostly present examples from astrophysics and cosmology, the fields in
which we have most experience.
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502 Chapter 10. Minimization or Maximization of Functions

}
du=funcd.df(u); Now all the housekeeping, sigh.
if (fu <= fx) {

if (u >= x) a=x; else b=x;
mov3(v,fv,dv,w,fw,dw);
mov3(w,fw,dw,x,fx,dx);
mov3(x,fx,dx,u,fu,du);

} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {

mov3(v,fv,dv,w,fw,dw);
mov3(w,fw,dw,u,fu,du);

} else if (fu < fv || v == x || v == w) {
mov3(v,fv,dv,u,fu,du);

}
}

}
throw("Too many iterations in routine dbrent");

}
};

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), pp. 55; 454–458.[1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover), p. 78.

10.5 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those that follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely self-
contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method re-
quires only function evaluations, not derivatives. It is not very efficient in terms of
the number of function evaluations that it requires. Powell’s method (!10.7) or the
DFP method with finite differences (!10.9) is almost surely faster in all likely appli-
cations. However, the downhill simplex method may frequently be the best method
to use if the figure of merit is “get something working quickly” for a problem whose
computational burden is small.

The method has a geometrical naturalness about it that makes it delightful to
describe or work through:

A simplex is the geometrical figure consisting, inN dimensions, ofNC1 points
(or vertices) and all their interconnecting line segments, polygonal faces, etc. In two
dimensions, a simplex is a triangle. In three dimensions, it is a tetrahedron, not
necessarily the regular tetrahedron. (The simplex method of linear programming, de-
scribed in !10.10, also makes use of the geometrical concept of a simplex. Otherwise
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it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of an N -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N C 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting point P0, then you can take the
other N points to be

P i D P0 C!ei (10.5.1)

where the ei ’s are N unit vectors, and where ! is a constant that is your guess of
the problem’s characteristic length scale. (Or, you could have different!i ’s for each
vector direction.)

The downhill simplex method now takes a series of steps, most steps just mov-
ing the point of the simplex where the function is largest (“highest point”) through
the opposite face of the simplex to a lower point. These steps are called reflections,
and they are constructed to conserve the volume of the simplex (and hence maintain
its nondegeneracy). When it can do so, the method expands the simplex in one or
another direction to take larger steps. When it reaches a “valley floor,” the method
contracts itself in the transverse direction and tries to ooze down the valley. If there
is a situation where the simplex is trying to “pass through the eye of a needle,” it
contracts itself in all directions, pulling itself in around its lowest (best) point. The
routine name amoeba is intended to be descriptive of this kind of behavior; the basic
moves are summarized in Figure 10.5.1.

Termination criteria can be delicate in any multidimensional minimization rou-
tine. Without bracketing, and with more than one independent variable, we no longer
have the option of requiring a certain tolerance for a single independent variable. We
typically can identify one “cycle” or “step” of our multidimensional algorithm. It is
then possible to terminate when the vector distance moved in that step is fraction-
ally smaller in magnitude than some tolerance tol. Alternatively, we could require
that the decrease in the function value in the terminating step be fractionally smaller
than some tolerance ftol. Note that while tol should not usually be smaller than
the square root of the machine precision, it is perfectly appropriate to let ftol be
of order the machine precision (or perhaps slightly larger so as not to be confused
by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N C 1 vertices of the simplex again by equation (10.5.1), with
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Figure 10.5.1. Possible outcomes for a step in the downhill simplex method. The simplex at the beginning
of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one of (a)
a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions toward the
low point. An appropriate sequence of such steps will always converge to a minimum of the function.

P0 being one of the vertices of the claimed minimum.
Restarts should never be very expensive; your algorithm did, after all, converge

to the restart point once, and now you are starting the algorithm already there.
The routine below has three different user interfaces. The simplest requires you

to supply the initial simplex as in equation (10.5.1):

Amoeba am(ftol);
VecDoub point = ...; Doub del = ...;
pmin=am.minimize(point,del,func);

The value of the function at the minimum is available in am.fmin.
Second, you can use equation (10.5.1) with a vector of increments !i :
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exactly the same computation effort to generate. The two methods would therefore
be indistinguishable in the long time limit.

4. Computational tests

In this section we present and discuss the results of computational experiments to
determine the effectiveness of our ensemble methods relative to a standard single-
particle Markov chain Monte Carlo method. The MCMC method that we choose
for comparison is the single site Metropolis scheme in which one cycles through
the coordinates of X (t) perturbing a single coordinate at a time and accepting or
rejecting that perturbation with the appropriate Metropolis acceptance probability
before moving on to the next coordinate. For the perturbations in the Metropolis
scheme we choose Gaussian random variables. All user defined parameters are
chosen (by trial and error) to optimize performance (in terms of the integrated
autocorrelation times). In all cases this results in an acceptance rate close to 30%.
For the purpose of discussion, we first present results from tests on a difficult
two-dimensional example. The second example is a 101-dimensional, badly scaled
distribution that highlights the advantages of our scheme.

4.1. The Rosenbrock density. In this subsection we present numerical tests on the
Rosenbrock density, which is given by4

⇡(x1, x2) / exp
⇣
�100(x2 � x1

2)2 + (1 � x1)2

20

⌘
. (19)

Here are some contours of the Rosenbrock density:

4 To avoid confusion with earlier notation, in the rest of this section (x1, x2) represents an arbitrary
point in R2.

An example of hard problem: the Rosenbrock density 
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• Optimizing a MCMC in a given parameter space often means that we use a proposal distribution that is tuned to 
the target distribution. 

• This proposal distribution is often a multivariate Gaussian with 
an n x n covariance matrix that must be tuned accordingly

with

• The covariance matrix has        indipendent elements; 

tuning the proposal distribution means tuning these
independent elements (hyperparameters) with a long (and 
computationally expensive) burn-in phase.

66 JONATHAN GOODMAN AND JONATHAN WEARE

Figure 1. Contours of the Gaussian density defined in expression (3).

Single-variable MCMC strategies such as Metropolis or heat bath (Gibbs sampler)
[13; 10] would be forced to make perturbations of order

p
✏ and would have slow

equilibration. A better MCMC sampler would use perturbations of order
p

✏ in the
(1, �1) direction and perturbations of order one in the (1, 1) direction.

On the other hand, the affine transformation

y1 = x1 � x2p
✏

, y2 = x1 + x2,

turns the challenging sampling problem (3) into the easier problem

⇡A(y) / e�(y2
1 + y2

2)/2. (4)

Sampling the well scaled transformed density (4) does not require detailed cus-
tomization. An affine invariant sampler views the two densities as equally difficult.
In particular, the performance of an affine invariant scheme on the skewed density
(3) is independent of ✏. More generally, if an affine invariant sampler is applied to a
nondegenerate multivariate normal ⇡(x)/e�xt H x/2, the performance is independent
of H .

We consider general MCMC samplers of the form X (t + 1) = R(X (t), ⇠(t), ⇡),
where X (t) is the sample after t iterations, ⇠(t) is a sequence of iid (independent
identically distributed) random variables1, and ⇡ is a probability density. General

1The probability space for ⇠ is not important. A Monte Carlo code would typically take ⇠(t) to be
an infinite sequence of independent uniform [0, 1] random variables.
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Consider the following highly anisotropic pdf

With the variable transformation

which has the Jacobian  

Then, we find that this affine transformation transforms the original Gaussian into the simpler Gaussian

  
In the n-dimensional parameter space there are only 2 hyperparameters to tune (mean, variance) instead of  
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Affine-invariance

Here, we consider MCMC proposal moves of the form

These proposals are affine-invariant if the following condition holds

for every x.   
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ENSEMBLE SAMPLERS WITH AFFINE INVARIANCE 67

purpose samplers such as Gibbs samplers have this form. We call such an MCMC
algorithm affine invariant if, for any affine transformation Ax + b,

R(Ax + b, ⇠(t), ⇡A,b) = AR(x(t), ⇠(t), ⇡) + b,

for every x and almost all ⇠(t).
Less formally, suppose we make two Monte Carlo runs using the same random

number generator and seed so that the ⇠(t) will be identical for both runs. Suppose
one of the runs uses probability density ⇡ and starting point X (0). Suppose the
other uses ⇡A,b and initial point Y (0) = AX (0) + b. If the algorithm is affine
invariant, the sequences will satisfy Y (t) = AX (t) + b. We are not aware of a
practical sampler that has this affine invariance property for any general class of
densities.

In this paper we propose a family of affine invariant ensemble samplers. An
ensemble, EX , consists of L walkers2 Xk 2 Rn . Since each walker is in Rn , we may
think of the ensemble EX = (X1, . . . , X L) as being in RnL . The target probability
density for the ensemble is the one in which the walkers are independent and drawn
from ⇡ , that is,

5(Ex) = 5(x1, . . . , xL) = ⇡(x1) ⇡(x2) · · · ⇡(xL). (5)

An ensemble MCMC algorithm is a Markov chain on the state space of ensembles.
Starting with EX(1), it produces a sequence EX(t). The ensemble Markov chain can
preserve the product density (5) without the individual walker sequences Xk(t)
(as functions of t) being independent, or even being Markov. This is because the
distribution of Xk(t + 1) can depend on X j (t) for j 6= k.

We apply an affine transformation to an ensemble by applying it separately to
each walker:

EX = (X1, . . . , X L)
A,b�! (AX1 + b, . . . , AX L + b) = (Y1, . . . , YL) = EY . (6)

Suppose that EX(1)
A,b�! EY (1) and that EY (t) is the sequence produced using ⇡A,b in

place of ⇡ in (5) and the same initial random number generator seed. The ensemble
MCMC method is affine invariant if EX(t) A,b�! EY (t). We will describe the details of
the algorithms in Section 2.

Our ensemble methods are motivated in part by the Nelder–Mead [11] simplex
algorithm for solving deterministic optimization problems. Many in the optimization
community attribute its robust convergence to the fact that it is affine invariant.
Applying the Nelder–Mead algorithm to the ill conditioned optimization problem for

2Here xk is walker k in an ensemble of L walkers. This is inconsistent with (3) and (4), where x1
was the first component of x 2 R2.
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2Here xk is walker k in an ensemble of L walkers. This is inconsistent with (3) and (4), where x1
was the first component of x 2 R2.

Goodman and Weare, 2010
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The affine transformation is implemented with the following proposal move (stretch move), with an ensemble of K 
walkers {Xk}

where the index j is drawn at random from the set of all the all the indexes excluding k, and Z is a random variable 
from a distribution g such that    

and acceptance probability 

which satisfies detailed balance. For derivations of the formulas given here, see Roberts and Gilks, J. Multivariate 
Analysis 49 (1994) 287.

In addition to stretch moves, affine-invariant MCMCs also incorporate walk moves and replacement moves (Goodman 
and Weare, 2010)

The Metropolis–Hastings (M–H) Algorithm.—The sim-
plest and most commonly used MCMC algorithm is the M–H
method (Algorithm 1; MacKay 2003; Gregory 2005; Press et al.
2007; Hogg et al. 2010). The iterative procedure is as follows:
(1) Given a position XðtÞ sample a proposal position
Y from the transition distribution QðY ;XðtÞÞ, (2) accept this
proposal with probability

min
!
1;

pðY jDÞ
pðXðtÞjDÞ

QðXðtÞ;Y Þ
QðY ;XðtÞÞ

"
: (6)

The transition distribution QðY ;XðtÞÞ is an easy-to-sample
probability distribution for the proposal Y given a position
XðtÞ. A common parameterization of QðY ;XðtÞÞ is a multivar-
iate Gaussian distribution centered on XðtÞ with a general co-
variance tensor that has been tuned for performance. It is worth
emphasizing that if this step is accepted Xðtþ 1Þ ¼ Y ; other-
wise, the new position is set to the previous one Xðtþ 1Þ ¼
XðtÞ (in other words, the position XðtÞ is repeated in the
chain).

The M–H algorithm converges (as t → ∞) to a stationary set
of samples from the distribution but there are many algorithms
with faster convergence and varying levels of implementation
difficulty. Faster convergence is preferred because of the reduc-
tion of computational cost due to the smaller number of likeli-
hood computations necessary to obtain the equivalent level of
accuracy. The inverse convergence rate can be measured by the
autocorrelation function and more specifically, the integrated
autocorrelation time (see § 3). This quantity is an estimate of
the number of steps needed in the chain in order to draw inde-
pendent samples from the target density. A more efficient chain
has a shorter autocorrelation time.

—————————————————————————
Algorithm 1.—The procedure for a single Metropolis–

Hastings MCMC step.
—————————————————————————

1: Draw a proposal Y ∼QðY ;XðtÞÞ
2: q←½pðY ÞQðXðtÞ; Y Þ&=½pðXðtÞÞQðY ;XðtÞÞ& //This line is
generally expensive

3: r←R ∼ ½0; 1&
4: if r ≤ q then
5: Xðtþ 1Þ←Y
6: else
7: Xðtþ 1Þ←XðtÞ
8: end if

—————————————————————————
The stretch move.—GW10 proposed an affine-invariant en-

semble sampling algorithm informally called the “stretch
move.” This algorithm significantly outperforms standard M–H
methods producing independent samples with a much shorter
autocorrelation time (see § 3 for a discussion of the autocorre-

lation time). For completeness and for clarity of notation, we
summarize the algorithm here and refer the interested reader
to the original paper for more details. This method involves si-
multaneously evolving an ensemble of K walkers S ¼ fXkg
where the proposal distribution for one walker k is based on
the current positions of theK ' 1walkers in the complementary
ensemble S½k& ¼ fXj;∀j ≠ kg. Here, “position” refers to a vec-
tor in the N-dimensional, real-valued parameter space.

To update the position of a walker at position Xk, a walker
Xj is drawn randomly from the remaining walkers S½k& and a
new position is proposed:

XkðtÞ → Y ¼ Xj þ Z½XkðtÞ 'Xj&; (7)

where Z is a random variable drawn from a distribution
gðZ ¼ zÞ. It is clear that if g satisfies

gðz'1Þ ¼ zgðzÞ; (8)

the proposal of Equation (7) is symmetric. In this case, the chain
will satisfy detailed balance if the proposal is accepted with
probability

q ¼ min
!
1; ZN'1 pðY Þ

pðXkðtÞÞ

"
; (9)

where N is the dimension of the parameter space. This proce-
dure is then repeated for each walker in the ensemble in series
following the procedure shown in Algorithm 2.

GW10 advocate a particular form of gðzÞ, namely

gðzÞ ∝
(

1ffiffiffi
Z

p if z∈
$
1
a ; a

%

0 otherwise
; (10)

where a is an adjustable scale parameter that GW10 set to 2.

—————————————————————————
Algorithm 2.—A single stretch move update step from GW10.
—————————————————————————
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—————————————————————————
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"
: (6)
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that EX(1) is general. It is clear that any general ensemble can be transformed to
any other general ensemble by a finite sequence of stretch moves.

The operation EX(t) ! EX(t + 1) using one stretch move per walker is given by

for k = 1, . . . , L
{

choose X j 2 EX[k](t) at random
generate Y = X j + Z(Xk(t) � X j ), all Z choices independent
accept, set Xk(t + 1) = Y , with probability (7)
otherwise reject, set Xk(t + 1) = Xk(t)

}

We offer two alternative affine invariant methods. The first, which we call the
walk move, is illustrated in Figure 3. A walk move begins by choosing a subset S
of the walkers in EX[k](t). It is necessary that |S| � 2, and that the choice of S is
independent of Xk(t). The walk move offers a proposal Xk ! Xk + W , where W
is normal with mean zero and the same covariance as the walkers X j 2 S.

More formally, let

⇡S(x) = (1/ |S|)
X

X j 2S

�(x � X j )

be the empirical distribution of the walkers in S. Given S, the mean of a random
variable X ⇠ ⇡S is

X S = 1
|S|

X

X j 2S

X j .

Xk

Y

X S

Figure 3. A walk move. The dots represent the ensemble of par-
ticles. The dark ones represent the walkers in EX S . The diamond
inside the triangle represents the sample mean X S . The proposed
perturbation has covariance equal to the sample covariance of the
three dark dots. The perturbation is generated by summing random
multiples of the arrows from X S to the vertices of the triangle.

70 JONATHAN GOODMAN AND JONATHAN WEARE

Xj

Xk

Y

Figure 2. A stretch move. The light dots represent the walkers not
participating in this move. The proposal is generated by stretching
along the straight line connecting Xj to Xk .

The particular distribution we use is the one suggested in [2]:

g(z) /

8
<

:

1p
z

if z 2
h1

a
, a

i
,

0 otherwise.
(9)

where the parameter a > 1 can be adjusted to improve performance.
To find the appropriate acceptance probability for this move we again appeal to

partial resampling. Notice that the proposal value Y lies on the ray
�

y 2 Rn : y � X j = � (Xk(t) � X j ), � > 0
 
.

The conditional density of ⇡ along this ray is proportional to

ky � X jkn�1 ⇡(y).

Since the proposal in (7) is symmetric, partial resampling then implies that if we
accept the move Xk(t + 1) = Y with probability

min
⇢

1,
kY � X jkn�1 ⇡(Y )

kXk(t) � X jkn�1 ⇡(Xk(t))

�
= min

⇢
1, Zn�1 ⇡(Y )

⇡(Xk(t))

�
,

and set Xk(t + 1) = Xk(t) otherwise, the resulting Markov chain satisfies detailed
balance.

The stretch move, and the walk and replacement moves below, define irreducible
Markov chains on the space of general ensembles. An ensemble is general if there
is no lower-dimensional hyperplane (dim < n) that contains all the walkers in the
ensemble. The space of general ensembles is & ⇢ RnL . For L � n + 1, a condition
we always assume, almost every ensemble (with respect to 5) is general. Therefore,
sampling 5 restricted to & is (almost) the same as sampling 5 on all of RnL . It is
clear that if EX(1) 2 &, then almost surely EX(t) 2 & for t = 2, 3, . . . . We assume
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