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Our next important topic: Bayesian estimates often require complex numerical integrals.
How do we confront this problem?

enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective

. Introduction to Markov chains and to Random Walks (RW)
. Detailed balance and Boltzmann's H-theorem

. The Gibbs sampler

. Simulated annealing and the Traveling Salesman Problem (TSP)
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. The Metropolis algorithm

10. More on Gibbs sampling

11. Image restoration and Markov Random Fields (MRF)

12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)
13. The efficiency of MCMC methods

14. Affine-invariant MCMC algorithms (emcee)
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in Statistical Mechanics:
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September 1996

Before embarking on 9 hours of lectures on Monte Carlo methods, let me offer a
warning:

Monte Carlo is an extremely bad method; it should be used only when all
alternative methods are worse.

Why is this so? Firstly, all numerical methods are potentially dangerous, compared
to analytic methods; there are more ways to make mistakes. Secondly, as numerical
methods go, Monte Carlo is one of the least efficient; it should be used only on those
intractable problems for which all other numerical methods are even less efficient.

Let me be more precise about this latter point. Virtually all Monte Carlo methods
have the property that the statistical error behaves as

1
vcomputational budget

error -~v

(or worse); this is an essentially universal consequence of the central limit theorem. It
may be possible to improve the proportionality constant in this relation by a factor of
10% or more — this is one of the principal subjects of these lectures — but the overall
1/4/n behavior is inescapable. This should be contrasted with traditional deterministic
numerical methods whose rate of convergence is typically something like 1/n* or e or
e~2". Therefore, Monte Carlo methods should be used only on those extremely difficult
problems in which all alternative numerical methods behave even worse than 1/y/n.
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Consider, for example, the problem of numerical integration in d dimensions, and
let us compare Monte Carlo integration with a traditional deterministic method such
as Simpson’s rule. As is well known, the error in Simpson’s rule with n nodal points
behaves asymptotically as n~*/¢ (for smooth integrands). In low dimension (d < 8) this
is much better than Monte Carlo integration, but in high dimension (d > 8) it is much
worse. So it is not surprising that Monte Carlo is the method of choice for performing
high-dimensional integrals. It is still a bad method: with an error proportional to n=/2,
it is difficult to achieve more than 4 or 5 digits accuracy. But numerical integration in
high dimension is very difficult; though Monte Carlo is bad, all other known methods
are worse. '

In summary, Monte Carlo methods should be used only when neither analytic meth-
ods nor deterministic numerical methods are workable (or efficient). One general domain
of application of Monte Carlo methods will be, therefore, to systems with many degrees
of freedom, far from the perturbative regime. But such systems are precisely the ones
of greatest interest in statistical mechanics and quantum field theory!

It is appropriate to close this introduction with a general methodological observation,
ably articulated by Wood and Erpenbeck [3]:

... these [Monte Carlo] investigations share some of the features of ordinary
experimental work, in that they are susceptible to both statistical and sys-
tematic errors. With regard to these matters, we believe that papers should
meet much the same standards as are normally required for experimental
error, descriptions of experimental conditions (i.e. parameters of the calcu-
lation), relevant details of apparatus (program) design, comparisons with
previous investigations, discussion of systematic errors, etc. Only if these
are provided will the results be trustworthy guides to improved theoretical
understanding.



13. The efficiency of MCMC methods

The effective use of MCMC programs requires the fine-tuning of many aspects

e Duration of burn-in (initialization)
* Number of parallel chains (random walkers)
* Selection of jumping rule (proposal function)

* Selection of convergence rule
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Statistical Science
1992, Vol. 7, No. 4, 457-511

Inference from lterative Simulation
Using Multiple Sequences

Andrew Gelman and Donald B. Rubin

Abstract. The Gibbs sampler, the algorithm of Metropolis and similar
iterative simulation methods are potentially very helpful for summarizing
multivariate distributions. Used naively, however, iterative simulation
can give misleading answers. Our methods are simple and generally
applicable to the output of any iterative simulation; they are designed
for researchers primarily interested in the science underlying the data
and models they are analyzing, rather than for researchers interested in
the probability theory underlying the iterative simulations themselves.
Our recommended strategy is to use several independent sequences, with
starting points sampled from an overdispersed distribution. At each step
of the iterative simulation, we obtain, for each univariate estimand of
interest, a distributional estimate and an estimate of how much sharper
the distributional estimate might become if the simulations were contin-
ued indefinitely. Because our focus is on applied inference for Bayesian
posterior distributions in real problems, which often tend toward normal-
ity after transformations and marginalization, we derive our results as
normal-theory approximations to exact Bayesian inference, conditional
on the observed simulations. The methods are illustrated on a random-
effects mixture model applied to experimental measurements of reaction
times of normal and schizophrenic patients.

Key words and phrases: Bayesian inference, convergence of stochastic
processes, EM, ECM, Gibbs sampler, importance sampling, Metropolis
algorithm, multiple imputation, random-effects model, SIR.



1.3 Our Approach

Our method is composed of two major steps. First, an
estimate of the target distribution is created, centered
about its mode (or modes, which are typically found
by an optimization algorithm) and “overdispersed” in
the sense of being more variable than the target distri-
bution. The approximate distribution is then used to
start several independent sequences of the iterative
simulation. The second major step is to analyze the
multiple sequences to form a distributional estimate
of what is known about the target random variable,
given the simulations thus far. This distributional esti-
mate, which is in the form of a Student’s ¢ distribution
for each scalar estimand, is somewhere between its
starting and target distributions and provides the ba-
sis for an estimate of how close the simulation process
is to convergence — that is, how much sharper the distri-
butional estimate might become if the simulations were
run longer.
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The G-R monitoring index

Given any individual sequence, and if approximate convergence has been reached, an
assumption is made that inferences about any quantity of interest i1s made by computing
the sample mean and variance from the simulated draws. Thus, the m chains yield m
possible inferences; to answer the question of whether these inferences are similar enough
to indicate approximate convergence, Gelman and Rubin (1992a) suggested comparing
these to the inference made by mixing together the mn draws from all the sequences.

from Brooks and Gelman, 1998



m chains (walkers) and n samples/chain

mean value of chain j

mean of the means of all chains

variance of the means of all chains

averaged variances of individual
chains averaged over all chains
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the variance

~1__ B
62 =W+ =
n n

would be an unbiased estimate of the true variance if the starting points were drawn from the target
distribution, but it is an overestimate if the starting distribution is overdispersed

taking the variability of the mean into account yields a different estimate of the variance

the so-called potential scale reduction factor (PSRF) can be interpreted as a convergence diagnostic —
when large it can be further decreased by continuing the simulation, when close to 1 it shows that the
set of simulations is close to the target distribution

— _ Gelman-Rubin statistic
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CHAPTER III*

Fluctuations in Coin Tossing
and Random Walks

This chapter digresses from our main topic, which is taken up again
only in chapter V. Its material has traditionally served as a first orientation
and guide to more advanced theories. Simple methods will soon lead us
to results of far-reaching theoretical and practical importance. We shall
encounter theoretical conclusions which not only are unexpected but
actually come as a shock to intuition and common sense. They will reveal
that commonly accepted notions concerning chance fluctuations are without
foundation and that the implications of the law of large numbers are
widely misconstrued. For example, in various applications it is assumed
that observations on an individual coin-tossing game during a long time
interval will yield the same statistical characteristics as the observation of
the results of a huge number of independent games at one given instant.
This is not so. Indeed, using a currently popular jargon we reach the
conclusion that in a population of normal coins the majority is necessarily
maladjusted. [For empirical illustrations see section 6 and example (4.5).]
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6. AN EXPERIMENTAL ILLUSTRATION

Figure 4 represents the result of a computer experiment simulating
10,000 tosses of a coin; the same material is tabulated in example I, (6.c).
The top line contains the graph of the first 550 trials; the next two lines
represent the entire record of 10,000 trials the scale in the horizontal
direction being changed in the ratio 1:10. The scale in the vertical
direction is the same in the two graphs.

When looking at the graph most people feel surprised by the length of
the intervals between successive crossings of the axis. As a matter of fact,
the graph represents a rather mild case history and was chosen as the
mildest among three available records. A more startling example is
obtained by looking at the same graph in the reverse direction; that is,
reversing the order in which the 10,000 trials actually occurred (see section
8). Theoretically, the series as graphed and the reversed series are equally
legitimate as representative of an ideal random walk. The reversed random
walk has the following characteristics. Starting from the origin

the path stays on the

negative side positive side
for the first 7804 steps next 8 steps
next 2 steps next 34 steps

next 30 steps next 2 steps
next 48 steps next 6 steps
next 2046 steps

Total of 9930 steps Total of 70 steps

Fraction of time: 0.993 Fraction of time: 0.007

This looks absurd, and yet the probability that in 10,000 tosses of a
perfect coin the lead is at one side for more than 9930 trials and at the
other for fewer than 70 exceeds 1. In other words, on the average one
record out of ten will look worse than the one just described. By contrast,
the probability of a balance better than in the graph is only 0.072.

The original record of figure 4 contains 78 changes of sign and 64 other
returns to the origin. The reversed series shows 8 changes of sign and 6
other returns to the origin. Sampling of expert opinion revealed that even
trained statisticians expect much more than 78 changes of sign in 10,000
trials, and nobody counted on the possibility of only 8 changes of sign.
Actually the probability of not more than 8 changes of sign exceeds 0.14,
whereas the probability of more than 78 changes of sign is about 0.12.
As far as the number of changes of sign is concerned the two records stand
on a par and, theoretically, neither should cause surprise. If they seem
startling, this is due to our faulty intuition and to our having been exposed
to too many vague references to a mysterious “law of averages.”

R oo
JURIRRE o A .
- e, o " s o "*.-f-.,,"'.-‘n.' P NP
2 i ) . L gt
B pemt T o R R R BN s T T ¥
100 200 300 400 500
o
N ™ o
L i
o e [
R b PP
S - -t
- I 2000 e *
e - o~ | - . oy,
T e T - oy (3] T
500 - o s,
v o S A
1000 ~ 3000 4000 5000 6000

L] -‘.-._ .
e e 0 ™~ LAY
e e s e’ ~ d
e A
6000 7000 8000 9000 10,000
Figure 4. The record of 10,000 tosses of an ideal coin (described in section 6).
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14. Affine-invariant MCMC algorithms

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PAcIFIC, 125:306-312, 2013 March
© 2013. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

emcee: The MCMC Hammer

DANIEL FOREMAN-MACKEY,! DAVID W. HOGG,"* DUSTIN LANG,** AND JONATHAN GOODMAN?’
Received 2013 January 09; accepted 2013 January 30; published 2013 February 25

ABSTRACT. We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has
already been used in several published projects in the astrophysics literature. The algorithm behind emcee has
several advantages over traditional MCMC sampling methods and it has excellent performance as measured by
the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that
it requires hand-tuning of only 1 or 2 parameters compared to ~N? for a traditional algorithm in an N-dimensional
parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the
parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra
effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.
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10.5 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those that follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely self-
contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method re-
quires only function evaluations, not derivatives. It is not very efficient in terms of
the number of function evaluations that it requires. Powell’s method (§10.7) or the
DFP method with finite differences (§10.9) is almost surely faster in all likely appli-
cations. However, the downhill simplex method may frequently be the best method
to use if the figure of merit is “get something working quickly” for a problem whose
computational burden is small.

The method has a geometrical naturalness about it that makes it delightful to
describe or work through:

A simplex 1s the geometrical figure consisting, in N dimensions, of N + 1 points
(or vertices) and all their interconnecting line segments, polygonal faces, etc. In two
dimensions, a simplex is a triangle. In three dimensions, it is a tetrahedron, not
necessarily the regular tetrahedron. (The simplex method of linear programming, de-
scribed in §10.10, also makes use of the geometrical concept of a simplex. Otherwise

it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of an N -dimensional topography,
until it encounters a (local, at least) minimum.
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simplex at beginning of step

high
low

reflection

(a)

reflection and expansion

(b)

contraction

Figure 10.5.1. Possible outcomes for a step in the downhill simplex method. The simplex at the beginning
© of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one of (a)
a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions toward the

 multiple low point. An appropriate sequence of such steps will always converge to a minimum of the function.

contraction

(d)
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An example of hard problem: the Rosenbrock density

100(x2 —x1%)? + (1 — x1)?

T (x1, xp) X exp(— 20
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* Optimizing a MCMC in a given parameter space often means that we use a proposal distribution that is tuned to
the target distribution.

* This proposal distribution is often a multivariate Gaussian with
an n x n covariance matrix that must be tuned accordingly 0.8f
1 1 o 0.6}
T1yevoyXTp) = exp | —=x" V7 'x
plass ) = ey o (X V%)
with 0.2}
0% pP1,20102 -+  P1n010n <0
P1,20102 0% "t P2,n020q
V = ) -0.2
P1n010n  P2,n020n - o -04f
1 -0.61
* The covariance matrix has 5n(n + 1) indipendent elements;
-0.81
tuning the proposal distribution means tuning these i . . .
-1 -0.5 0 0.5

independent elements (hyperparameters) with a long (and
computationally expensive) burn-in phase.

>



Consider the following highly anisotropic pdf

p(x) o exp <_ (71 —22)* (21 + g;2)2>

With the variable transformation

which has the Jacobian

1
In the n-dimensional parameter space there are only 2 hyperparameters to tune (mean, variance) instead of §n(n + 1)



Affine-invariance

Here, we consider MCMC proposal moves of the form

X(t+1) ZR[X(t),ér“(t),

n
/ \

proposal function vector of i.i.d. target
random variables distribution

These proposals are affine-invariant if the following condition holds

R|Ax

for every x.

b,£(t), 7] = A Rz, &(t), 7]
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In this paper we propose a family of affine invariant ensemble samplers. An
ensemble, X, consists of L walkers* X € R". Since each walker is in R”, we may
think of the ensemble X = (X1, ..., X1) as being in R"L. The target probability
density for the ensemble is the one in which the walkers are independent and drawn
from 7, that 1s,

IM(xX) = M(x1,...,x1) = 7(x) w(x2) - w(xp). (5)

An ensemble MCMC algorithm 1s a Markov chain on the state space of ensembles.

Starting with X (1), it produces a sequence X (t). The ensemble Markov chain can
preserve the product density (5) without the individual walker sequences X (7)
(as functions of 7) being independent, or even being Markov. This is because the
distribution of X (¢ + 1) can depend on X (¢) for j # k.

We apply an affine transformation to an ensemble by applying it separately to
each walker:

X = (X1,...,X1) 22 (AX,+b,...,AX, +b) = (Y;,....Y;) = Y. (6)

2Here Xy is walker k in an ensemble of L walkers.

Goodman and Weare, 2010

Edoardo Milotti - Bayesian Methods - Spring 2024
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The affine transformation is implemented with the following proposal move (stretch move), with an ensemble of K
walkers {X,}

Xip(t) > Y =X, + Z[ X} (1) — X|]

where the index j is drawn at random from the set of all the all the indexes excluding k, and Z is a random variable
from a distribution g such that

1 I 1 Goodman and Weare
g (‘) = 29(2) » g(z) o< VZ i 2€ [a,a] (2010)
Z

0 otherwise

@ min (1’ ZN_lwgg(zf)))

N

and acceptance probability

which satisfies detailed balance. For derivations of the formulas given here, see Roberts and Gilks, J. Multivariate
Analysis 49 (1994) 287.

In addition to stretch moves, affine-invariant MCMCs also incorporate walk moves and replacement moves (Goodman
and Weare, 2010)
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Figure 3. A walk move. The dots represent the ensemble of par-
ticles. The dark ones represent the walkers in X s. The diamond
inside the triangle represents the sample mean X s. The proposed
perturbation has covariance equal to the sample covariance of the
three dark dots. The perturbation is generated by summing random
multiples of the arrows from X g to the vertices of the triangle.

Figure 2. A stretch move. The light dots represent the walkers not
participating in this move. The proposal is generated by stretching
along the straight line connecting X; to Xj.
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https://emcee.readthedocs.io/en/stable/

emcee

Q, Search the docs ...

USER GUIDE

Installation

The Ensemble Sampler

Moves

Blobs

Backends

Autocorrelation Analysis
Upgrading From Pre-3.0 Versions

FAQ

TUTORIALS
Quickstart

Fitting a model to data
Parallelization

Autocorrelation analysis &
convergence

Saving & monitoring progress

Using different moves

Theme by the Executable Book Project

emcee

emcee is an MIT licensed pure-Python implementation of Goodman & Weare's Affine Invariant
Markov chain Monte Carlo (MCMC) Ensemble sampler and these pages will show you how to use
it.

This documentation won't teach you too much about MCMC but there are a lot of resources
available for that (try this one). We also published a paper explaining the emcee algorithm and
implementation in detail.

emcee has been used in quite a few projects in the astrophysical literature and it is being actively
developed on GitHub.

GitHub dfm/emcee license MIT [ arXiv [1202.3665 | coverage [96% |

Basic Usage

If you wanted to draw samples from a 5 dimensional Gaussian, you would do something like:
import numpy as np
import emcee

def log_prob(x, ivar):
return -0.5 * np.sum(ivar * x *xk 2)

ndim, nwalkers = 5, 100

ivar = 1. / np.random.rand(ndim)

p@ = np.random.randn(nwalkers, ndim)

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(p@, 10000)

A more complete example is available in the Quickstart tutorial.

i= Contents

Basic Usage
How to Use This Guide
License & Attribution

Changelog
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https://github.com/dfm/emcee

[0 README @& Code of conduct &3 MIT license

Documentation

Read the docs at emcee.readthedocs.io.

Attribution

Please cite Foreman-Mackey, Hogg, Lang & Goodman (2012) if you find this code useful in your research. The

BibTeX entry for the paper is:

QRarticle{emcee, (&
author = {{Foreman-Mackey}, D. and {Hogg}, D.~W. and {Lang}, D. and {Goodman}, J.},
title = {emcee: The MCMC Hammer},
journal = {PASP},
year = 2013,
volume = 125,
pages = {306-312},
eprint = {1202.3665},
doi = {10.1086/670067}
i
License

Copyright 2010-2021 Dan Foreman-Mackey and contributors.

emcee is free software made available under the MIT License. For details see the LICENSE file.
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emcee

Q, Search %+ K

User Guide

Installation

The Ensemble Sampler

Moves

Blobs

Backends

Autocorrelation Analysis
Upgrading From Pre-3.0 Versions
FAQ

Tutorials

Quickstart
Fitting a model to data
Parallelization

Autocorrelation analysis &
convergence

Saving & monitoring progress

Using different moves

= 0L 0

Quickstart

I » Show code cell content

The easiest way to get started with using emcee is to use it for a project. To get you started, here's an
annotated, fully-functional example that demonstrates a standard usage pattern.

How to sample a multi-dimensional Gaussian

We're going to demonstrate how you might draw samples from the multivariate Gaussian density given by:

» o woifevidrs
p(@) o exp | =4 (3 — 1) 27 (& - i)

where ﬁ is an IN-dimensional vector position of the mean of the density and ¥ is the square N-by-N

covariance matrix.

The first thing that we need to do is import the necessary modules:
import numpy as np

Then, we'll code up a Python function that returns the density p(&;‘) for specific values of Z, ﬁ and X1 In
fact, emcee actually requires the logarithm of p. We'll call it log_prob :

def log_prob(x, mu, cov):
diff = x = mu
return -0.5 x np.dot(diff, np.linalg.solve(cov, diff))
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