
Introduction to Bayesian Statistics - 11

Edoardo Milotti
Università di Trieste and INFN-Sezione di Trieste

Edoardo Milotti - Bayesian Methods - Spring 2024 2

Readable explanation of MCMCs (link)

Data Analysis Recipes: Using Markov Chain Monte Carlo*

David W. Hogg1,2,3,4 and Daniel Foreman-Mackey1,5,6
1 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave., New York, NY 10010, USA

2 Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA
3 Center for Data Science, New York University, 60 Fifth Ave., New York, NY 10011, USA

4Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
5 DepartmentofAstronomy, UniversityofWashington, Box 351580, Seattle, WA 98195, USA

Received 2017 October 16; revised 2018 January 23; accepted 2018 February 3; published 2018 May 11

Abstract

Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant
computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting
models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method
and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning
for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce
or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test
for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We
emphasize that sampling is a method for doing integrals; this guides our thinking about howMCMC output is best used.

Key words: methods: data analysis – methods: numerical – methods: statistical

1. When Do You Need MCMC?

Markov Chain Monte Carlo (MCMC) methods are methods
for sampling probability distribution functions or probability
density functions (pdfs). These pdfs may be either probability
mass functions on a discrete space or probability densities on a
continuous space, though we will concentrate on the latter in this
article. MCMC methods do not require that you have a full
analytic description of the properly normalized pdf for sampling
to proceed; they only require that you be able to compute ratios
of the pdf at pairs of locations. This makes MCMC methods
ideal for sampling posterior pdfs in probabilistic inferences.

In a probabilistic inference, the posterior pdf p Dq(∣), or pdf
for the parameters q given the data D, is constructed from the
likelihood p D q(∣), or pdf for the data given the parameters, and
the prior pdf p q() for the parameters by what is often known as
the “Bayes rule,”

p D
Z

p D p
1

. 1q q q=(∣) (∣) () ()

In these contexts, the constant Z, sometimes written as p D(), is
known by the names “evidence,” “marginal likelihood,” “Bayes
integral,” and “prior predictive probability” and is usually
extremely hard to calculate.7 That is, you often know the function

p Dq(∣) up to a constant factor; you can compute ratios of the pdf
at pairs of points, but not the precise value at any individual point.
In addition to this normalization-insensitive property of MCMC,

in its simplest forms it can be run without computing any
derivatives or integrals of the function, and (as we will show below
in Section 3) in its simplest forms it is extremely easy to implement.
For all these reasons, MCMC is ideal for sampling posterior pdfs
in the real situations in which scientists find themselves.
Say you are in this situation: You have a huge blob of data D

(think of this as a vector or list or heterogeneous but ordered
collection of observations). You also have a model sophisticated
enough—a probabilistic, generative model, if you will8—that,
given a setting of a huge blob of parameters (again, think of this
as a vector or list or heterogeneous but ordered collection of
values) q, you can compute a pdf for data (or likelihood9)
p D q(∣). Furthermore, say also that you can write down some
kind of informative or vague prior pdf p q() for the parameter
blob q. If all these things are true, then—even if you cannot
compute anything else—in principle a trivial-to-implement
MCMC can give you a fair sampling of the posterior pdf. That
is, you can run MCMC(for a very long time—see Section 5 for
how long), and you will be left with a set of K parameter-blob
settings kq such that the full set k k

K
1q ={ } constitutes a fair

sampling from the posterior pdf p Dq(∣). We will give some
sense of what “fair” means in this context below.
All that said, and adhering to the traditions of the Data

Analysis Recipes project,10 we are compelled to note at the
outset that MCMC is in fact overused. Because MCMC

The Astrophysical Journal Supplement Series, 236:11 (18pp), 2018 May https://doi.org/10.3847/1538-4365/aab76e
© 2018. The American Astronomical Society.

* Copyright 2013, 2014, 2015, 2016, 2017 the authors (OMG this took us a
long time). This work is licensed under aCreative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.
6 NASA Sagan Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

7 The factor Z is often difficult to compute, because the likelihood (or the
prior) can have extremely complex structure, with multiple arbitrarily compact
modes, arbitrarily positioned in the (presumably high-dimensional) parameter
space q. Elsewhere, we discuss the computation of this object (Hou et al. 2014),
and so have many others before us. We also have (unpublished) philosophical
arguments against calculating this Z if you can possibly avoid it, but these are
outside the scope of this article. The point is that MCMC methods will not
require that you know Z.

8 Briefly, a “model” for us is a likelihood function (a pdf for the data given
model parameters) and a prior pdf over the parameters. Because, under this
definition, the model can always generate (by sampling, say) parameters and
parameters can generate (again by sampling, say) data, the model is effectively
(or actually, if you are a true subjective Bayesian) a probability distribution
(pdf) over all possible data.
9 Technically, p D q(∣) is only properly a likelihood function when we are
thinking of the data D as being fixed and the parameters q as being permitted
to vary.
10 Every entry in the Data Analysis Recipes series begins with a rant in which
we argue that most uses of the methods in question are not appropriate!

1

https://iopscience.iop.org/article/10.3847/1538-4365/aab76e

Edoardo Milotti - Bayesian Methods - Spring 2024 3

Data Analysis Recipes: Using Markov Chain Monte Carlo*

David W. Hogg1,2,3,4 and Daniel Foreman-Mackey1,5,6
1 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave., New York, NY 10010, USA

2 Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA
3 Center for Data Science, New York University, 60 Fifth Ave., New York, NY 10011, USA

4Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
5 DepartmentofAstronomy, UniversityofWashington, Box 351580, Seattle, WA 98195, USA

Received 2017 October 16; revised 2018 January 23; accepted 2018 February 3; published 2018 May 11

Abstract

Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant
computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting
models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method
and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning
for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce
or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test
for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We
emphasize that sampling is a method for doing integrals; this guides our thinking about howMCMC output is best used.

Key words: methods: data analysis – methods: numerical – methods: statistical

1. When Do You Need MCMC?

Markov Chain Monte Carlo (MCMC) methods are methods
for sampling probability distribution functions or probability
density functions (pdfs). These pdfs may be either probability
mass functions on a discrete space or probability densities on a
continuous space, though we will concentrate on the latter in this
article. MCMC methods do not require that you have a full
analytic description of the properly normalized pdf for sampling
to proceed; they only require that you be able to compute ratios
of the pdf at pairs of locations. This makes MCMC methods
ideal for sampling posterior pdfs in probabilistic inferences.

In a probabilistic inference, the posterior pdf p Dq(∣), or pdf
for the parameters q given the data D, is constructed from the
likelihood p D q(∣), or pdf for the data given the parameters, and
the prior pdf p q() for the parameters by what is often known as
the “Bayes rule,”

p D
Z

p D p
1

. 1q q q=(∣) (∣) () ()

In these contexts, the constant Z, sometimes written as p D(), is
known by the names “evidence,” “marginal likelihood,” “Bayes
integral,” and “prior predictive probability” and is usually
extremely hard to calculate.7 That is, you often know the function

p Dq(∣) up to a constant factor; you can compute ratios of the pdf
at pairs of points, but not the precise value at any individual point.
In addition to this normalization-insensitive property of MCMC,

in its simplest forms it can be run without computing any
derivatives or integrals of the function, and (as we will show below
in Section 3) in its simplest forms it is extremely easy to implement.
For all these reasons, MCMC is ideal for sampling posterior pdfs
in the real situations in which scientists find themselves.
Say you are in this situation: You have a huge blob of data D

(think of this as a vector or list or heterogeneous but ordered
collection of observations). You also have a model sophisticated
enough—a probabilistic, generative model, if you will8—that,
given a setting of a huge blob of parameters (again, think of this
as a vector or list or heterogeneous but ordered collection of
values) q, you can compute a pdf for data (or likelihood9)
p D q(∣). Furthermore, say also that you can write down some
kind of informative or vague prior pdf p q() for the parameter
blob q. If all these things are true, then—even if you cannot
compute anything else—in principle a trivial-to-implement
MCMC can give you a fair sampling of the posterior pdf. That
is, you can run MCMC(for a very long time—see Section 5 for
how long), and you will be left with a set of K parameter-blob
settings kq such that the full set k k

K
1q ={ } constitutes a fair

sampling from the posterior pdf p Dq(∣). We will give some
sense of what “fair” means in this context below.
All that said, and adhering to the traditions of the Data

Analysis Recipes project,10 we are compelled to note at the
outset that MCMC is in fact overused. Because MCMC

The Astrophysical Journal Supplement Series, 236:11 (18pp), 2018 May https://doi.org/10.3847/1538-4365/aab76e
© 2018. The American Astronomical Society.

* Copyright 2013, 2014, 2015, 2016, 2017 the authors (OMG this took us a
long time). This work is licensed under aCreative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.
6 NASA Sagan Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

7 The factor Z is often difficult to compute, because the likelihood (or the
prior) can have extremely complex structure, with multiple arbitrarily compact
modes, arbitrarily positioned in the (presumably high-dimensional) parameter
space q. Elsewhere, we discuss the computation of this object (Hou et al. 2014),
and so have many others before us. We also have (unpublished) philosophical
arguments against calculating this Z if you can possibly avoid it, but these are
outside the scope of this article. The point is that MCMC methods will not
require that you know Z.

8 Briefly, a “model” for us is a likelihood function (a pdf for the data given
model parameters) and a prior pdf over the parameters. Because, under this
definition, the model can always generate (by sampling, say) parameters and
parameters can generate (again by sampling, say) data, the model is effectively
(or actually, if you are a true subjective Bayesian) a probability distribution
(pdf) over all possible data.
9 Technically, p D q(∣) is only properly a likelihood function when we are
thinking of the data D as being fixed and the parameters q as being permitted
to vary.
10 Every entry in the Data Analysis Recipes series begins with a rant in which
we argue that most uses of the methods in question are not appropriate!

1

Data Analysis Recipes: Using Markov Chain Monte Carlo*

David W. Hogg1,2,3,4 and Daniel Foreman-Mackey1,5,6
1 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave., New York, NY 10010, USA

2 Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA
3 Center for Data Science, New York University, 60 Fifth Ave., New York, NY 10011, USA

4Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
5 DepartmentofAstronomy, UniversityofWashington, Box 351580, Seattle, WA 98195, USA

Received 2017 October 16; revised 2018 January 23; accepted 2018 February 3; published 2018 May 11

Abstract

Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant
computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting
models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method
and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning
for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce
or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test
for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We
emphasize that sampling is a method for doing integrals; this guides our thinking about howMCMC output is best used.

Key words: methods: data analysis – methods: numerical – methods: statistical

1. When Do You Need MCMC?

Markov Chain Monte Carlo (MCMC) methods are methods
for sampling probability distribution functions or probability
density functions (pdfs). These pdfs may be either probability
mass functions on a discrete space or probability densities on a
continuous space, though we will concentrate on the latter in this
article. MCMC methods do not require that you have a full
analytic description of the properly normalized pdf for sampling
to proceed; they only require that you be able to compute ratios
of the pdf at pairs of locations. This makes MCMC methods
ideal for sampling posterior pdfs in probabilistic inferences.

In a probabilistic inference, the posterior pdf p Dq(∣), or pdf
for the parameters q given the data D, is constructed from the
likelihood p D q(∣), or pdf for the data given the parameters, and
the prior pdf p q() for the parameters by what is often known as
the “Bayes rule,”

p D
Z

p D p
1

. 1q q q=(∣) (∣) () ()

In these contexts, the constant Z, sometimes written as p D(), is
known by the names “evidence,” “marginal likelihood,” “Bayes
integral,” and “prior predictive probability” and is usually
extremely hard to calculate.7 That is, you often know the function

p Dq(∣) up to a constant factor; you can compute ratios of the pdf
at pairs of points, but not the precise value at any individual point.
In addition to this normalization-insensitive property of MCMC,

in its simplest forms it can be run without computing any
derivatives or integrals of the function, and (as we will show below
in Section 3) in its simplest forms it is extremely easy to implement.
For all these reasons, MCMC is ideal for sampling posterior pdfs
in the real situations in which scientists find themselves.
Say you are in this situation: You have a huge blob of data D

(think of this as a vector or list or heterogeneous but ordered
collection of observations). You also have a model sophisticated
enough—a probabilistic, generative model, if you will8—that,
given a setting of a huge blob of parameters (again, think of this
as a vector or list or heterogeneous but ordered collection of
values) q, you can compute a pdf for data (or likelihood9)
p D q(∣). Furthermore, say also that you can write down some
kind of informative or vague prior pdf p q() for the parameter
blob q. If all these things are true, then—even if you cannot
compute anything else—in principle a trivial-to-implement
MCMC can give you a fair sampling of the posterior pdf. That
is, you can run MCMC(for a very long time—see Section 5 for
how long), and you will be left with a set of K parameter-blob
settings kq such that the full set k k

K
1q ={ } constitutes a fair

sampling from the posterior pdf p Dq(∣). We will give some
sense of what “fair” means in this context below.
All that said, and adhering to the traditions of the Data

Analysis Recipes project,10 we are compelled to note at the
outset that MCMC is in fact overused. Because MCMC

The Astrophysical Journal Supplement Series, 236:11 (18pp), 2018 May https://doi.org/10.3847/1538-4365/aab76e
© 2018. The American Astronomical Society.

* Copyright 2013, 2014, 2015, 2016, 2017 the authors (OMG this took us a
long time). This work is licensed under aCreative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.
6 NASA Sagan Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

7 The factor Z is often difficult to compute, because the likelihood (or the
prior) can have extremely complex structure, with multiple arbitrarily compact
modes, arbitrarily positioned in the (presumably high-dimensional) parameter
space q. Elsewhere, we discuss the computation of this object (Hou et al. 2014),
and so have many others before us. We also have (unpublished) philosophical
arguments against calculating this Z if you can possibly avoid it, but these are
outside the scope of this article. The point is that MCMC methods will not
require that you know Z.

8 Briefly, a “model” for us is a likelihood function (a pdf for the data given
model parameters) and a prior pdf over the parameters. Because, under this
definition, the model can always generate (by sampling, say) parameters and
parameters can generate (again by sampling, say) data, the model is effectively
(or actually, if you are a true subjective Bayesian) a probability distribution
(pdf) over all possible data.
9 Technically, p D q(∣) is only properly a likelihood function when we are
thinking of the data D as being fixed and the parameters q as being permitted
to vary.
10 Every entry in the Data Analysis Recipes series begins with a rant in which
we argue that most uses of the methods in question are not appropriate!

1

Edoardo Milotti - Bayesian Methods - Spring 2024 4

Data Analysis Recipes: Using Markov Chain Monte Carlo*

David W. Hogg1,2,3,4 and Daniel Foreman-Mackey1,5,6
1 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave., New York, NY 10010, USA

2 Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA
3 Center for Data Science, New York University, 60 Fifth Ave., New York, NY 10011, USA

4Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
5 DepartmentofAstronomy, UniversityofWashington, Box 351580, Seattle, WA 98195, USA

Received 2017 October 16; revised 2018 January 23; accepted 2018 February 3; published 2018 May 11

Abstract

Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant
computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting
models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method
and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning
for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce
or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test
for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We
emphasize that sampling is a method for doing integrals; this guides our thinking about howMCMC output is best used.

Key words: methods: data analysis – methods: numerical – methods: statistical

1. When Do You Need MCMC?

Markov Chain Monte Carlo (MCMC) methods are methods
for sampling probability distribution functions or probability
density functions (pdfs). These pdfs may be either probability
mass functions on a discrete space or probability densities on a
continuous space, though we will concentrate on the latter in this
article. MCMC methods do not require that you have a full
analytic description of the properly normalized pdf for sampling
to proceed; they only require that you be able to compute ratios
of the pdf at pairs of locations. This makes MCMC methods
ideal for sampling posterior pdfs in probabilistic inferences.

In a probabilistic inference, the posterior pdf p Dq(∣), or pdf
for the parameters q given the data D, is constructed from the
likelihood p D q(∣), or pdf for the data given the parameters, and
the prior pdf p q() for the parameters by what is often known as
the “Bayes rule,”

p D
Z

p D p
1

. 1q q q=(∣) (∣) () ()

In these contexts, the constant Z, sometimes written as p D(), is
known by the names “evidence,” “marginal likelihood,” “Bayes
integral,” and “prior predictive probability” and is usually
extremely hard to calculate.7 That is, you often know the function

p Dq(∣) up to a constant factor; you can compute ratios of the pdf
at pairs of points, but not the precise value at any individual point.
In addition to this normalization-insensitive property of MCMC,

in its simplest forms it can be run without computing any
derivatives or integrals of the function, and (as we will show below
in Section 3) in its simplest forms it is extremely easy to implement.
For all these reasons, MCMC is ideal for sampling posterior pdfs
in the real situations in which scientists find themselves.
Say you are in this situation: You have a huge blob of data D

(think of this as a vector or list or heterogeneous but ordered
collection of observations). You also have a model sophisticated
enough—a probabilistic, generative model, if you will8—that,
given a setting of a huge blob of parameters (again, think of this
as a vector or list or heterogeneous but ordered collection of
values) q, you can compute a pdf for data (or likelihood9)
p D q(∣). Furthermore, say also that you can write down some
kind of informative or vague prior pdf p q() for the parameter
blob q. If all these things are true, then—even if you cannot
compute anything else—in principle a trivial-to-implement
MCMC can give you a fair sampling of the posterior pdf. That
is, you can run MCMC(for a very long time—see Section 5 for
how long), and you will be left with a set of K parameter-blob
settings kq such that the full set k k

K
1q ={ } constitutes a fair

sampling from the posterior pdf p Dq(∣). We will give some
sense of what “fair” means in this context below.
All that said, and adhering to the traditions of the Data

Analysis Recipes project,10 we are compelled to note at the
outset that MCMC is in fact overused. Because MCMC

The Astrophysical Journal Supplement Series, 236:11 (18pp), 2018 May https://doi.org/10.3847/1538-4365/aab76e
© 2018. The American Astronomical Society.

* Copyright 2013, 2014, 2015, 2016, 2017 the authors (OMG this took us a
long time). This work is licensed under aCreative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.
6 NASA Sagan Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

7 The factor Z is often difficult to compute, because the likelihood (or the
prior) can have extremely complex structure, with multiple arbitrarily compact
modes, arbitrarily positioned in the (presumably high-dimensional) parameter
space q. Elsewhere, we discuss the computation of this object (Hou et al. 2014),
and so have many others before us. We also have (unpublished) philosophical
arguments against calculating this Z if you can possibly avoid it, but these are
outside the scope of this article. The point is that MCMC methods will not
require that you know Z.

8 Briefly, a “model” for us is a likelihood function (a pdf for the data given
model parameters) and a prior pdf over the parameters. Because, under this
definition, the model can always generate (by sampling, say) parameters and
parameters can generate (again by sampling, say) data, the model is effectively
(or actually, if you are a true subjective Bayesian) a probability distribution
(pdf) over all possible data.
9 Technically, p D q(∣) is only properly a likelihood function when we are
thinking of the data D as being fixed and the parameters q as being permitted
to vary.
10 Every entry in the Data Analysis Recipes series begins with a rant in which
we argue that most uses of the methods in question are not appropriate!

1

Edoardo Milotti - Bayesian Methods - Spring 2024 5

Miscellany of topics related to the emcee examples

1. Integrated Gaussian probability in n-dimensional space

We take a ~N(0,1) Gaussian pdf in n-dimensional space and integrate it in a spherical region of radius R surrounding the
origin:

 where

 is the lower incomplete gamma function

<latexit sha1_base64="wvyhRTcvxbT7//5WXJqqxM7ALi4=">AAACMHicbZDPSiNBEMZ73FVj/Bd3j16aDYKCCTMi6kUIu5c9KmwSIZOEnk7NpLG7Z+iuEcMw7+Fz7APsdfcRdk/iSfAp7MQcNuoHDR9fVVHVvyiTwqLv//OWPnxcXlmtrFXXNza3tms7nzo2zQ2HNk9laq4iZkEKDW0UKOEqM8BUJKEbXX+b1rs3YKxI9Q+cZNBXLNEiFpyhi4a1ozBhSrFQQoz79vA2NCIZ4wE9p6HQOPQHtxQHhW0EJYVB0cByhMNa3W/6M9G3JpibOpnrYlh7DEcpzxVo5JJZ2wv8DPsFMyi4hLIa5hYyxq9ZAj1nNVNg+8XsbyXdc8mIxqlxTyOdpf9PFExZO1GR61QMx/Z1bRq+V+vlGJ/1C6GzHEHzl0VxLimmdAqKjoQBjnLiDONGuFspHzPDODqcC1sikThWtqw6MsFrDm9N56gZnDRPLo/rra9zRhWyS76QfRKQU9Ii38kFaRNO7sgv8pv88X56f7177+Gldcmbz3wmC/KengHoNqlv</latexit>

� (s, x) =

Z x

0
ts�1e�tdt

<latexit sha1_base64="5npx6fvQlXwAgyfvUtX8V8r/9eQ=">AAADH3ichVLLjtMwFHXCayivDizZWFSgVjCdJEIDG6QRLGBZKtoZqW4jx3FSaxInsh3UyvKa7+AD2MInsENs5wv4DZw2A2QGxJUinXvOPcfRtaMyY1J53qnjXrp85eq1neudGzdv3b7T3b07lUUlCJ2QIivEcYQlzRinE8VURo9LQXEeZfQoOnlV60fvqZCs4O/UuqTzHKecJYxgZalw14Gj/ngAH72AKBGYaN/ofoBKNlhovh8YgxhXobcYQ7rQe2IRWA7G05BDhDr/NMFfrq3OrdZIGr3GeY77tnnsD4yw9J5vWumilc2NDtqes3Q93hpWm+izlJWJV/8NSOsWZTRR/d9D5knjsLl1iwRLl2oQdnve0NsUvAj8BvRAU6Ow+wPFBalyyhXJsJQz3yvVXGOhGMmo6aBK0hKTE5zSmYUc51TO9eYqDXxomRgmhbAfV3DD/unQOJdynUd2MsdqKc9rNfk3bVap5PlcM15WinKyPSipMqgKWL8LGDNBicrWFmAimP1XSJbYrkPZ19M6JWKpvQBpOnYz/vk9XATTYOgfDA/ePu0dvmx2tAPugwegD3zwDByCN2AEJoA4H5xPzmfni/vR/ep+c79vR12n8dwDrXJPfwJVSvcr</latexit>

P (R) =
1

(2⇡)n/2

Z R

0
e�r2/2dVn

=
1

(2⇡)n/2

Z R

0

n⇡n/2

�(n/2 + 1)
rn�1e�r2/2dr

=
n

2�(n/2 + 1)

Z R2/2

0
xn/2�1e�xdx

=
n

2�(n/2 + 1)
�

✓
n

2
,
R2

2

◆

Edoardo Milotti - Bayesian Methods - Spring 2024 6

dim

R in units of st. devs.

1 2 3 4 5 6

1 0.682689 0.9545 0.9973 0.999937 0.999999 1.
2 0.393469 0.864665 0.988891 0.999665 0.999996 1.
3 0.198748 0.738536 0.970709 0.998866 0.999985 1.
4 0.090204 0.593994 0.938901 0.996981 0.99995 1.
5 0.0374342 0.450584 0.890936 0.993156 0.999861 0.999999
6 0.0143877 0.323324 0.826422 0.986246 0.999659 0.999997
7 0.00517146 0.220223 0.747344 0.974884 0.999241 0.999993
8 0.00175162 0.142877 0.657704 0.95762 0.998445 0.999982
9 0.000562497 0.0885875 0.562726 0.933118 0.997029 0.99996
10 0.000172116 0.052653 0.467896 0.900368 0.994654 0.999916
11 0.0000503899 0.030083 0.378108 0.858869 0.990883 0.999831
12 0.0000141649 0.0165636 0.29707 0.808764 0.985177 0.999676
13 3.83473e-6 0.00880861 0.227056 0.75087 0.976916 0.999407
14 1.00238e-6 0.00453381 0.168949 0.686626 0.965433 0.998957
15 2.53564e-7 0.00226266 0.122483 0.617948 0.950057 0.998232
16 6.21969e-8 0.00109672 0.0865865 0.547039 0.930175 0.997107
17 1.48197e-8 0.000517067 0.0597382 0.476165 0.90529 0.995413
18 3.43549e-9 0.000237447 0.0402573 0.407453 0.875084 0.992944
19 7.75939e-10 0.00010634 0.0265206 0.342722 0.839458 0.989444
20 1.70967e-10 0.0000464981 0.0170927 0.283376 0.798569 0.984619

Edoardo Milotti - Bayesian Methods - Spring 2024 7

2. corner plots

Useful python package corner.py (https://corner.readthedocs.io/en/latest/)

https://corner.readthedocs.io/en/latest/

Edoardo Milotti - Bayesian Methods - Spring 2024 8

Edoardo Milotti - Bayesian Methods - Spring 2024 9

Edoardo Milotti - Bayesian Methods - Spring 2024 10

Edoardo Milotti - Bayesian Methods - Spring 2024 11

3. multiprocessing

Useful python package multiprocessing (https://docs.python.org/3/library/multiprocessing.html)

Here we use the package ONLY in the context of emcee.

https://docs.python.org/3/library/multiprocessing.html

Edoardo Milotti - Bayesian Methods - Spring 2024 12

Multiprocessing means using two or more central processing units (CPUs) in a single computer system.

Its definition can vary, but generally it refers to the ability to support multiple CPUs and to the capacity to distribute work
among them.

Present–day multicore processors can easily have 12, 24 or more cores on the same motherboard, enabling concurrent
processing of numerous tasks.

Edoardo Milotti - Bayesian Methods - Spring 2024 13

What are processes?

A process, or a running process, is a collection of instructions carried out by the computer processor.
A process's execution proceeds in a sequential manner, just as a computer program which is written in a text file, but when executed, it
becomes a process and performs sequentially all the tasks crafted in the program.

A normal computer runs several processes continuously to manage operating system, and all hardware and applications installed on the
machine. This can range from simple background tasks like a spell-checker or system event handlers to a complex application like Microsoft
Word.

Processes vs. threads

According to a common misconception processes and threads are the same while, in fact, they are different execution sequences. Here is a list
of differences between a processes and a threads:

• A process is part of a running program, while a thread belongs to a given process.
• Threads are small when compared to processes.
• A process takes much longer to terminate.
• The creation of a process takes longer than the creation of a thread.
• Processes require more time for context switching.
• Unlike threads, which share memory, processes have their own memory space.
• Data is not shared across processes, but it is between threads.

Multiprocessing can also be confused with multitasking or time sharing, the management of programs and the system services they request as
tasks that can be interleaved, and with multithreading, the management of multiple execution paths through the computer or of multiple
users sharing the same copy of a program.

Edoardo Milotti - Bayesian Methods - Spring 2024 14

Illustration of multithreading with 4 threads

Edoardo Milotti - Bayesian Methods - Spring 2024 15

PRO's

Multiprocessing environments are widely adopted and offer a
many advantages such as increased speed, throughput and
reliability. Common benefits of multiprocessing include the
following:

• Reliability. If one processor fails in a multiprocessor system, the
other processors can pick up the slack and continue to function.
While the shutting down of one processor might cause a
gradual slowdown, the system can still function smoothly. This
makes multiprocessing systems highly reliable.

• Increased throughput. Throughput is the number of processes
executed at a given time. Given that multiprocessor systems use
many CPUs to handle data, increased performance is expected
when the system uses parallel processing. This means more
tasks can be accomplished in a shorter amount of time, as
they're divided among different processors.

• Cost saving. Multiprocessing systems are more economical
compared to multiple single processor systems. This is because
multiple processors within a single system share the same
memory, disk space, buses and peripherals.

CON's

While multiprocessing improves system performance and reliability,
it does come with the following challenges:

• Expensive. Systems with multiple processors may be expensive.
Having just one processor is less expensive than having two or
more.

• Deadlocks. In systems with multiple processors, a deadlock can
occur if one processor attempts to access an I/O device while
another processor is trying to use it.

• Extra memory requirements. Due to their improved computing
capability, multiprocessor computers are widely used. However,
they require more memory. In multiprocessing architectures,
memory is shared across all processes and each processor
needs memory space. All processors work together and have
direct access to the main memory, which causes an increase in
memory usage.

• Complex operating system. In multiprocessing OSs, each CPU
has its own operating system, which assigns each processor with
several minor tasks and the load is distributed among the
processors. However, the use of multiple processors makes it
more complex for the OSs to function.

Edoardo Milotti - Bayesian Methods - Spring 2024 16

