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The oxygen isotope ratio.

The oxygen isotope ratio is the primary method used to determine past temperatures from ice cores. Because isotopes have a different number of neutrons, they
have different mass numbers. Oxygen's most common isotope has a mass number of 16 and is written as 0. Most of the oxygen in water molecules is composed
of 8 protons and 8 neutrons in its nucleus, giving it a mass number (the number of protons and neutrons in an element or isotope) of 16. About one out of every
1,000 oxygen atoms contains 2 additional neutrons and is written as *20.

Depending on climate, the two types of oxygen (1*0 and 180) vary in water. Scientists compare the ratio of the heavy (180) and light (1°0) isotopes in ice cores,
sediments, or fossils to reconstruct past climates. They compare this ratio to a standard ratio of oxygen isotopes found in ocean water at a depth of 200 to 500
meters. The ratio of the heavy to light oxygen isotopes is influenced mainly by the processes involved in the water or hydrologic cycle.

Evaporation and condensation are the two processes that most influence the ratio of 180 to 1°0 in the oceans. Water molecules containing 1°0 evaporate slightly
more readily than water molecules containing 180. At the same time, water vapor molecules containing the 180 condense more readily.

a PRESENT CLIMATE (OBSERVED) (adapted from https://www.ces.fau.edu/nasa/module-3/how-is-temperature-measured/isotopes.php
e rer e and https://earthobservatory.nasa.gov/features/Paleoclimatology OxygenBalance)
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from Weart, Phys. Today 56, 30 (2003)

Figure 3. Cores drilled from the ice at Camp Century,
Greenland, and processed on the spot in 1964 (see photo),
revealed ancient climate changes in unprecedented detail.
The ratio of oxygen-18 to oxygen-16 isotopes in the an-
nual snow layers serves as a thermometer, as shown in the
plot: Part per thousand variations to the right indicate
warmer temperatures; those to the left, cooler ones. The
large rise in temperature started about 14 000 years ago at

the end of the last ice age. The plot also shows 1-2°C tem-
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perature leaps even within the one-century resolution of the data, but the authors of the 1971 report barely mentioned
them in passing. Their concern was the cycles lasting a few centuries or more, which were remarkable enough. Since
only a single site was sampled, none of the changes could confidently be called global, and the leaps could have been
artifacts due to flow of the deep ice layers. (Photo by David Atwood, courtesy of US Army-ERDC-Cold Regions Research

and Engineering Laboratory. Graph adapted from ref. 18.)
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Phanerozoic Climate Change
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Ice core data from lake Vostok in Antarctica

Radar satellite image of lake Vostok
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Lake Vostok is the largest of Antarctica's 675
known subglacial lakes.

Lake Vostok is located at the southern Pole of
Cold, beneath Russia's Vostok Station under
the surface of the central East Antarctic Ice
Sheet, which is at 3,488 m above mean sea
level.

The surface of this freshwater lake is
approximately 4,000 m under the surface of
the ice, which places it at approximately
500 m below sea level.

Measuring 250 km long by 50 km wide at its
widest point, it covers an area of 12,500 km?
making it the 16th largest lake by surface
area.

With an average depth of 432 m, it has an
estimated volume of 5,400 km?3, making it the

6th largest lake by volume.

The lake is divided into two deep basins by a
ridge. The liquid water depth over the ridge is
about 200 m, compared to roughly 400 m
deep in the northern basin and 800 m deep in
the southern.

(from Wikipedia, https://en.wikipedia.org/wiki/Lake Vostok )



https://en.wikipedia.org/wiki/Lake_Vostok
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Figure 2. The last 440,000 years of climate in central
East Antarctica, from the Vostok ice core. Today

is on the right, and 440,000 years ago on the left.
The lower curve shows the history of temperature
estimated from the isotopic composition of the ice.
The large, approximately 100,000-year cycle of ice
ages is evident. This basic pattern is also evident in
most climate records obtained from anywhere on
Earth. Also shown is the variation in local sunshine
in Antarctica over the best-dated and more recent
part of the record, calculated from knowledge of
orbital physics. Peaks in Antarctic sunshine are
spaced about 20,000 years apart, and occur when
northern sunshine was especially low, including the
Antarctic peak in sunshine about 20,000 years ago
when Antarctica was especially cold. The only ex-
planation of this behavior that “works” is that the
carbon-dioxide concentration of the atmosphere
followed northern sunshine, as shown by the upper
curve and that, in turn, carbon dioxide was more
important for southern temperature than was
southern sunshine.

from Alley, 2004



Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands
of years. The term was coined and named after the Serbian geophysicist and astronomer Milutin Milankovic¢.

In the 1920s, he hypothesized that variations in eccentricity, axial tilt, and precession combined to result in cyclical
variations in the intra-annual and latitudinal distribution of solar radiation at the Earth's surface, and that this orbital

forcing strongly influenced the Earth's climatic patterns.
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Past and future Milankovitch cycles via VSOP model

e Graphic shows variations in five orbital elements:
[l Axial tilt or obliquity (e).
- Eccentricity (e).
. Longitude of perihelion (sin(w)).
. Precession index (e sin(w))

e Precession index and obliquity control insolation at each latitude:
. Daily-average insolation at top of atmosphere on summer solstice (

—day
Q )at65°N
e Ocean sediment and Antarctic ice strata record ancient sea levels and
temperatures:
. Benthic forams (57 widespread locations)
[l Vostok ice core (Antarctica)

e Vertical gray line shows present (2000 CE)



Circular orbit, no eccentricity

Orbit with 0.5 eccentricity,
exaggerated for illustration; Earth's
orbit is only slightly eccentric



22.1-24.5° range of Earth's obliquity.




Axial precessional movement.



Planets orbiting the Sun follow
elliptical (oval) orbits that rotate
gradually over time (apsidal
precession). The eccentricity of this
ellipse, as well as the rate of
precession, are exaggerated for
visualization
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Spectrum Analysis—A Modern Perspective

STEVEN M. KAY, MEMBER, IEEg, AND STANLEY LAWRENCE MARPLE, JR., MEMBER, IEEE

Abstract—A summary of many of the new techniques developed in
the last two decades for spectrum analysis of discrete time series is
presented in this tutorial. An examination of the underlying time series
model assumed by each technique serves as the common basis for
understanding the differences among the various spectrum analysis
approaches. Techniques discussed inciude the classical periodogram,
classical Blackman-Tukey, autoregressive (maximum entropy), moving
average, autoregressive-moving average, maximum likelihood, Prony,
and Pisarenko methods. A summary table in the text provides a concise
overview for all methods, including key references and appropriate
equations for computation of each spectral estimate,

II. Review of Spectral Estimation Techniques
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Spectral Density Definitions and Basics

Traditional Methods (Periodogram, Blackman-Tukey)

Modeling and Parameter Identification Approach

Rational Transfer Function Modeling Methods

Autoregressive (AR) PSD Estimation

Moving Average (MA) PSD Estimation

Autoregressive Moving Average (ARMA) PSD
Estimation

Pisarenko Harmonic Decomposition (PHD)

Prony Energy Spectral Density Estimation

Prony Spectral Line Estimation

Maximum Likelihood Method (MLM)
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lllustration of various spectra for the same 64-point sample sequence. (from Kay and Marple, 1981)
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ARMA PSD via extended Yule-Walker squations Pisarenko Spectrat Line Decomposition

Moving Average PSD
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lllustration of various spectra for the same 64-point sample sequence. (from Kay and Marple, 1981)
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