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Our next important topic: Bayesian estimates often require complex numerical integrals.
How do we confront this problem?

enter the Monte Carlo methods!

1. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective

. Introduction to Markov chains and to Random Walks (RW)
. Detailed balance and Boltzmann's H-theorem

. The Gibbs sampler

. Simulated annealing and the Traveling Salesman Problem (TSP)
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. The Metropolis algorithm

10. More on Gibbs sampling

11. Image restoration and Markov Random Fields (MRF)

12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)
13. The efficiency of MCMC methods

14. Affine-invariant MCMC algorithms (emcee)
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10. More on Gibbs sampling

Recall the recipe for Gibbs sampling: we generate a "Gibbs sequence"” of random
variables

Yo, X, Y1, X1, Y3, X5, ..., Y, X,
where one initial value is specified and the others are computed with the rule

X~ f(x] Y] = y))
;+1 Nf(y X]’ = xj!)




Example: bivariate Gaussian distribution

* Bivariate Gaussian likelihood

]. ]. T —1
al61, 0) = exp |—= (y—) TV (y—8
P 161, 02) = 5 exp |~ (v = 0V v~ 0

-6

* Posterior pdf from Bayes theorem with improper priors, with a single datapoint (y;,),)

where the known covariance matrix is

p(elv 92’y17 y2) X p(yla yQ‘Hla 92)



Expanding, we find

p(01, 02]y1,y2) ~ exp {_2(1 i p?) (01 —y1)” = 2p(01 — y1) (02 — yo) + (02 — y2)°] }

Then, from the Gaussian structure of the posterior, we find the marginals

1

p(01|602,y1,y2) ~ exp —2(1 —?) (01 — (y1 + p(2 — yz))2

1
P(Balf1,y1.y2) ~ exp | =555 (B2 = (u2 + p(61 = y0))’




6

20 initial steps in a Gibbs sampler run:

* orange cross: starting pair
* green dot: position after 20 steps
* red cross: bivariate mean
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marginal distributions (second half of the simulation values in a run with 10000 generated pairs)

350 -
300 -

300 -
250 -

250 -
200 -

200 -
150 -

150 -
100 100 -
50 - 501
0 . 04

Edoardo Milotti - Bayesian Methods - Spring 2024




posterior distribution (second half of the simulation values in a run with 10000 generated pairs)
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SN Exercise:
Py e ercise
_ extend this treatment to more than one
—41 . . pair of measured y values and write a
computer program to implement it
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11. Image restoration and Markov Random Fields (MRF)
The optimization problem.

When dealing with signals, we usually assume that data are corrupted by noise

d=x -+ w
1 K

(vector) noise process
data vector  gjona| vector

An image can be viewed as a vector, for instance unfolding the sequence of pixels
as shown on the right, we obtain the equivalent of a long signal vector.

If there are 7 pixels on each side, there are in all n? pixels, and if there are L gray
levels, then the number of possible configurations that define an image is

N =L"
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dyq [ d1p |dis | dag
a1 | Oay | o3 [ das true
pixel map pixel vector
d3q [ds; [d33 [ daa
- - X
I I I I
[ [ [ [
posterior pixel o or bixel
distribution likelihood p.rlor_ plxg
/ l / distribution
P (d’X) Bayesian estimate of
P (X|d) — p (d) P (X) x P (d’X)P (d) true pixel vector from

observed pixel vector
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Given the number of possible configurations

2
N =L"
we see that even for small image sizes, say # = 100, with binary levels, L = 2, we find

N = 210"

therefore, the problem of finding the MAP estimate in a Bayesian context is a hard computational task.



The MAP estimate depends on the prior distribution

Possible priors:

. Maximum Likelihood Estimate
P(x) flat prior » (MLE]

P (x|d) x P (d|x)P (d) x P (d|x)

P(X) entropic prior » :V'I\;‘E‘Ii\;ln)um Entropy Method
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Notice also that

InP(x|d) =~ InP(d|x) — [—InP(d)]

therefore, the MAP estimate is equivalent to maximizing the likelihood with a penalty
function

—In P (d)

Experiments have been tried with many different penalties, many of them barely justified
on probabilistic grounds (or not at all!)



Now, let x be the vector of “true values” (uncorrupted intensities of an image, a spectrum, etc. ...), and

translate these values into counts

(=1, ..., M). The least informative prior corresponds to a structureless image, and pixelwise it is once again

the uniform prior. Then, the probability of one count at the i-th position is just 1/M.

Likewise, the probability of a given vector of values where the total number of counts is V, is given by the

multinomial probability

1 N
P = o i \ar ) Zk:”’“:N



Using Stirling’s approximation

nl=n"e™ Inn!=nlnn-n
. . -y d;
we find, with the definition pi = —3;
k=1 Ak

InPn)~ (NInN —N) =) (nglnng —ny)

= NInN — an In ny,
k
~ —Q 2,; di. In dj, + const. entropic prior
P(n) ~ exp (—oz Z dr, In dk> ~ exp (—o/ Zpk lnpk> = exp [’ S(d)]
k k
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Image likelihood: 1. the observation model

) PSF
v (Point Spread
G Function
true image
of a galaxy

+ Noise »

(example from Eric Thiebaut)

Edoardo Milotti - Bayesian Methods - Spring 2024

-

-

“dirty image”

16



Counts

104+

1000 -

100;

‘\_&-.

1 It L

4 6
Radius (Pixels)

PSF from atmospheric turbulence

In general, the effect of the PSF is
modeled by a linear operator

x — Hx

/)

"true” pixel the action of the optical

vector system on the "true
image" is modeled by the
matrix H
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Relative flux

The Hubble PSF before the first servicing mission
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Image likelihood: 2. the noise model (degradation model)

— Hd)?
Gaussian noise mode| P(x|d) o< exp |— (x )
202
sson no (Hd),"
Poisson noise model P (x|d) H N exp [— (Hd)n]

Poisson noise mostly from detection process, Gaussian noise mostly from electronics or from approximation of Poisson
noise. Sometimes we can use the Gaussian approximation of Poisson noise

on Hx d, — (Hx), 2
P (d|x) o H d)' exp [— Hexp[ (ISIx)j n) ] = exp [Z( 2(IE[X): )

n
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Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images

STUART GEMAN anp DONALD GEMAN

Abstract—We make an analogy between images and statistical me-
chanics systems. Pixel gray levels and the presence and orientation of
edges are viewed as states of atoms or molecules in a lattice-like phys-
ical system. The assignment of an energy function in the physical sys-
tem determines its Gibbs distribution. Because of the Gibbs distribu-
tion, Markov random field (MRF) equivalence, this assignment also
determines an MRF image model. The energy function is a more conve-
nient and natural mechanism for embodying picture attributes than are
the local characteristics of the MRF. For a range of degradation mecha-
nisms, including blurring, nonlinear deformations, and multiplicative or
additive noise, the posterior distribution is an MRF with a structure

akin to the image model. By the analogy, the posterior distribution de-
fines another (imaginary) physical system. Gradual temperature reduc-
tion in the physical system isolates low energy states (‘“‘annealing’), or
what is the same thing, the most probable states under the Gibbs dis-
tribution. The analogous operation under the posterior distribution
yields the maximum a posteriori (MAP) estimate of the image given the
degraded observations. The result is a highly parallel “relaxation’ algo-
rithm for MAP estimation. We establish convergence properties of the
algorithm and we experiment with some simple pictures, for which
good restorations are obtained at low signal-to-noise ratios.



The Ising model as an example of Markov Random Field

'.I.'“.II u '= |=' EEE -'“l' .-= = '.' The model describes a system of spins that point only in
--'-' - -=- EEEEEEEE --' =l= the +z or -z direction, so that their value can only be +1
N EEEE B SEEEEEEE = BN  EEN =N ’ y
N mN H EEN EEE N N EE H Em N
EEE NN & SN E BEN EEEE B NEE = BN
EEE ] u EEE n u . . . ) )
H BEEN N EEEmEEE . EEN N BN N The Hamiltonian includes only the interaction with the
s EE mEE mEE mEREE N E oEm ternal tic field and the interaction bet
g5 BN N EE 5 EEE - uEE external magnetic field an e interaction between
I.. I=I .=II | I= I.== =I.. =I ===.. neighboring spins
EEE H EE N H mEEEEEE N AN =
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H mE N HE E E mE N EEEN
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A EE n HE E B BN BN B BEEE N .o .
H N ENE W EEE BN B EEEENE NN EEEN (z,g) 7
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| | ization i
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The Bragg-Williams approximation

This is a simple mean—field approximation
(0i0j) = (0i){0;)

so that the Hamiltonian can be restated in terms of an effective magnetic field

—JZOZZOJ BZO‘ZN —Jz(o;)

(F)

Then, the partition function is

Z

configurations )

— [2 cosh (Beg /KT)]" = [2cosh (8Begt)]”
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Therefore, the magnetization can be obtained as follows

1 1 0
M = . BBettoi _ LT BBetto;
Nz 2. T v o, 2.
configurations configurations
0
= kT In Z = tanh (3Bes)

8Beﬂ'"
= tanh |6 (B + JzM)]

i.e., the magnetization is the solution of the nonlinear equation

M =tanh [ (B + JzM)|

with B field

n0 B field M = tanh (BzJ M)
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STATISTICAL PHYSICS

variant of his eponymous model

(Z.Phys 31, 253-258; 1925) is an unusual
paper in the history of early twentieth-
century physics. Its central result —
demonstrating that a linear chain of
two-state spins cannot undergo a phase
transition at finite temperature — is correct,
if somewhat trivial compared with other
physics breakthroughs published in the
1920s. But it is Ising's fateful extension
of his conclusions to two and three
dimensions that proved spectacularly
wrong and, paradoxically, earned him an
enduring association with the model that
now bears his name.

A possible reason for Ising’s unexpected
celebrity is that his erroneous conclusions
betray a superficial understanding of what
turned out to be some of the deepest and
far-reaching problems to be addressed in
twentieth-century physics. The Hamiltonian
of the model is simple to write down — it
describes a network of spins interacting
with each other through a coupling that only
applies if the spins are next to each other —
but the physics it displays is rich and non-
trivial: not only does it provide an intuitive
device for illustrating the essential features
of phase transitions and critical phenomena,
it neatly encapsulates the main traits of

90vyears of the Ising model

Ernst Ising’s analysis of the one-dimensional

© AIP EMILIO SEGRE VISUAL ARCHIVES

the many-body problem that has come to
dominate areas such as condensed-matter
physics. The broader class of spin models it
belongs to was used to uncover concepts such
as universality, renormalization, symmetry-
breaking and emergence. Ising can perhaps be
forgiven for not predicting all of that.
Famously, the two-dimensional version
for the model was solved analytically
by Lars Onsager in the early 1940s
(Phys. Rev. 65,117, 1944), a result that is
rightly considered a towering achievement
among many significant contributions made
over the years by the likes of Peierls, Bethe,
Yang, Kadanoff (see page 995) Fisher and
Wilson, just to name a handful. But the

three-dimensional lattice has never been
solved exactly, in spite of a multitude of
attempts and false dawns — including a
claim by John Maddox (who would later
become the editor of Nature) made at a
conference in Paris in 1952.

Although the 3D model is thought by
some to be analytically intractable (and
has also been claimed to belong to the
NP-complete category of computational
decision problems), progress has continued
and recent numerical techniques based
on conformal field theory have shed
further light on the structure of the
problem (J. Stat. Phys. 157, 869-914; 2014).
Nevertheless, the real value of the
Ising model and its many derivatives lies
precisely in the complexity they encapsulate.
These have found use in fields as disparate
as condensed-matter physics, physical
chemistry, neuroscience and, more broadly,
the study of so-called complex systems.

Ising studied a deceptively simple
model that, unknown to him at the time,
captures the essential physics of an
extremely wide category of problems.
He may have been wrong in his 1925
paper, but he tripped over a veritable
physics goldmine.

ANDREA TARONI
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Quench of an Ising system on a two-
dimensional square lattice (500 x 500)
with inverse temperature B = 10, starting
from a random configuration

(from https://en.wikipedia.org/wiki/lsing model)
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2. Bayesian paradigm. In real scenes, neighboring pixels typically have
similar intensities, boundaries are usually smooth and often straight, textures,
although sometimes random locally, define spatially homogeneous regions, and
objects, such as grass, tree trunks, branches and leaves, have preferred relations
and orientations. Our approach to picture processing is to articulate such reg-
ularities mathematically, and then to exploit them in a statistical framework to
make inferences. The regularities are rarely deterministic; instead, they describe
correlations and likelihoods. This leads us to the Bayesian formulation, in which
prior expectations are formally represented by a probability distribution. Thus
we design a distribution (a “prior”) on relevant scene attributes to capture the
tendencies and constraints that characterize the scenes of interest. Picture pro-
cessing is then guided by this prior distribution, which, if properly conceived,
enormously limits the plausible restorations and interpretations.

from Geman & Graffigne, Proc. Int. Congress of Mathematicians, Berkeley 1986



The Markov property of Markov Random Fields

The Ising model is an example of Markov Random Field (MRF). What do we mean by "Markov property" in this case?

This property corresponds to the locality of the spin interactions and the dependence of the probability of finding a certain
spin with a given value only on the state of the neighboring spins.

P( X, =x4|X, =xp,r€S,r#s) = P(X; =x4| X, =2, 7 € Gy)

fot f

graph node ats takes on thisvalue  jndex r belongs index r belongs

to index set S to the set of
neighbors of s

Edoardo Milotti - Bayesian Methods - Spring 2024 28



The "physical” likelihood determined by Markov Random Fields

With the assumption that the image structure behaves like the magnetization islands in an Ising spin system, we find that
the likelihood is given by the Maxwell-Boltzmann distribution with the given configuration energy

1
P(d|x) = 7 eXPp —6H,(z,d)]
noise Hamiltonian
Therefore, with a prior specified as
1
P (x) = ——exp[~fHo(z)
0

We find the posterior

P (x|d) = %exp BH(z.d)]  witn  H(x,d) = Hy(x,d) + Ho(x)



Choice of the noise energy An undirected graphical model representing a
Markov random field for image de-noising, in
which z; is a binary variable denoting the state
. .. . of pixel ¢ in the unknown noise-free image, and y;
The noise energy must contain information on the denotes the corresponding value of pixel i in the  ¥i
background but also on the image data. observed noisy image. ’ ,

It would be natural to start with something like M ;;
-

H = —JZQZi.CCj — Zyzxz
(4,9) z

where the y represent the image data and act like a sort of local magnetic field. However, this does not take into account the
natural fluctuations of the image data. Here we model these fluctuations with a quadratic term (which makes the final
model Gaussian), which leads to the following Hamiltonian

H = —JZ.CEiZEj — T; Z(yz — CCi)Q ~ —JZCCZ'CCJ' — % Zyzxz
(4,7) e (4,7) z
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Figure 8.30 lllustration of image de-noising using a Markov random field. The top row shows the original
binary image on the left and the corrupted image after randomly changing 10% of the pixels on the right. The
bottom row shows the restored images obtained using iterated conditional models (ICM) on the left and using
the graph-cut algorithm on the right. ICM produces an image where 96% of the pixels agree with the original
image, whereas the corresponding number for graph-cut is 99%.

Edoardo Milotti - Bayesian Methods - Spring 2024
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This method is not restricted to square lattices

oo 0 0 0 °
o—0 O 0 0 ¢
o—O0O—O—0—0—©
o—0 O 0 0
o—0 0 0 0
o0 0 0 0 °

(a) (b) (c)

FIGURE 1. Three typical graphs supporting MRF-based models for image
analysis: (a) rectangular lattice with first-order neighborhood system; (b)
non-regular planar graph associated to an image partition; (c) quad-tree. For
each graph, the grey nodes are the neighbors of the white one.



12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo

In our analysis of the Metropolis algorithm, we found that

T<cec»:mm{l,exp(_(E'—E)ﬂ

kT

Moreover, we found that the algorithm preserves detailed balance
P(C)T(C—C)=P(C)T(C’—C)

where P(C) is the stationary probability of configuration C. Indeed, at equilibrium we
found that, if E’ > E,

P(C)exp(—(E,_E)):P(C’)

kT
P(C') _ exp(—(E,_ E)] Boltzmann's

kT distribution



In summary

T(C—C')= min{l, exp(_ (£~ E)ﬂ

kT

This definition of the transition probability is the starting point for an important further step,
the Metropolis-Hastings algorithm.
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we define the transition probability — which includes a proposal function g —
P(x —y)=q(xy)ax,y)

and the target density T (X)

and we take the state X

<=
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Note that if the proposal function g is symmetrical, then the acceptance probability takes
on the simpler form

5
~~
<
~—
R
~~
=
~—

5
~~
<
~—

) X :
o(x,y)=min< 1, - —> min< 1,

9
—~~
e
~—
R
—~~
»
‘<
~—"
S|
~~
o
~—

and it depends on the target density only.



The M-H algorithm defines a Markov chain, and it is easy to show that detailed balance holds. The

transition probability is

P(xey>:q<x,y>a<x,y>=Q<X’y>mi“{1’n<x>q< "

w(x)P(x = y)=r(x)q(x.y)

=) n<y>p(yﬂ>:,z(y)q(y,x)”(")q(’;y):m)q(X,y)
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Detailed balance holds in both cases and
therefore n(x) is stationary
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The following figure shows a simulation with the MCMC algorithm and the distribution

p(z) = 0 exp (——

V2T

(a three-component mixture model)

5000

0000

5000

O_

x2>+ 0.3 (_(90—3)2> N 0.1
9 Sor P 2 057
~-10 -5 0 5 10

\V 4
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nrmax = 40000;

Xxr = Table[0, {nrmax}];
xr[[1]] = -4;

o I
While[nr < nrmax,
xtry = xr[[nr]] + RandomReal [NormalDistribution[0, 1]];
If[ pdf[xtry] /pdf[xr[[nr]]] > RandomReal[] , nr++; xr[[nr]] = xtry];

]

0.30f n=1000

0.25¢

0.25¢

0.20¢

0.20}
0.15¢
0.15

0.10¢
0.10f

0.05} K08k

0.00 0.00+
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MCMC simulation of a 2D three-component mixture model

(2 — prai)* + (Y — poy,i)?

pP\T,Yy) = eXp | —
(z,9) — \/27r0i2 [ 2‘7z'2

a; =0.5; pz1 =05 py1=0; o01=0.3;
ap =0.3; fplz2=1; py2=1; 02 =0.5;
3 — 02, Mz 3 = 2; Hy,3 = 01, 03 = 05,

20}

1.5

1.0+

0.5+

0.0+

-0.5}F

1 1 1 1 1
-0.5 0.0 0.5 1.0 1.5
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100000 steps

42
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100000 steps
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100 steps

2.0
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1.0
0.5

0.0
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1000 steps

2.0

1.5

1.0

0.5

0.0

-1.0
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4000 steps
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10000 steps
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Notice that when the peaks are very narrow, the random walker may have problems visiting all of the peaks

ar =0.5; prz1=0; py1=0; o1 =0.0725;
o =0.3; pzo2=1; pyo2=1; oo =0.125;
a3 — 0.2; Mz 3 = 2; Hy,3 — 0.1; O3 — 0125,

-,
pt

4
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With isolated, narrow peaks, increasing the number of steps may not suffice

10000 steps

3 .
100000 steps
2 L
1 L
0 L
- -1
2 3 -1 0

Edoardo Milotti - Bayesian Methods - Spring 2024

50



100000 steps, subdivided into 10 parallel chains with random starting points
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The starting points of the chains are uniformly

distributed in the plot region, however the "regions
of influence" of each peak vary considerably.

This leads to more chains being attracted into the o~
lower peaks, with the result that the distribution is

model)

original

Many techniques have been developed
to avoid these pitfalls
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Example of application of the MCMC technique in radiobiology

0.05~

0.02~

SURVIVING FRACTION

0.0l

0.005

0.002

0.00I
DOSE (R)

Survival curve for Hela cells in culture exposed to x-rays. (From Puck TT, Markus PI: Action of
x-rays on mammalian cells. J Exp Med 103:653-666, 1956)
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Phenomenology: the linear-quadratic law

CHO-K1
l -
; RBE = dosey.ay/dose gt |
[ for the same level of effect |
0.5 3BE50 = Hhi4
0.2}
'\
P— \
- i RBEy = 4.2 &, |
o .
%) ™
\
0.065¢
@
0.02 — Carbon 11MeV/u
\
RBE, = 3.4 .
00] R ! L - =)
\.:
0 2 4 6 g 10
Dose [Gy]

Fig. 1. Clonogenic survival curves illustrating the higher efficiency of the

carbon 1ons compared with X-rays [10] (courtesy of the author, dr. Wilma
K. Weyrather).
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Example: Target theory

Simple Poisson model:

Probability of hitting n times a given target, when the average number of good hits is a:

a” __
P(n) = e

Probability missing the target: P(O) —e ¢

Average number of hits: a= D/Dyg

S(D) = P(0, D) = e~ P/ Po

Edoardo Milotti - Bayesian Methods - Spring 2024
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Multitarget model, asymptotic behavior and threshold effect.

If there are multiple targets, say n targets, all of which must be hit to kill a cell, then the probability of missing
at least one of them —i.e., the survival probability —is

S(D)=1-(1- e_D/DO)"
then, for large dose

S(D) ~ ne~P/Po
i.e.,

InS(D) ~1Inn— D/Dy

which is a linear relation with intercept In n, and slope -1/D,.



D/Dy
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Notice that

d 2 2
_e—aD—BD _ (—Oé . 25D)6_QD_BD — — o
dD D=0 D=0
and that

d e_D/DO
o 1_ 1_ —D/DO mn — 1_ —D/DO n—1 —
dD [ (I—e ) }D:O " Dy (L—e ) D=0 ’

The derivatives differ in the origin, and the multitarget model fails to reproduce
the observed linear-quadratic law.



The RCR (Repairable-Conditionally Repairable Damage) model

In this case the surviving fraction is

S =exp(—aD)+bDexp(—cD)

This is a 3-parameter expression, which is not easy to fit to data when the data set is
small.
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1a. Simple Gaussian likelihood for the LQ model

(Sk B S(aaﬁ))z

20

L(Oé,ﬁ)=l:[e><p -

1b. Chose exponential priors for the parameters

1c. Complete posterior pdf

{Sk},l) = IZ[exp —(Sk _S(a"B)) exp(—0.1a )exp(—0.13)

p(o.B

20,

1d. Use MCMC to find the MAP estimate (and any moment of the pdf)
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2a. Simple Gaussian likelihood for the RCR model

2b. Chose exponential priors for the parameters

2c. Complete posterior pdf

0.2 —-02b 02
e e e e

{Sk},l): Hexp —

p(a,b,c

2d. Use MCMC to find the MAP estimate (and any moment of the pdf)



Path in (a,b,c) space




Fit showing individual components: unsatisfactory result
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Revise priors to include constraint on derivative

(priors vanish where derivative in the origin is positive)

S = exp(—aD)+bDexp(—cD) -
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