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Prior distributions
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The choice of prior distribution is an important aspect of Bayesian inference

• prior distributions are one of the main targets of frequentists: how much do posteriors differ when we 
choose different priors?

• there are two main “objective” methods for the choice of priors (MaxEnt and Jeffreys')

• here we discuss

1. The quest for "objective" priors

2. Review of the Cramer-Rao bound and related concepts

3. Information-theoretic concepts in statistics

4. Jeffreys' method

5. Reference priors

6. The Maximum Entropy Method



Random variable transformations and prior distributions

• In general, if the first pdf is uniform, the other one is not. This means that choosing a uniform 
distribution as the "least informative" distribution is not enough, unless we specify which variate should 
be uniformly distributed.

• How can we "objectively" choose a prior distribution???
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Review of the Cramer-Rao bound - proof of the Bartlett identities

• pdf normalization

•  derivation of normalization formula

•   further manipulation of the previous result

             First Bartlett identity



Review of the Cramer-Rao bound - proof of the Bartlett identities (ctd.)

• derivation of the first identity

• further manipulation of the previous result

             Second Bartlett identity

Edoardo Milotti - Bayesian Methods - Spring 2024 5



The Cramér-Rao bound and the Fisher information

• using both identities

• expectation value of ML estimator

• derivative of the previous expression
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The Cramér-Rao bound and the Fisher information (ctd.)

• we use Schwartz's inequality for covariance

• we apply the inequality to the previous result             and find

• rearranging terms, we obtain the Cramér-Rao bound
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Definition of Fisher Information. A very concentrated pdf is very informative. Therefore, 
the smaller the variance, the greater the "information". 

Thus, from the (unbiased, consistent) Cramér-Rao bound

one is led to the Fisher Information
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Information theoretic concepts in statistics

Claude Shannon

1916–2001

After graduating from Michigan and MIT, Shannon joined the AT&T Bell 

Telephone laboratories in 1941. 

His paper ‘A Mathematical Theory of Communication’ published in the Bell 

System Technical Journal in 1948 laid the foundations for modern 

information theory. This paper introduced the word ‘bit’, and his concept that 

information could be sent as a stream of 1s and 0s paved the way for the 
communications revolution. 

It is said that von Neumann recommended to Shannon that he use the term 

entropy, not only because of its similarity to the quantity used in physics, but 

also because “nobody knows what entropy really is, so in any discussion 
you will always have an advantage”.
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Information theoretic concepts in statistics

• The amount of information can be viewed as a "degree of surprise" on learning the value of a variable x. If we 
are told that a highly improbable event has just occurred, we will have received more information than if we 
were told that some very likely event has just occurred, and if we knew that the event was certain to happen 
we would receive no information.

• Thus, information carried by an event (symbol) must be a function of its probability

• If two events (symbols) are independent the total information is the sum of the information carried by each 
of them, therefore 

• logarithms have this property, therefore we take 

• more specifically, we choose



Information theoretic concepts in statistics – 2

• definition of the Shannon entropy: average information carried by the events (symbols)

Example: 

• just two symbols, 0 and 1, same probability  

there are 2 equal 
terms average information 

conveyed by each symbol

the result is given in pseudounit 
“bits” (for natural logarithms this is 
“nats”)
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Information theoretic concepts in statistics – 2

• just two symbols, 0 and 1, probabilities ¼ and ¾ , respectively

• 8 symbols, equal probabilities

• 8 symbols, with probabilities ½, ¼, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64 
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• consider a system where states n are occupied by Nn identical particles  
(n, n=1, ... , M).

• the number of ways to fill these states is given by 

• then Boltzmann’s entropy is 
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Information theoretic concepts in statistics – entropy in statistical mechanics



Information theoretic concepts in statistics – additivity of entropy

If symbols are emitted simultaneously and independently by two sources, the joint probability distribution is

and therefore, the joint entropy is  
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Information theoretic concepts in statistics – the uniform distribution has maximal entropy 

This is an easy result that follows using one Lagrange multiplier to keep probability normalization into account

all probabilities have the same 
value
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Information theoretic concepts in statistics  – differential entropy

The Shannon entropy cannot be extended to continuous distribution in a straightforward way. Consider a discretized 
version of the probability distribution: 

differential entropy
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Information theoretic concepts in statistics  – relative entropy

Considering two sets of symbols (same number of symbols), we can consider the relative information carried by each 
symbol in one set with respect to the corresponding one in the other set

Then, the average difference of the information carried by the pk’s with respect to the reference set (the relative entropy) 
is 

This extends without problems to continuous distributions
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Information theoretic concepts in statistics  – the Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is a simple redefinition of the relative entropy

• Natural logs instead of logs base 2

• Change of sign

• NOT symmetrical with respect to the p,g exchange

• Has several interesting properties
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Information theoretic concepts in statistics  – Jensen's inequality

Consider a convex function, then 

which can be written as 

Now, we conjecture the extension

and prove the inequality by induction. 

A convex function f(x) is one for which 
every chord (shown in blue) lies on or 
above the function (shown in red)
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Information theoretic concepts in statistics  – Jensen's inequality – 2

If

then isolate the (n+1)-th parameter

and rearrange the l.h.s. of the inequality
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Information theoretic concepts in statistics  – the Kullback-Leibler divergence - 2

Jensen’s inequality can be restated in a simple way if the t’s are mapped into probabilities

Equivalently 

Now we can apply the inequality to the KL divergence (the -log function is convex) and find 
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Information theoretic concepts in statistics  – The KL divergence is a quasi-metric (however a 
local version of the KL divergence is the Fisher information, which is a true metric)

The KL divergence can be used to measure the “distance” between two distributions. 

Example: the KL divergence

for the distributions  
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Now consider a family of parametric distributions and evaluate the KL divergence between 
two close elements of the family

Since

we find, using the first Bartlett identity,

i.e., locally the KL divergence is just the Fisher information
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Information theoretic concepts in statistics  –  The KL divergence can be transformed into a 
true distance between pdf's

• Jeffreys' distance

• Jensen-Shannon distance



Edoardo Milotti - Bayesian Methods - Spring 2024 25

Information theoretic concepts in statistics  –  Using the KL divergence

Suppose that data is being generated from an unknown distribution p(x) that we wish to model. We can try to 
approximate this distribution using some parametric distribution q(x|θ), governed by a set of adjustable parameters θ, for 
example, a multivariate Gaussian. 

One way to determine θ is to minimize the Kullback-Leibler divergence between p(x) and q(x|θ) with respect to θ. We 
cannot do this directly because we don’t know p(x). Suppose, however, that we have observed a finite set of training 
points xn, for n = 1, . . . , N, drawn from p(x) (an empirical distribution). Then the expectation with respect to p(x) can be 
approximated by a finite sum over these points

From this equation we see that we can obtain an approximate distribution by minimizing the KL divergence, i.e., by 
maximizing the likelihood.

parameter-
independent termlikelihood
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Information theoretic concepts in statistics  – Mutual information

We can use the KL divergence to measure the degree of statistical dependence between pairs of variates, by measuring 
the distance between p(x,y) and p(x)p(y)

This quantity is called the mutual information. 

We also find, 

conditional 
entropy

we can view the mutual information as the reduction in the uncertainty 
about x by virtue of being told the value of y (or vice versa).

differential 
entropy
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Jeffreys' priors



Jeffreys' priors – the KL divergence is invariant with respect to generic random variable 
transformations. 

From the definition of KL divergence, and from the transformation formula for pdf's we find

In this case, our random variables are the parameter estimates, therefore the KL divergence is invariant with 
respect to parameter (random variable transformations), therefore the associated Fisher Information from 
the local expansion of the KL divergence is also invariant with respect to parameter transformations. 
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From the equation that relates KL divergence and Fisher Information, we find a corresponding pdf as follows. 
Equation 

means that the KL divergence depends quadratically on small changes of the expansion parameter and that 
the KL divergence remains constant if the term on the r.h.s. remains constant. 

Dimensionally, the Fisher information is quadratic with respect to a pdf, therefore we take its square root to 
define a pdf, i.e.,

This must be normalized to obtain a pdf that is invariant with respect to parameter transformations.
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Example: a simple Gaussian Likelihood for n datapoints, with known variance

This points to a uniform prior for µ. In general, this uniform prior is an improper prior.

fixed sigma
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Example: a simple Gaussian Likelihood for n datapoints, with known mean

This power-law pdf is another improper prior.
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fixed mu



Example: Poisson distribution

This power-law pdf is yet another improper prior.
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Example: binomial distribution
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Harold Jeffreys 
(1891-1989)
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A lesson learned from Jeffreys’ priors

Jeffreys priors are tuned to the Likelihood, but doesn't this sound strange? 
Shouldn't the prior distribution be related to the prior information alone? 

Well ... no, the Likelihood is also constructed using 
prior information (obviously!). So, in this approach the Likelihood and the 

priors are both determined using the available prior information. 

Additional comments on Jeffreys’ priors

• In general, they are NOT conjugate priors, but are limits of conjugate 
priors

• They work well for single parameter models, but NOT for multivariate 
models
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