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Prior distributions

The choice of prior distribution is an important aspect of Bayesian inference

e prior distributions are one of the main targets of frequentists: how much do posteriors differ when we
choose different priors?

* there are two main “objective” methods for the choice of priors (MaxEnt and Jeffreys')

* here we discuss

The quest for "objective" priors

Review of the Cramer-Rao bound and related concepts
Information-theoretic concepts in statistics

Jeffreys' method

Reference priors

o n ke

The Maximum Entropy Method
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Reference priors

In this case we need to consider a sufficient statistic t

Recall that a statistic t is sufficient with respect to a statistical model and its associated
unknown parameter if "no other statistic that can be calculated from the same sample
provides any additional information as to the value of the parameter" (Fisher, 1920)

Given the data D, a statistic t = T(D) is sufficient with respect to the parameter if it contains all the
information needed to estimate the parameter.

Examples:
 the sample mean is sufficient for the mean of a normal distribution with known variance. Once the
sample mean is known, no further information about the mean can be obtained from the sample itself.

* foran arbitrary distribution the median is not sufficient for the mean: even if the median of the sample
is known, knowing the sample itself would provide further information about the population mean.
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The idea behind a reference prior is that it must be such that data affect our posterior distribution the
most.

We can formalize this by means of the KL divergence by requiring that the KL divergence between prior and posterior be

maximal.
To proceed, we utilize a posterior that depends on a sufficient statistic instead of the original data

_ p(O]t)
Dicw p@1)1p0)] = [ p(01t) 275 o

then, its expection value over the statistic is

p(0)

_ - pOI)p(t)
_ /T f@ p(Ol)p(t) n P70 b d

- freeinas 4
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A reference prior is a pdf that maximizes the mutual information

do dt

p(0,1t)
o Jo PO

and therefore maximizes the effect of data on the posterior distribution.

* For one-dimensional parameters, reference priors and Jeffrey’s priors are equivalent, while they differ in the
multivariate case.

* Since the result is based on the KL divergence, which is transformation-invariant, reference priors are transformation-
invariants as well, just as the Jeffrey’s priors (and this justifies their equivalence, at least for the univariate case).

* For more information, see, e.g., J. Bernardo, Reference Analysis, Handbook of Statistics, 25 (2005) 17
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https://www.uv.es/~bernardo/RefAna.pdf

The principle of Maximum Entropy (MaxEnt)

PHYSICAL REVIEW VOLUME

106,

NUMBER 4 MAY 15, 1957

Information Theory and Statistical Mechanics

E. T. JAYNES
Department of Physics, Stanford University, Stanford, California

(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal @ prior: probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.
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The principle of Maximum Entropy (MaxEnt) — the “Kangaroo problem” (Jaynes)

* Basic information: one third of all kangaroos has blue eyes, and one third is left-handed.
e Question: which fraction of kangaroos has both blue eyes and is left-handed?

* Constraints: the normalization condition must be fulfilled matrixwise + the constraints expressed by the basic
information, row by row and column by column.

left | ~left left | ~left left | ~left
blue 1/9 2/9 blue 0 1/3 blue 1/3 0
~blue | 2/9 4/9 ~blue | 1/3 1/3 ~blue 0 2/3

statistical independence

maximum negative correlation

maximum positive correlation
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The principle of Maximum Entropy (MaxEnt) — the “Kangaroo problem” (Jaynes) (ctd.)
probabilities

Pot Pui Pui Pil

entropy (proportional to Shannon’s entropy)

1 1 1 1
H = py; In Py In — + pyrln — + pyrln —
Dbl Dy Dyl Dy

constraints

Pol + Dy 0y 05 = 1
L T /3 Underdetermined system
Dbl Py = 1 of linear equations
pot +pp = 1/3
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The principle of Maximum Entropy (MaxEnt) — the “Kangaroo problem” (Jaynes) (ctd.)

Maximization of constrained entropy

1 1 1 1
He = (Pbl In — 4 pg; In — 4 py7ln — + pgrln —)

Pbi Pui Pyl Pl
+ M (Por + Py + Por + P5r — 1) + A2 (o1 + por — 1/3) + A3 (ot +pgr — 1/3)

%Zf =—Inpy —14+A1+A+2A3=0

%Z?z—lnpbl—l—l—)\l—l—)\gzﬂ pyi = exp(—1 4+ A1 + A2 + A3)
OHO _ 4 a4 a =0 » Pe = exp(—=1+ A1+ A3)

Opy; Py = exp(—1+ A1+ A2)

H  — exp(—
o C =—Inpy—1+XA =0 Pei = exp(—1+ A1)
Opsr
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The principle of Maximum Entropy (MaxEnt) — the “Kangaroo problem” (Jaynes) (ctd.)

Solution of the nonlinear system of equations

(

P = g7 €xp(A2 + A3)
{ Py = pir exp(As3) = PvlPyi = PoiPei

Pyi = D7 €xp(A2)

( (
Poi + Dy + Py + 05 =1 Dot = Ppi = % — Dol
1 1
Dbl T Dpp = 3 Ppr = 3 T Dbl
oo L g
Dol t Py = 3 (5 - bc) = Dbl + 3Py
| PoiPs = DyiPel | 5~ 5Put+Dph =Pt 3p3

1 2 4 this solution coincides with the least
Dbl — —, Ppi = Ppl = = Pl — < informative distribution given the constraints
9 9 9 (statistically independent variables)
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The principle of Maximum Entropy (MaxEnt)

What do we learn about Statistical Mechanics using the MaxEnt method?
H=-K) pnp;, with Y p;=1 and (f(z))=) f(z:)p;
Q=H+ K= A+1)> pi—Kp)_ f(z:)p;

Q)
Op;

= —(lnp; + 1)+ (=A+1) — pf(z;) =0

pi = exp(—A — pf(x;))

Zpi — e " Ze_“f(wi) =1 then, letting Z(u) = Ze_“f(””i) A=InZ(u)

() = —% In Z(12)
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Example of MaxEnt in action:
unconstrained problem in image restoration

J. Skilling, Nature 309 (1984) 748
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Car movement introduces linear correlations among pixels. The model of linear corrections does not allow direct inversion to find the
corrected image because the number of variables is larger than the number of equations. The MaxEnt methods regularizes the problem and
finds a reasonable solution.

J. Skilling, Nature 309 (1984) 748
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The principle of Maximum Entropy (MaxEnt) — Objective priors

H = Zpk 111 — = — Zpk In py Shannon's entropy (in nats)

entropy maximization when all information is missing, and normalization is the only
constraint:

0
1S il MY pe—1])] =-q )+ A=0
s kpk npr + kpk (Inpy, +1) +

= p=eh = Y =Y T =NrMl=1 = p=1/N
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entropy maximization when the mean p is known

Bpe [ Y prlnpg + Ao (Zpk —1) + A1 (Zﬂ?kpk - )] = —(lnp,+1) + Ao+ Mz, =0

:>_ p£ — 8}\0+)\.1$f—1

\ incomplete solution...

We must satisfy two constraints now ...
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8A0+)\1$k—1

Pk

E rpk — § r AD+A1$;¢—1 — e/\ﬂ—l E :6/\1:13;3 — 1
k
E :33&:1019 _ § :$k€AD+A1$k_ — eMo—1 § $ e Tk — m
k

8)\0—1 Zk e}«liﬂk — in general, this
system does not have
= an analytical solution,

ero—1 Zk :I}ke}‘l:r’k — only numerical

Edoardo Milotti - Bayesian Methods - Spring 2025

16



Example : the biased die

(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy Formalism;
Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

1 21
c(1+2+3+4+5+6)="—"=35

mean value for a biased die

3.5(1 + ¢)

Problem: for a given mean value of the biased die, what is the probability distribution of
each value?

The mean value is insufficient information, and we use the maximum entropy method to
find the most likely distribution (the least informative one).

Edoardo Milotti - Bayesian Methods - Spring 2025 17



entropy maximization with the biased die:

8%'5 [ Zpklnpk-l-)\o (Zpk —1) + A1 (kak — ;(14—5))

k=1 k=1

= —(npe+1)+Xo+ Mk =0

o pp = lothk-l

Ao—1 6 Mk _
e Yo e =1
= we still have to satisfy the constraints ...

et 150 g etk = =1(1+¢)

... we have to resort to numerical methods
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numerical solution

media:

=

P2

P3-

Pa*-

Ps*

Ps*

3.0=

0.246782+

0.20724 =

0.174034:

0.146148:

0.122731+

0.103065 =

3.1=

0.22929 =

0.1995821

0.173723:

0.151214:

0.131622:

0.114568 =

3.2=

0.212566+¢

0.1916591

0.172808:

0.155811+

0.140487:

0.126669 =

3.3=

0.196574+

0.183509+

0.171313:

0.159928:

0.149299:

0.139377 =

3.4~

0.181282+

0.175168+

0.16926 =

0.163551

0.158035+

0.152704 =

3.5

0.166667 -

0.166667 1

0.166667:

0.166667 -

0.166666:

0.166666 =

3.6

0.152704:

0.158035+

0.163551:

0.16926 =

0.175168:

0.181282 =

3.7

0.139377+¢

0.149299+

0.159928

0.171313+

0.183509+

0.196574 =

3.8

0.126669 +

0.140487:

0.155811+4

0.172808 5

0.191659+

0.212566 =

3.9=

0.114568+

0.1316221

0.151214:

0.173723+

0.199582:

0.22929 =

4.0

0.103065+

0.1227311

0.146148:

0.174034+

0.20724 =

0.246782 1

with a biased die we obtain skewed distributions.

These are examples of UNINFORMATIVE PRIORS
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0.30
0.25}
0.20}
0.15}
0.10}
0.05}
0.00t:

Example: mean =4
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Entropy with continuous probability distributions
(we use the relative entropy, i.e., the Kullback-Leibler divergence instead of entropy)

Entropy maximization with additional conditions (partial knowledge of moments of the prior distribution)

b
(zF) = / rFp(x)dx
(1)
function (functional) that must be maximized

b

. __b p(@) ky _ ——ba:na:
Qlp;m] = [Lp(m)]nm(m)d$+;kk((m) M) = fap( )Ind —|—¥Ak (/a

¥ p(x)dx — Mk)

equivalent to the minimization of

~Q[p;m] = Dx(p||m) — ZAk ( / (z)dz — Mk)

This means that here we minimize the KL divergence with respect to the reference pdf m(x) subject to the
constraint(s).
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variation

b
=—/5p1

p(z) k _
(@) -1 ;)\km | dr =0
1 — Z /\kﬂjk 0

(z) |
» hl?']:?,(;c) |

# p(z) =
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p(x) = m(x) exp Z Apz® — 1
k

p(X) is determined by the choice of m(X) and by the constraints, in this case the moments
of the distribution.

The Lagrange multipliers are determined by the equations

b b
M;, = / r¥p(x)dr = / ¥m(z) exp Z Azt — 1| do
a a k
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1. no moment is known, normalization is the only constraint, and p(x) is defined on the
interval (a,b)

Mo = /ﬂ b p(z)dz = / b m(z) exp (Ao — 1) da

we take a reference distribution which is uniform on (a,b), i.e.,

b b
M, = / p(x)dx = / m(z)exp(Ao — 1)dz =exp(Ap—1) =1

1
b—a

= X =1 p(z)=m(z)exp(r —1) =
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2. first two moments are known, and p(X) is defined on (a,b), so that

1 b
MO:b / EXp(AQ—l—)\lﬂj—l)dﬂ?:l
1 b
Ml:b f mexp()\o—l—)\lm—l)dm:u
—_— a a
from which we obtain
Ao—1
€
Ma = A1b _ JA1a) 1
0 (b — a))\l (8 ¢ )
M, = e [()\ b — 1)6}‘15 — (A1a — 1)6}‘1“] =
1= (b — a))\% 1 1 = U

In general, this system can only be solved numerically
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special case:

=<
|

e/\[)—l

ML

Ao—1

AL

Ao—1

(8}‘11’/2 — e)‘lL/z) S sinh(A\L/2) =1

- M L/2
[(AlL/Q —1)eML/2 4 (N L/2 + 1)6—*145/2}

[A1Lcosh(A1L/2) — 2sinh(AL/2)] =0
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Ao—1

e
My = inh(AL/2) =1
0= 3L SrhnL/2)
oAo—1
M, = V57 (A1 L cosh(A1L/2) — 2sinh(AL/2)] =0
1

AL
tanh(\{ L/2) = 17 = M=0 = evl=1 =)=1

p(x) = m(x)exp (; Az — 1) = i
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another special case: a = 0;

¢ b
1
Mozb / exp (Ag + A1z —1)dz =1
—a
4 “b
1
Mlzb f zexp (Ao + Az —1)dxr = p
\ —a j,
MO = 1 = moe}‘o_l 1 = 1
(—A1)
‘ 1
M = p = mper~! (p) =
\ 1

» p(x) = m(z) exp (Z Az — 1) = mge™° ! exp(A1x)
k

b—>o00; Mi=upu#0

S

= moe)‘o -1
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mO/ exp (Ag + Az — 1)dz = mge° 1
0

(improper uniform distribution)

1 I
(—A1)

> 1
mc./ a:exp()\g—l—)\laz—1)d$=moe}‘°_1—2 = U
\ 0

Al

exponential

distribution

1 1 T
—1A1) exp(Aix) = —exp (—)
(—1)\1)( Jexp(hiz) p p

27
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3. both mean and variance are known, and the interval is the whole real axis

Mg=m0/ exp (Ao + A1z —1)dzx =1

0

M1=m0/ zexp (Ao + Az —1)dz = p
0

M, = mU/ z?exp (Ao + Mz — 1) dz = (z?)
0

starting from these expressions, show that in this case

" 1 A2 1
' 202" 77 2527 0 exp( 0 Ao 202

p(z) = \/2;78@ (—M)

i.e., the entropic prior is a Gaussian pdf
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SoftwareX 10 (2019) 100353

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication
pyMaxEnt : A Python software for maximum entropy moment

reconstruction

* . .
Tony Saad ' *, Giovanna Ruai
Department of Chemical Engineering, University of Utah Salt Lake City, UT 84102, United States of America

Check for
updates

ARTICLE INFO ABSTRACT
Article history: pPyMaxEnt iS a software that implements the principle of maximum entropy to reconstruct functional
Received 16 July 2019 distributions given a finite number of known moments. The software supports both continuous and

Received in revised form 21 October 2019

discrete reconstructions, and is very easy to use through a single function call. In this article, we set out
Accepted 21 October 2019

to verify and validate the software against several tests ranging from the reconstruction of discrete

Keywords: probability distributions for biased dice all the way to multimodal Gaussian and beta distributions.
Maximum entropy reconstruction Written in Python, pyMaxEnt provides a robust and easy-to-use implementation for the community.
Inverse moment problem © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
Particle size distribution (http://creativecommons.org/licenses/by/4.0/).

https://www.sciencedirect.com/science/article/pii/S2352711019302456
https://github.com/saadgroup/PyMaxEnt
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A short overview of model selection methods

The generic purpose of a model selection statistic is to set up a tension between the predictiveness of a
model (for instance indicated by the number of free parameters) and its ability to fit observational data.
Oversimplistic models offering a poor fit should of course be thrown out, but so should more complex

models that offer poor predictive power.

There are two main types of model selection statistic that have been used in the literature so far.
Information criteria look at the best-fitting parameter values and attach a penalty for the number of
parameters, they are essentially a technical formulation of "chi-squared per degrees of freedom"
arguments. By contrast, the Bayesian evidence applies the same type of likelihood analysis familiar from
parameter estimation, but at the level of models rather than parameters. It depends on goodness of fit

across the entire model parameter space.

(Liddle & al., 2006 — Astronomy & Geophysics, Volume 47, Issue 4, pp. 4.30-4.33)
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Mon. Not. R. Astron. Soc. 377, L74-L78 (2007) doi:10.1111/.1745.3933.00306.x

Information criteria for astrophysical model selection

Andrew R. Liddle!-?*

L Astronomy Centre, University of Sussex, Brighton BN1 9QH
2 Institute for Astronomy, University of Hawai ‘i, 2680 Woodlawn Drive, Honolulu, Hawai’i 96822, USA

Accepted 2007 February 19. Received 2007 February 16; in original form 2007 January 8

ABSTRACT

Model selection is the problem of distinguishing competing models, perhaps featuring differ-
ent numbers of parameters. The statistics literature contains two distinct sets of tools, those
based on information theory such as the Akaike Information Criterion (AIC), and those on
Bayesian inference such as the Bayesian evidence and Bayesian Information Criterion (BIC).
The Deviance Information Criterion combines ideas from both heritages; it is readily com-
puted from Monte Carlo posterior samples and, unlike the AIC and BIC, allows for parameter
degeneracy. I describe the properties of the information criteria, and as an example compute
them from Wilkinson Microwave Anisotropy Probe 3-yr data for several cosmological models.
I find that at present the information theory and Bayesian approaches give significantly different
conclusions from that data.



Interlude: the Likelihood Ratio Method and Wilks' theorem — 1

* Taylor expansion close to the true value of the parameter(s)

821n L(D|6)

ol L(D))  8lL(D|6) N

o6 - 062

] (6 — 6o)

6=0o

] (6 — 90)2}
0=00

e Extension to more than one parameter (with parameters split into two subsets)

6=60o

* Integration

1 9%In L(D|0
L(D|6) ocexp{—2E [ 89(2 9)

L(DI6) = L(DIB,,0.) o exp | -5 (6~ 60)7 (6~ 60)

Irr : ]’I“S
where Fisher's information matrix is split into submatrices I=1--- e

I, : I



Interlude: the Likelihood Ratio Method and Wilks' theorem — 1

e Then, 6 = (gr> and therefore

S

L(D|9'm 95) X €xp _;(97‘ - BU,T)TIT‘T(BT' — 90,7‘)

1
_(9?" — GO,T)TIT'S (93 — 90,5) — 5(98 — BO,S)TISS (93 — 90,5)

* When we maximize the likelihood with respect to the whole parameter vector, we find that the estimators for the
subvectors are

and the corresponding maximum likelihood has a fixed value that depends only on data.



Interlude: the Likelihood Ratio Method and Wilks' theorem — 1

*  When we maximize the likelihood with respect to the S parameters only, we find

L(D|9'r: és) X exXp _;(9?" - GU,T)TI‘I‘?"(GT‘ — 90,?) - (9?’ — BO,T)TITS(QS — 90,5)

1
X €Xp _5(97' — 90,7’ — bD)TIr?’(Gr — 90,7’ — bD)

* This means that the statistic

A= —2L(D|6,,8,)
~ (97’ - 90,7‘ - bD)TI’T‘T’(BT’ — 90,'!‘ - bD)
~ (97’ - QO,T)TI‘I‘T’(GT‘ — 90,7’)

(where the bias vanishes asymptotically) has a chi-square distribution with r degrees of freedom for large N (Wilks'
theorem).
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