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Akaike Information Criterion (AIC). 

This was derived by Hirotugu Akaike in 1974, and takes the form 

where k is the number of parameters in the model. The subscript “max” indicates that one should find the parameter 

values yielding the highest possible likelihood within the model. This second term acts as a kind of “Occam factor”; 

initially, as parameters are added, the fit to data improves rapidly until a reasonable fit is achieved, but further 

parameters then add little and the penalty term 2k takes over. The generic shape of the AIC as a function of number of 

parameters is a rapid fall, a minimum, and then a rise. The preferred model sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an approximate minimization of the 

Kullback–Leibler information entropy which measures the distance between two probability distributions.

(Liddle & al., 2006)

A short overview of model selection methods – ctd.
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Outline of Akaike's derivation

1. max log-likelihood ratio between conjectured model (k-dimensional parameter vector) and true model (l-dimensional parameter vector)

2. this depends on the dataset, which is distributed according to the true model; to get rid of the fluctuations, we average the max log-likelihood 
ratio over the true distribution

3. here we remark that: 
• this is purely theoretical, since we do not know the true pdf
• the r.h.s. expression is the negative of the Kullback-Leibler divergence between the conjectured and the true pdf
• the l.h.s. is maximum when the KL divergence is at a minimum 
• the r.h.s. expression can be written as
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Outline of Akaike's derivation

4. the second term in the expansion is unknown, but it is a constant and we can get rid of it, and change sign as well (with an additional factor 2, 
see later), so that by minimizing the first term we actually minimize the KL divergence

5. going back to Wilks' theorem, we know that the remaining |l-k| degrees of freedom in the likelihood ratio are (asymptotically) normally 
distributed, therefore the -2log has a chi-square distribution with |l-k| degrees of freedom, with mean value |l-k|, and therefore the required 
mean value has an asymptotic bias 2|l-k|; 

6. using the max likelihood as an estimator of the mean, we find that the discrepancy expressed by the equation above can be written as 

after dropping the constant l 
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Bayesian Information Criterion (BIC). 

This was derived by Gideon Schwarz in 1978 and strongly resembles the AIC. It is given by 

where N is the number of datapoints. Since a typical dataset will have ln N > 2, the BIC imposes a stricter penalty against 

extra parameters than the AIC. 

It was derived as an approximation to the Bayesian evidence, to be discussed next, but the assumptions required are very 

restrictive and unlikely to hold in practice, rendering the approximation quite crude.

(Liddle & al., 2006)
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible given some data, without 
necessarily considering preferred values of model parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing models using Bayes' theorem: 

and select the best model using the odds ratio

or the Bayes factor, if we assume equal prior probabilities for the different models: 
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Thus, we see that the Bayes factor is a ratio of evidences

As usual, each evidence is obtained by marginalizing the likelihood with respect to the (potentially different) 
parameters:
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The evidence of a model is … the average likelihood of the model in the prior. 

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model but asks “of all the parameter 

values you thought were viable before the data came along, how well on average did they fit the data?”. Literally, it is the 

likelihood of the model given the data. 

The evidence rewards predictability of models, provided they give a good fit to the data, and hence gives an axiomatic 

realization of Occam's razor. 

A model with little parameter freedom is likely to fit data over much of its parameter space, whereas a model that could 

match pretty much any data that might have cropped up will give a better fit to the actual data but only in a small region 

of its larger parameter space, pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using – wherever possible – the Bayesian evidence, which is a full implementation 

of Bayesian inference and can be directly interpreted in terms of model probabilities. It is computationally challenging to 

compute, being a highly peaked multidimensional integral, but recent algorithm development has made it feasible in 

cosmological contexts. 

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is much simpler to compute as 

one need only find the point of maximum likelihood for each model. However, interpreting it can be difficult. Its main 

usefulness is as an approximation to the evidence, but this holds only for gaussian likelihoods and provided the 

datapoints are independent and identically distributed. The latter condition holds poorly for the current global 

cosmological dataset, though it can potentially be improved by binning of the data, hence decreasing the N in the penalty 

term.

The AIC has been widely used outside astrophysics but is of debatable utility. It has been shown to be “dimensionally 

inconsistent”, meaning that it is not guaranteed to give the right result even in the limit of infinite unbiased data. It may 

be useful for checking the robustness of conclusions drawn using the BIC. The evidence and BIC are dimensionally 

consistent.

(Liddle & al., 2006)



Our next important topic: Bayesian estimates often require complex numerical 
integrals. How do we confront this problem? 

          enter the Monte Carlo methods!

1. acceptance-rejection sampling

2. importance sampling

3. statistical bootstrap

4. Bayesian methods in a sampling-resampling perspective

5. Introduction to Markov chains and to Random Walks (RW)

6. Detailed balance and Boltzmann's H-theorem

7. The Gibbs sampler

8. More on Gibbs sampling

9. Simulated annealing and the Traveling Salesman Problem (TSP)

10. The Metropolis algorithm

11. Image restoration and Markov Random Fields (MRF) 

12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)

13. The efficiency of MCMC methods

14. Affine-invariant MCMC algorithms (emcee)
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1. The acceptance rejection method
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Example: generation of beta-distributed random numbers

normalized distribution           unnormalized distribution   modal value

12
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Example: random numbers with semi-Gaussian distribution from exponentially distributed random 
numbers.

… determine c accordingly
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Short summary: 

1. we create a data set by randomly sampling from the exponential distribution

2. we use the acceptance-rejection algorithm to resample the data set with the target 
distribution (the half-Gaussian)

This is a sampling – resampling technique (see later ... )

21



Notice that in this method we generate pairs of real numbers that are uniformly distributed 
between f(x) and the x-axis, therefore we can use these pairs to estimate the total area 
under the curve

(here the reference area is the area of the enclosing rectangle which corresponds to a uniform distribution)  

area =
# of accepted pairs

# of pairs
reference area

Edoardo Milotti - Bayesian Methods - Spring 2025 22



In general, if                , where p is a pdf h x( ) = f x( ) p x( )

h x( )dx
a

b

ò = f x( ) p x( )dx
a

b

ò = Ep f x( )éë ùû »
1

N
f xn( )

n=1

N

å

and we find that the variance of this estimate of the integral is

1

N

1

N -1
f xn( ) - Ep f x( )éë ùûéë ùû

2

n=1

N

å
ì
í
î

ü
ý
þ

We encounter a problem with this method when we must sample functions 
that have many narrow peaks.

here the x are i.i.d with pdf p(x)
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this pdf is troublesome ...  therefore, we use this ...

These methods are still not very efficient and there is a better alternative, the Markov Chain Monte Carlo method 
(see later)
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here the x are i.i.d with pdf q(x)

24

2. Importance sampling



The bootstrap method is a resampling 
technique that helps calculating many 
statistical estimators
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3. An important resampling technique: the Bootstrap method (B. Efron, 1977)
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the distribution of data approximates the "true" underlying distribution (in this case a 
mixture model)
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You can do this if you have large datasets ... but what if you have only a handful of 
measurements?
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the discrete distribution is a rough representation of the underlying continuous 
distribution ... and yet it can be used just as before ...
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Bootstrap recipe: 

if you need to find the distribution of the mean 
(or any other statistical estimator) use the 
dataset itself to generate new datasets

 resample from dataset (with replacement)
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repeated sampling from 
original distribution

resampling from single 
dataset

true mean: -0.2
mean from repeated sampling (size = 250000): -0.200222 ± 0.0813632
mean from resampling dataset (size = 50): -0.142699 ± 0.0838678
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bootstrap estimate of correlation 
coefficient distribution

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and Efron, Statistics of Science 13 (1998) 95

counts of CD4 limphocytes
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4. Bayesian methods in a sampling-resampling perspective (Smith & Gelfand, 1992)
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In Bayesian methods we have to evaluate many integrals, like, 
e.g.,

normalization (evidence)

marginalization

averages (statistical estimators)

Edoardo Milotti - Bayesian Methods - Spring 2024



Edoardo Milotti - Bayesian Methods - Spring 2024



Bayesian learning as a resampling procedure (importance 
sampling-like scheme)

1. prior distribution defined 
by the empirical distribution 
of the initial samples

(sampling)

2. the Likelihood 
distorts the distribution 
of initial samples 
(corresponds to a 
sample acceptance 
probability) 

(resampling))

3. the posterior distribution 
is represented by the 
resampled empirical 
distribution
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Example (McCullagh & Nelder): take two sets of binomially 
distributed independent random variables Xi1 and Xi2 (i=1,2,3)

The observed random variables are the sums 

Yi = Xi1 + Xi2

Xi1 = Binomial ni1,q1( )

Xi2 = Binomial ni2 ,q2( )
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Sample data

1 2 3

ni1 5 6 4

ni2 5 4 6

yi 7 5 6
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Example of implementation in Python (see Jupyter notebook)

prior distribution 
(50000 samples, uniform in 2D parameter space)
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q2



Posterior as a resampled prior using acceptance-rejection
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Posterior as a resampled prior using weighted bootstrap
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The resampled points are representative of the posterior distribution and can be used to 
evaluate any sample estimate

Marginalized histogram of

Sample mean: 0.500±0.001 

Marginalized histogram of 

Sample mean: 0.677±0.001

q1 q2
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... these calculational methodologies have also had an impact on 

theory. By freeing statisticians from dealing with complicated 

calculations, the statistical aspects of a problem can become the main 

focus. 

Casella & George, in their description of the Gibbs sampler. Am. Stat. 46 (1992) 167
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