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Our next important topic: Bayesian estimates often require complex numerical integrals.
How do we confront this problem?

enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective

. Introduction to Markov chains and to Random Walks (RW)
. Detailed balance and Boltzmann's H-theorem

. The Gibbs sampler

. More on Gibbs sampling

O 00 N OO 1 o W N =

. Simulated annealing and the Traveling Salesman Problem (TSP)

10. The Metropolis algorithm

11. Image restoration and Markov Random Fields (MRF)

12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)
13. The efficiency of MCMC methods

14. Affine-invariant MCMC algorithms (emcee)
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5. Very short introduction to Markov chains

Consider a system such that
e the system can occupy a finite or countably infinite set of states Sj;
e the system changes state randomly at discrete times t =1,2, .. .;

e if the system is in state S;, then the probability that the system goes into
state S; is

p,-j:P[S(n—|—1):5j|5(n):S,-] i,j:1,2,...

i.e., this probability depends only on the previous state, and is independent
o all previous states (this is the Markov property);

e the transition probabilities p;; do not depend on time n.

Such a system is a special type of discrete time stochastic process, which is
called Markov chain.



Example:

in the Land of Oz they never have two nice days in a row, rather, after a sunny day it either rains or snows.

If they have a nice day, they are just as likely to have snow as rain the next day. If they have snow or rain, they have
an even chance of having the same the next day. If there is change from snow or rain, only half of the time is this a
change to a nice day. When we denote the three states with the symbols N (Nice), R (Rain), or S (Show), the
transition probabilities are:

pnny =0;  pvr=1/2; pns=1/2
pry = 1/4; prr=1/2; prs=1/4
psy =1/4; psr=1/4;, pss=1/2

1/2

(representation as a
directed graph)
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Matrix of transition probabilities (also called transition kernel)

(pNN PNR pNs\ ( 0 1/2 1/2\
P=1| prv PrRrR pPrRs | =] 1/4 1/2 1/4

\ PSN PSR PSS 1/4 1/4 1/2

This is a row stochastic matrix, where all rows are such that
> ipij =1

There are also column stochastic matrices, and doubly stochastic matrices that are necessarily square:

i=1j=1 i=1
®

m n m

Sy =Y i=m

j=1i=1 j=1
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Discrete-time discrete-space random walks are an example of Markov chains with infinite states.

Pii+1 =P, Pii-1 =4
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Now let

" = P[S(n) = S]]

be the probability that at time n the system isin state §;, then:

(" = ZP (n+1) = 8|S(n) = S;]P[S(n) = Si] = > pyym"”
When we define the vector 7r(™) = {W§n)} and the matrix P = {pij} we see that the equation becomes

(D) _ (n)p

(1) _ (0)pn

N

n-step transition kernel
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For example, the transition kernels for the weather in the Land of Oz are

0 05 05 p?

P=| 025 05 025 »
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the transition kernels
seem to converge to
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Notice that if the transition kernel converges to a fixed matrix where all rows are equal, then the distribution of
states also converges to a fixed distribution which does not depend on the initial distribution:

P" s P (Poo)ij = £

n— oo all rows equal

4

e 0 0
2 =N " w Po)iy =Y TS =
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Persistent and transient states ...

Type of state

Definition of state (assuming, where applicable,
that the state is initially occupied)

Periodic

Aperiodic
Recurrent/Persistent
Transient

Ephemeral
Positive-recurrent

Null-recurrent
Ergodic

Return to state possible only at times t, 2t, 3t,
..., Where t > 1

Not periodic

Eventual return to state certain

Eventual return to state uncertain

s a state j such that pj; = 0 for every i
Recurrent/persistent, finite mean recurrence
time

Recurrent, infinite mean recurrence time
Aperiodic, positive-recurrent




This graph represents the states and the transition probabilities of a finite Markov chain with 6 states.

The arrows correspond to nonzero transition probabilities. If the chain starts with any one of states A, B, Cor D, it can loop
around these four states until a transition D to E occurs, then the system is locked in the E-F loop.

States A, B, C, and D are transient, while states E and F are persistent (and periodic, with period 2). A Markov chain with
just one class, such that all states communicate, is said to be irreducible. This Markov chain is not irreducible.

VERY INTERESTING MATH ON PERSISTENT STATES, HOWEVER WE DO NOT PURSUE IT FURTHER, WE DO NOT NEED IT NOW.
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Limiting probabilities and stationary distributions

Here we prove that the convergence that we saw in the Land of Oz example is a general feature of Markov
chains, under the assumption that the chain is irreducible, and that for some N we have

min pij) =0>0
iJ

Now let

P = min p
/

(n). (n) (n)
J Rj

i — Maxpij

be the min and max of the j-the column vector in the n-step transition matrix.



Recall the example:
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we shall show that, in each
column, the min and the max
become closer and closer as n
grows and bracket a value that is
the asymptotic matrix element
(the same for all rows in a given
column)
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Then we find

+1 . +1 : . .
rj(n ) — min pff ) — min PZ-H = ml_m(PP”),-j = min ;Pikpl(g)

> minY prer™ = A7
ok

and

RJ(”+1) _ m,-aX pfjn_i_l) — miax PZ.—H = ml_ax(PP”),'j = mIaXZPikP/(J)
k

This means that, as n grows, the minimum and the maximum values in a column vector get closer and closer
(the components of the column vector get closer and closer). But do they converge to the same value ???
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We must consider the difference

Rg-n) — frj(-n) = maxpgj) 1rnkl:r1]0,(~C ") max [pgj) p,(ﬂj)}

Then, shifting the difference by N, we find

n+N n+N n—+ n+N N n
R ) ) 5] s {3 o}
’ l

Next we split the difference enclosed in braces into sums of negative and positive contributions

_|_

N N N N)q (n
Z[p( ) pl(d )}plj Z (V) pkl )]pl(J)+Z (N) pl(cl)pl(j)
l

z
. (N) N)1p(n) (N) N)q, .(n)

szz pkz ]Rn +szz pk:l ]Tn
z



Now consider the structure of the positive sum, it must contain at least one term where one subtracts the smallest element
in the column, so that

_|_

S - p7) = Z (M) _ Z P < Z PN 515

l

Similarly, for the negative sum we find

N N — N N
> i == p Zpl(d)>5 Zp( = —(1-9)
l l

and therefore

_|_
(N) (N) (N) (N)1 p(n) (N) (N) ( )
Z [pzl — Pri }ng szz — Py 1R +szz — P IT;
z z

<(1-0RM — (1~ 5)r<.”> = (1-8)(R" —r{")

J

so that taking strides of N steps at a time, and recallingthat 0 <1 —90 < 1

RN 9 < (1 )[R M) 0

J J k— oo
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Since
R§kN) _ B (1—0)" [R§N) - r(.N)] —— 0

J J k— o0

the matrix elements in the j-th column converge to a single value pj’-", i.e.,

and



This asymptotic distribution is stable, indeed from
Z”(n 1)

we find

[T*Pl; =Y mipki = > Prpkj
k k

*

> plpkj = Pl =p} =
k

or, in matrix form

™ =71*P

i.e., the asymptotic probability vector is the left eigenvector with eigenvalue 1 of
the transition probability matrix. The distribution expressed by the probability
vector 7* is called invariant distribution or stationary distribution.




6. Detailed balance and Boltzmann's H-theorem

From the definition of conditional probabilities we find

P[S(n)=5;and S(n+1) =5;] = P|S(n) = S;|S(n+1) =5;]P[S(n+1) =5,]
i

therefore, when a Markov chain is time reversed we find

P[S(n) — 5,-|5(n + 1) = Sj]
P[5(n) = 5i
P[S(n+1) = Sj]

= P[S(n+1) = Sj|5(n) = 5i]

(n)
T -
P[S(n) = 5,-|5(n + 1) = Sj] = pijm
i
which shows that the reversed chain is time-dependent.



However, if states are distributed according to the invariant distribution, we have

*
7TI

PIS(n) = Si|S(n+1) = 5] = pyj %

*
J

which means that the backward transition probabilities are again time-independent, and in particular they
must coincide with the forward transition probabilities, i.e.,

pjiT; = pijT
a condition which is called detailed balance.

So, if stationary distribution then detailed balance ... however the reverse also holds

n+1 n n n n
m =Y ey =3 m pi=m" Y pji=m”

i.e., a distribution is stationary if and only if it satisfies the condition of detailed balance



Physical aside: continuous-time Markov processes

The time-dependence of the reversed chain is a manifestation of the dissipative character of the chain. Another important
related result is the validity of the H-theorem for Markov processes.

In the case of continuous-time processes we can write

P (Sik' Lk Sik_l, tk—1; .- Siys to) —
- P (Sikv tk‘sik_l, Ck—1;...; 5,'0, to) P (S"k—l’ the 10 ... SiO! tO)

Memoryless processes

P (S/k, (] Sik—l' t—1,...; 5,'0, to) =P (S;k, tk)

Markov processes

P (S;k, Ly, S;k_l, tk—1,...; 5,'0, to) =P (S;k, l‘k|5,'k_1, tk—l) P (Sik_l, tk—l)



For Markov processes the following equation also holds

P(S,, t+ At) = P(S,, t)+

+ ) [P(Sn t+ At]S), t) P(Sj, t) — P(Sj, t + At|Sp, t) P(Sp, )]

(master equation).
When we assume that the transition probabilities are time-invariant, and we define the transition rates T
P (Sn, t+ At|5_,, t) — Tn,jAt

we find the differential form of the master equation

d
EP Sn:t) _Z[T”JP Sj,t) Tj,n'D(Snrt)]



Using the previous notation for the probability distribution on states, we can rewrite the master equation
as follows

dm,
dt

— Z [Tn,jﬂ'j(t) — TJ’,n7Tn(t)]

Next, we assume that transition probabilities are "reversible"
7_n,j — 1Iy.n
so that
dm,

dt

= > Tojlmi(t) = ma(2)]

and therefore, at equilibrium
all states are

* *
Z Tn,j (7Tj — 7Tn) =0 » ﬂ'f — 777:, equally likely at
J

equilibrium
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Now consider the following sum

H~ —Hpg

H:Zﬂnlnﬂn '

Using the master equation we find a differential equation for H

Exchanging indexes ...

-y 5

n

7rn|n7rn :Z 7

dH

dt

dm,

(Inm, +1)

n

= Thjlm -
nJ

mn) (InT, + 1)

Z Tnj(mn—m)(Inm;+1)
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Adding the two differential equations we find

dH 1
=5 Z Thj(my—m;)(Inm; —Inm,)
n'.j
Since
(mp — 7)) (Inm; —Inm,) <0
we find
dH
E S O Boltzmann's H-theorem

The derivative vanishes at equilibrium, and we find that it is a stable point for H. Since H is essentially the negative of
Gibbs' entropy, the theorem states that the entropy of a Markov chain increases up to a maximum which is reached at
equilibrium.
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7. The Gibbs sampler

(adapted from Casella and George,
Explaining the Gibbs sampler Am.Stat. 46 (1992) 167 )

Explaining the Gibbs Sampler
RGE*

applications of the Gibbs sampler have been in Bayesian
models, it is also extremely useful in classical (likeli-
hood) calculations [see Tanner (1991) for many ex-
amples]. Furthermore, these calculational methodolo-
gies have also had an impact on theory. By freeing
statisticians from dealing with complicated calculations,
the statistical aspects of a problem can become the main
focus. This point is wonderfully illustrated by Smith and
Gelfand (1992).

In the next section we describe and illustrate the ap-
plication of the Gibbs sampler in bivariate situations.



The initial value Y| = y; is specified, and the rest of
(2.3) is obtained iteratively by alternately generating
values from

X~ flx|Y; =y}

o~ f 1 X = x)). (2.4)

We refer to this generation of (2.3) as Gibbs sampling.
It turns out that under reasonably general conditions,
the distribution of X, converges to f(x) (the true mar-
ginal of X) as k — c. Thus, for k large enough, the
final observation in (2.3), namely X = x;, is effec-
tively a sample point from f(x).

The convergence (in distribution) of the Gibbs se-
quence (2.3) can be exploited in a variety of ways to

obtain an approximate sample from f(x). For example
FnlpnﬂA n‘l‘\lq Qm +1‘\ f1n n\ nnnnnn

atl nda
TlIralta—alia—ynntar (17797 DUS5\.~)L 5\.«11\.«1(1;1115 T Hmad

pendent Gibbs sequences of length k, and then using
the final value of X} from each sequence. If & is chosen
large enough, this yields an approximate iid sample
from f(x). Methods for choosing such k, as well as

alternative approaches to extracting information from
the (Gihhs seauence. are discussed in Section 5. For the
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Let's start with an example, and consider the following joint distribution:
n _ _ _
f(z,y) o (az)y"”*“ =gy ™tP7 2=0,...,n 0<y<1

We see that f(xz|y) ~ Binomial(n, y)

Fly|z) ~ Beta(z + a,n — z + )

It is also easy to see that the properly normalized distribution is (verify this!)

1
B(m,n) = ] t™ (1 —t) (Dt
0

p(aj,y) _ F(Oé + 5) <n> y:z:—|—oz—1(1 - y)n—x+5—1 using

['(a)['(6) \x _ ?((ﬂ;)i(:))
[\ (a+B) I'(z + a)l'(n —x + B)
» p(x) — (:E) F(Oz)r(ﬁ) F(Ck n 5 4 n) marginal distribution
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How do we recover a marginal pdf when we cannot carry out explicit calculations???

We generate a "Gibbs sequence" of random variables

of the margmal dlStI‘lbUthIl f(x) of X. ]

11 _ _ T T . Lo __

where the initial values are specified and the others are computed with the rule

For the following joir

(Gibbs sampling).

We observe that for large enough k, the final X values have a fixed distribution
that corresponds to the marginal pdf of the x variate.
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can be obtained analytically from (2.5) as

black = Gibbs samplin
flx) = (n)r(a * B Tx + )l(n — x +\Aﬁ)te :fheoreticarl)exiectation
x ) I'(a)I'(B) ['(a + B + n) ’

x=0,1,...,n, (2.7)

the beta-binomial distribution. Here, characteristics of
f(x) can be directly obtained from (2.7), either analyt-
ically or by generating a sample from the marginal and
not fussing with the conditional distributions. However,
this simple situation is useful for illustrative purposes.
Figure 1 displays histograms ot two samples x;, . . .,
x,, of size m = 500 from the beta-binomial distribution
of (2.7) withn = 16, @« = 2, and 8 = 4.

The two histograms are very similar, giving credence
to the claim that the Gibbs scheme for random variable
generation is indeed generating variables from the mar-

il Aictrilaaata e




Should we expect this result?

Consider the following expectation value
Bfaly)] = | falnf@dy= | f@is= f@

therefore we can estimate f(x) with the sum

where the y's are generated according to their marginal distribution; finally the Gibbs sampling provides representative
samples that correspond to the marginal distribution of the x's. (for a mathematically accurate proof, check the paper by
Casella&George)
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