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Our next important topic: Bayesian estimates often require complex numerical integrals.
How do we confront this problem?

enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective

. Introduction to Markov chains and to Random Walks (RW)
. Detailed balance and Boltzmann's H-theorem

. The Gibbs sampler

. More on Gibbs sampling
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. Simulated annealing and the Traveling Salesman Problem (TSP)

10. The Metropolis algorithm

11. Image restoration and Markov Random Fields (MRF)

12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)
13. The efficiency of MCMC methods

14. Affine-invariant MCMC algorithms (emcee)
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A simple view of the convergence of Gibbs sampling in the bivariate case.

We consider the following case: two discrete random variables with marginally Bernoulli distributions and with a joint
probability distribution described by the following matrix

X
0 1
0 P P2
Y
1 D3 Pa

pi=0,py + pp+ p3s + ps=1

_fx,y(O:O) fx,y(lso) = pl PZ
_fx,y(O!]-) fx,y(Ll) p?s p4

Edoardo Milotti - Bayesian Methods - Spring 2025 3




_f.:-:,y(O:O) f.t',}"(lﬂo) — P1 PQH
_f.r,}'(O?]‘) fx,y(lrl) p3 p4__

fo = [f0) ()] =1[p1 + ps P2 + P4l

P1 P3
4. = |P T P33 P17t D3

from the usual formula for "W P2 P4
conditional probabilities » P>+ ps P+ Py

— f(:v,y) P1 P2
fx(ilj‘) 4. =P + P2 P11t P2

x|y
Ps P4

P3 + Ps D3 t+ P
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Since we are only interested in the X sequence

PXj=x|Xs=x) =2 PX,=x|Y] =)

y

X P(Y] = y| Xy = xp).

-

the transition matrix for the X sequence is

Agp = Ayjp A

ylztiz|y

This defines the transition probabilities for a single Markov chain in X-space and from the theory of Markov chains we
know that iterating this produces a fixed probability distribution, i.e., our marginal distribution for X.
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What about the continuous case? Consider the bivariate case

Suppose that, for two random variables X and Y, we
know the conditional densities fxy(x|y) and
fyix(y | x). We can determine the marginal density of
X, fx(x), and hence the joint density of X and Y, through
the following argument. By definition,

Fy(x) = ffXY(xa y) dy, fx(x) = jfxv(x | y) jfﬂx(}’ | 6)fx(¢) dt dy

where fyy(x, y) is the (unknown) joint density. Now

= x|y Yix dy |fx(t) d
using the fact that fyy(x, y) = fxy(x | y)fy(y), we have J [ff O [ fvix(y 19) J’]f (¢) dt

i = | hx, (o)

where h(x, 1) = [ fxy(x [ V)fvix(y | 1) dy].

this is a continuous
transition kernel

£o0) = | Fanle | ) dy.

and if we similarly substitute for fy(y), we have
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Let's consider the integral equation, how would it look like in a discrete setting? (in a computer, for instance)

1) = | e 1) | Frix(y | 0fc0) at dy

- | U Frav(® | )fvix(y [ 1) dy]fx(r) dt » ixli = 2_Mlialfxls = 2 Uil )i

J J
i

I
-

I

h(x, fx(t) dt,

or also in vector-matrix notation

fy = fyh!

this corresponds to recasting the continuous problem to a discrete problem and we obtain again the eigenvalue
problem that must be solved to find the asymptotic distribution in Markov processes.
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Question: how do we determine the number of steps needed to reach the
stationary state?
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Question: how do we determine the number of steps needed to reach the
stationary state?

Consider the diagonalized representation of the N-step transition kernel (eigenvalues on the diagonal), such that all
N-step transition probabilities are positive in the non-diagonalized version of the kernel (all states can be reached)

0O O
Ay 0 ...
PN = 0 X3 ... (1>)\2>)\3>"'>0)

o O =

and the corresponding representation of the initial state vector in terms of eigenvectors
T =o "7 +aymy + agmy + ...

Then, we see that the repeated action of the N-step transition kernel preserves the stationary state, while it
gradually reduces the amplitude of the other states by a factor

nIN
Ak
after nN steps.
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Question: how do we determine the number of steps needed to reach the
stationary state?

In the case of the Land of Oz wheather model, we find the following diagonalized 2-step transition kernel

0.25 0.375 0.375 1. 0. 0.
P2=| 0.25 0.5 0.5 = 0. 0.0625 0.
0.125 0.3125 0.3125 0. 0. —4.44 x 10718
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The impact of sampling.

Consider the following expectation value
Bfaly)] = | falnf@dy= | f@nis= f@

we can estimate f(x) with the sum

where the y's are generated according to their marginal distribution; we conclude that the Gibbs sampling provides
representative samples that correspond to the marginal distribution of the x's. (for a mathematically accurate proof, check
the paper by Casella&George)
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8. Another view of Gibbs sampling
Consider again the sequence that generates a "Gibbs sequence" of random variables
f ! ! f f ! ! /
0> 0 +1> 1 £ 2 2:"':Yk:-Xk
where one initial value is specified and the others are computed with the rule

X ~ f(2Y] = y;)
Yii~ fylX; =)

J J
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Example: bivariate Gaussian distribution

e Bivariate Gaussian likelihood

1 1 T r—1
2|01, 0) = exp |—=(y =)V .y
p(y1, Y2101, 02) A p[ 5 (y — 0) (y — 6)

-0

* Posterior pdf from Bayes theorem with improper priors, with a single datapoint (Yy;,Y,)

where the known covariance matrixis

p((gla 92‘y17 y2) X p(yh y2‘917 (92)



Expanding, we find

p(01,02]y1,y2) ~ exp {_2(1 i p?) [(91 —y1)* = 2p(01 — y1)(02 — y2) + (62 — yQ)Z} }

Then, from the Gaussian structure of the posterior, we find the marginals

} . -
p(01(02,y1,y2) ~ exp _—2(1 —?) (01 — (y1 + p(02 — y2))2_
- . 3
p(02(601,y1,y2) ~ exp _—2(1 —?) (02 — (y2 + p(61 — yl))Q_




6

20 initial steps in a Gibbs sampler run:

* orange cross: starting pair
* green dot: position after 20 steps
red cross: bivariate mean
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marginal distributions (second half of the simulation values in a run with 10000 generated pairs)
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6,

posterior distribution (second half of the simulation values in a run with 10000 generated pairs)

8 -
6 -
4 -
2 -
0 -
K Exercise:
5] b3 ercise
_ extend this treatment to more than one
—41 . . pair of measured y values and write a
computer program to implement it

Edoardo Milotti - Bayesian Methods - Spring 2024 17



So, what's the use of all this?

Consider the case where we want to compute the marginal pdf

@) = [ Sy vy,

in a situation where the multidimensional integral can be hard to compute.

The Gibbs sampler completely bypasses the calculation of the multidimensional integral and affords an
easy path to marginalization.

Indeed, the procedure can be easily extended to multidimensional distributions, for example with two
nuisance variables we produce the sequence

/ !/ / / !/ !/ / !/ !/
0 <0 0O+ 1> 1 1y £ 2312 29 °

by means of the conditional PDFs
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9. The Traveling Salesman Problem and Simulated Annealing

To introduce the method, we consider the Traveling Salesman Problem (TSP), where we want to find the
shortest closed path that connects N cities.

The problem was first stated by the Viennese mathematician Karl Menger in 1930 and is one of the most
studied problems in combinatorial optimization.

For many up-to-date links, see
http://www.math.uwaterloo.ca/tsp/index.html

See also the history page
http://www.math.uwaterloo.ca/tsp/history/index.html
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http://www.math.uwaterloo.ca/tsp/history/index.html

12 “cities” randomly distributed in the (0,1) square: the path corresponds to a random permutation of the sequence of
cities.

(path length L=1.93834)
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Paths are enumerated by permutations of “city names”, e.g., {9,2,7,8,1, 12, 4,5, 3, 10, 11, 6} (start at 9,

step to 2, and so on until you reach 6 and then return to 9).

The total number of configurations (undirected paths) is

;(n— 1)

The problem belongs to the class of NP-complete problems (Non-Polynomial complexity, a class of

particularly hard problems)

In such cases there is only one known exact solution: the full enumeration of all paths.
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13 May 1983, Volume 220, Number 4598 SCIE NCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

Summary. There is a deep and useful connection between statistical mechanics
(the behavior of systems with many degrees of freedom in thermal equilibrium at a
finite temperalura) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parametars). A detalled analogy with
annealing in solids provides a framework for oplimization of the properties of very
large and complex systems. This conneclion to statistical mechanics exposes new
information and provides an unfamiliar perspective on traditional optimization prob-
lems and methods.
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Approximate solution of the TSP with the Simulated Annealing algorithm
path length ‘ energy of the system

exploration of the configuration space with the Metropolis algorithm (51909 citations to date, April 10, 2024)
(Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AvucusTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Ilinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.
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10. The Metropolis algorithm and its application to the TSP

Figure 8.14: Portrait of American computer scientists Nicholas Metropolis
(1915 - 1999) (seated) and James Henry Richardson (1918 - 1996) at Los
Alamos National Laboratory, Los Alamos, New Mexico, November 1953
(from http://www.life.com).
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1. We generate a new configuration C' from the present configuration C
2. We compute the energy of the new configuration, E'
3. We compute the energy difference AE=E'-E
4. The new configuration is accepted with probability p

[ p= AE <0

3 AFE
=e —— AE >0
| D Xp LT =2

Additional details

the algorithm needs a slow cooling (it is common to choose an exponential cooling
schedule)

if cooling is not gradual, the system can get stuck into a local minimum

simple exchanges of pairs of cities are the individual moves in the SA solution of the
TSP

the individual steps from one configuration to the next can be described by a Markov
chain




@
o
3
. 12
'lﬁ 'l-g
o |
, o1l T
w ‘E
10}

Edoardo Milotti - Bayesian Methods - Spring 2025



Decrease of total path length in a realization of the SA solution of a 50-cities problem
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Here we note that the transition probability can be written as follows

T(C - C’) = min [1, exp (_ &~ E))}

Moreover, it is easy to show that the algorithm preserves detailed balance
T(C —-C)P(C)=T(C'"— C)P(C")

where P(C) is the stationary probability of configuration C. Indeed, at equilibrium we find that, if
E" >E,

P(C) exp (— (E’k;E)) — p(C)

P(C") —exp [ — (£'— E) Boltzmann's distribution is
kT the equilibrium distribution
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11. Image restoration and Markov Random Fields (MRF)

The optimization problem.

When dealing with signals, we usually assume that data are corrupted by noise

d=x+ w
1 K

(vector) noise process
data vector

signal vector

An image can be viewed as a vector, for instance unfolding the sequence of pixels
as shown on the right, we obtain the equivalent of a long signal vector.

If there are N pixels on each side, there are in all n2 pixels, and if there are L gray
levels, then the number of possible configurations that define an image is

N=L"
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dig [diy (i3 [d1a
Oy1 [y [da3 | dag true
pixel map pixel vector
d3; | d3; |ds3 | A3y
- - X
I I I I
I
posterior pixel o or pixel
distribution likelihood p.r/or. plxg
/ l / distribution
P (d|X) Bayesian estimate of
P (X|d) — 2 (d) P (X) x P (d‘X)P (d) true pixel vector from

observed pixel vector
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Given the number of possible configurations

2
N = L"
we see that even for small image sizes, say N = 100, with binary levels, L = 2, we find

N — 2104

therefore, the problem of finding the MAP estimate in a Bayesian context is a hard computational task.



The MAP estimate depends on the prior distribution

Possible priors:

. Maximum Likelihood Estimate
P(x) flat prior » (MLE]

P (x|d) x P (d|x)P (d) < P (d|x)

: : Maximum Entropy Method
P(x) entropic prior » (MEM)
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Notice also that

InP(x|d) ~InP(d|x) — |[—InP(d)

therefore, the MAP estimate is equivalent to maximizing the likelihood with a penalty
function

—In P (d)

Experiments have been tried with many different penalties, many of them barely justified
on probabilistic grounds (or not at all!)



Now, let X be the vector of “true values” (uncorrupted intensities of an image, a spectrum, etc. ...), and

translate these values into counts

(1=1, ..., M). The least informative prior corresponds to a structureless image, and pixelwise it is once again

the uniform prior. Then, the probability of one count at the I-th position is just 1/M.

Likewise, the probability of a given vector of values where the total number of counts is N, is given by the

multinomial probability

1 N
P) == \3) %:”’*ZN



Using Stirling’s approximation

nlx~n"e™; Inn!lxnlnn-—n

d;
M
Zk:l dy,

InP(n)~ (NInN — N) — Z(nk Inng —ng)
k

— NlnN—anlnnk
k

we find, with the definition p; =

~ —Q di Ind const.
; k kT entropic prior

P(n) ~ exp (ade In dk> ~ exp (o/ Zpk lnpk> = exp [’ S(d)]
k k



Image likelihood: 1. the observation model

. X = .

| PSF .
A (Point Spread '
T Function
true image
of a galaxy
+ Noise » .
.
(example from Eric Thiebaut) “dirty image”
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Counts
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PSF from atmospheric turbulence

In general, the effect of the PSF is
modeled by a linear operator

x — Hx

/

"true" pixel
vector
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the action of the optical
system on the "true
image" is modeled by the
matrix H



Relative flux

The Hubble PSF before the first servicing mission
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Image likelihood: 2. the noise model (degradation model)

— Hd)~
Gaussian noise model P(x|d) o< exp |— (x )
207
Poisson noise model (x|d) o H T exp [ (Hd) ]

Poisson noise mostly from detection process, Gaussian noise mostly from electronics or from approximation of Poisson
noise. Sometimes we can use the Gaussian approximation of Poisson noise

on Hx d, — (Hx), 2
P (d|x) o H d)' exp |— Hexp[ (ISIX)Z n) ] = exp [_Z( 2(IEIX>: )

n



IEEE TRANSACTIONS OMN PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL., PAMI-6, NO, &, NOVEMBER 1984 721

Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images

STUART GEMAN anp DONALD GEMAN

Abstract—We make an analogy between images and statistical me-
chanics systems. Pixel gray levels and the presence and orientation of
edges are viewed as states of atoms or molecules in a lattice-like phys-
ical system. The assignment of an energy function in the physical sys-
tem determines its Gibbs distribution. Because of the Gibbs distribu-
tion, Markov random field (MRF) equivalence, this assignment also
determines an MRF image model. The energy function is a more conve-
nient and natural mechanism for embodying picture attributes than are
the local characteristics of the MRF. For a range of degradation mecha-
nisms, including blurring, nonlinear deformations, and multiplicative or
additive noise, the posterior distribution is an MRF with a structure

akin to the image model. By the analogy, the posterior distribution de-
fines another (imaginary) physical system. Gradual temperature reduc-
tion in the physical system isolates low energy states (“annealing™), or
what is the same thing, the most probable states under the Gibbs dis-
tribution. The analogous operation under the posterior distribution
yields the maximum g posteriori (MAFP) estimate of the image given the
degraded observations. The result is a highly parallel “relaxation™ algo-
rithm for MAP estimation. We establish convergence properties of the
algorithm and we experiment with some simple pictures, for which
good restorations are obtained at low signal-to-noise ratios.
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The Ising model as an example of Markov Random Field
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The Bragg-Williams approximation

This is a simple mean—field approximation
<O'Z'O'j> ~ <Uz> <O'j> correlations are ignored

so that the Hamiltonian can be restated in terms of an effective magnetic field

H%—JZUZ-ZUJ-—BZUZ-% —Jz(o;) ZO’Z— Beﬂ-’zgi
¢ (F) @ i

Then, the partition function is

Bog 3. 0 )
5w (P ST e o)

configurations 1

— [2 cosh (Beg /KT)]" = [2 cosh (8Begt)]”

Z




Therefore, the magnetization can be obtained as follows

1 1 0
M — ; BBefoi — kT BBeffo'i
NZ 2 it NZ"" 9B.g 2 €
configurations configurations
0
= kT In Z = tanh (5 Beg)

B aBeff
= tanh |5 (B + JzM))]

i.e., the magnetization is the solution of the nonlinear equation

with B field

M = tanh |8 (B + JzM))

no B field M = tanh (BzJ M)
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1.0—'{

0.5

0.0

y=xc
y = tanh (%x)

-1.0
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-0.5
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above critical temperature

Critical temperature

M = tanh (BzJ M)

100 ( oy
- | y=tanh (%m)
0.5
0.0
-0.5f
-1.0f
-1.0 -0.5 0.0 0.5 1.0 1.0

below critical temperature _
0.8/

ZJ 0.6:
k 0.4:

0.2}

0.01

0.0
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