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Our next important topic: Bayesian estimates often require complex numerical integrals. 
How do we confront this problem? 

          enter the Monte Carlo methods!

1. acceptance-rejection sampling

2. importance sampling

3. statistical bootstrap

4. Bayesian methods in a sampling-resampling perspective

5. Introduction to Markov chains and to Random Walks (RW)

6. Detailed balance and Boltzmann's H-theorem

7. The Gibbs sampler

8. More on Gibbs sampling

9. Simulated annealing and the Traveling Salesman Problem (TSP)

10. The Metropolis algorithm

11. Image restoration and Markov Random Fields (MRF) 

12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC)

13. The efficiency of MCMC methods

14. Affine-invariant MCMC algorithms (emcee)
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11. Image restoration and Markov Random Fields (MRF) (ctd.)



Edoardo Milotti - Bayesian Methods - Spring 2025

The Ising model as an example of Markov Random Field

The model describes a system of spins that point only in 
the +z or -z direction, so that their value can only be ±1. 

The Hamiltonian includes only the interaction with the 
external magnetic field and the interaction between 
neighboring spins

The corresponding lattice magnetization is

a quantity that ranges between -1 and +1
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The Bragg-Williams approximation

This is a simple mean–field approximation

so that the Hamiltonian can be restated in terms of an effective magnetic field 

Then, the partition function is

correlations are ignored
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Therefore, the magnetization can be obtained as follows 

i.e., the magnetization is the solution of the nonlinear equation 

with B field

no B field

6



Edoardo Milotti - Bayesian Methods - Spring 2025

Critical temperature

above critical temperature below critical temperature
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news & views

theoretical possibility, laboratory evidence is 
elusive. Later, it was suggested that small-
scale turbulence within a much larger current 
sheet would accelerate the reconnection rate 
due to global wandering of the magnetic 
f eld lines and emergence of multiple 
reconnection sites10; and even that small-
scale turbulence, if ubiquitous, would break 
the frozen f eld condition everywhere11. 

Recently, it was shown that an instability 
associated with reconnecting current sheets 
could cause the sheet to break up into a large 
number of plasmoid structures, broadening 
the reconnection region and increasing 
the rate of reconnection12. T is led to an 
alternative model for turbulence within a 
current sheet. T e plasmoids, which contain 
magnetic islands, seem to be particularly 
ef cient at accelerating particles to high 
energies, due to the tendency of closed 
magnetic islands to shrink. It turns out 
that multiple magnetic islands can produce 
a power-law spectrum of accelerated 
particles, similar to the one of en seen in 
natural plasmas13.

T e formation of current sheets and 
f laments in magnetic turbulence, similar to 
the setting investigated by Retinò et al.4 has 
also received wide attention. Methods have 
been developed for identifying current sheets 
in numerical simulations of turbulence, and 
it has been shown that, despite occupying a 
miniscule fraction of the volume, they are 
responsible for a large fraction of the energy 
dissipated in a turbulent f ow14.

T e future of magnetic reconnection 
research is bright. T e likely identif cation 
of reconnection as the origin of the 
highly relativistic particles responsible 
for gamma-ray f ares in the Crab Nebula 
has demonstrated the importance of 
laboratory and Solar System reconnection 
studies spanning an even greater range of 
theoretical, computational and experimental 
research as illustrated in Fig. 1. On 
intermediate scales, NASA’s Magnetospheric 
MultiScale mission has been launched to 
follow the Cluster mission — promising an 
even closer look at collisionless reconnection 
in the terrestrial magnetosphere. ❐

Ellen Zweibel is in the Departments of Astronomy 

and Physics, University of Wisconsin, Madison, 

Wisconsin 53706-1507, USA.  

e-mail: zweibel@astro.wisc.edu

References
1. Zweibel, E. G. & Yamada, M. Ann. Rev. Astron. Astrophys.  

47, 291–332 (2009).

2. Yamada, M., Kulsrud, R. & Ji, H. Rev. Mod. Phys. 82, 603–664 (2010).

3. Xiao, C. J. et al. Nature Phys. 2, 478–483 (2006).

4. Retinò, A. et al. Nature Phys. 3, 235–238 (2007).

5. Parker, E. N. J. Geophys. Res. 62, 509–520 (1957).

6. Furth, H. P., Killeen, J. & Rosenbluth, M. N. Phys. Fluids  

6, 459–484 (1963).

7. Greene, J. M. J. Geophys. Res. 93, 8583–8590 (1988).

8. Priest, E. R., Hornig, G. & Pontin, D. I. J. Geophys Res.  

108, 1285 (2003).

9. Eriksson, E. et al. Geophys. Res. Lett. 42, 6883–6889 (2015).

10. Lazarian, A. & Vishniac, E. M. Astrophys. J. 517, 700–718 (1999).

11. Eyink, G. L., Lazarian, A. & Vishniac, E. T. Astrophys. J.  

743, 51–79 (2011).

12. Loureiro, N. F. & Uzdensky, D. A. Plasma Phys. Contr. F. 

(in the press).

13. Drake, J. F., Swisdak, M. & Fermo, R. Astrophys J. Lett.  

763, 5–10 (2013).

14. Zhdankin, V., Uzdensky, D. A. & Boldyrev, S. Phys. Rev. Lett.  

114, 065002 (2015).

15. Den Hartog, D. J. & Craig, D. Plasma Phys. Contr. F.  

42, L47–L53 (2000).

16. Balbo, M., Walter, R., Ferrigno, C. & Bordas, P. Astron. Astrophys.  

527, L4 (2011).

Ernst Ising’s analysis of the one-dimensional 
variant of his eponymous model 
(Z. Phys 31, 253–258; 1925) is an unusual 
paper in the history of early twentieth-
century physics. Its central result — 
demonstrating that a linear chain of 
two-state spins cannot undergo a phase 
transition at finite temperature — is correct, 
if somewhat trivial compared with other 
physics breakthroughs published in the 
1920s. But it is Ising’s fateful extension 
of his conclusions to two and three 
dimensions that proved spectacularly 
wrong and, paradoxically, earned him an 
enduring association with the model that 
now bears his name.

A possible reason for Ising’s unexpected 
celebrity is that his erroneous conclusions 
betray a superficial understanding of what 
turned out to be some of the deepest and 
far-reaching problems to be addressed in 
twentieth-century physics. The Hamiltonian 
of the model is simple to write down — it 
describes a network of spins interacting 
with each other through a coupling that only 
applies if the spins are next to each other — 
but the physics it displays is rich and non-
trivial: not only does it provide an intuitive 
device for illustrating the essential features 
of phase transitions and critical phenomena, 
it neatly encapsulates the main traits of 

90 years of the Ising model
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the many-body problem that has come to 
dominate areas such as condensed-matter 
physics. The broader class of spin models it 
belongs to was used to uncover concepts such 
as universality, renormalization, symmetry-
breaking and emergence. Ising can perhaps be 
forgiven for not predicting all of that.

Famously, the two-dimensional version 
for the model was solved analytically 
by Lars Onsager in the early 1940s 
(Phys. Rev. 65, 117; 1944), a result that is 
rightly considered a towering achievement 
among many significant contributions made 
over the years by the likes of Peierls, Bethe, 
Yang, Kadanof  (see page 995) Fisher and 
Wilson, just to name a handful. But the 

three-dimensional lattice has never been 
solved exactly, in spite of a multitude of 
attempts and false dawns — including a 
claim by John Maddox (who would later 
become the editor of Nature) made at a 
conference in Paris in 1952.

Although the 3D model is thought by 
some to be analytically intractable (and 
has also been claimed to belong to the 
NP-complete category of computational 
decision problems), progress has continued 
and recent numerical techniques based 
on conformal field theory have shed 
further light on the structure of the 
problem (J. Stat. Phys. 157, 869–914; 2014). 
Nevertheless, the real value of the 
Ising model and its many derivatives lies 
precisely in the complexity they encapsulate. 
These have found use in fields as disparate 
as condensed-matter physics, physical 
chemistry, neuroscience and, more broadly, 
the study of so-called complex systems.

Ising studied a deceptively simple 
model that, unknown to him at the time, 
captures the essential physics of an 
extremely wide category of problems. 
He may have been wrong in his 1925 
paper, but he tripped over a veritable 
physics goldmine.

ANDREA TARONI

© 2015 Macmillan Publishers Limited. All rights reserved
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Quench of an Ising system on a two-
dimensional square lattice (500 × 500) 
with inverse temperature β = 10, starting 
from a random configuration

(from https://en.wikipedia.org/wiki/Ising_model)

9
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The Markov property of Markov Random Fields

The Ising model is an example of Markov Random Field (MRF). What do we mean by "Markov property" in this 
case?

This property corresponds to the locality of the spin interactions and the dependence of the probability of 
finding a certain spin with a given value only on the state of the neighboring spins. 

 

graph node at s    takes on this value index r belongs 
to index set S

index r belongs 
to the set of 
neighbors of s
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Choice of the data term

The data term in the Hamiltonian must contain 
information on the background but also on the image data. 

It would be natural to start with something like 

where the y represent the image data and act like a sort of local magnetic field. However, this does not take into account the 
natural fluctuations of the image data. Here we model these fluctuations with a quadratic term which leads to the following 
Hamiltonian 
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Choice of the data term

The data term in the Hamiltonian must contain 
information on the background but also on the image data. 

It would be natural to start with something like 

where the y represent the image data and act like a sort of local magnetic field. Note that this can be obtained from a form 
of chi square minimization
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This is the same as the Hamiltonian of the 
Random Field Ising Model (RFIM)
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In practice the Hamiltonian is taken as follows:

where

• the first parameter (zeta) is just the global field, that corresponds to a prior assumption on the most likely spin 
direction

• the second parameter (beta) is the coupling constant between neighboring spins

• the third parameter (eta) is the local interaction between the measured pixel (spin) values and the MRF spins 
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The "physical" likelihood determined by Markov Random Fields

With the assumption that the image structure behaves like the magnetization islands in an Ising spin system, 
we find that the likelihood is given by the Maxwell-Boltzmann distribution with the given configuration energy

Therefore, with a prior specified as 

We find the posterior

              with  

noise Hamiltonian

14
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from Geman & Graffigne, Proc. Int. Congress of Mathematicians, Berkeley 1986
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Simple example

proceed to https://github.com/edymil/Bayes-TS 

 BW image       image + noise      processed image

https://github.com/edymil/Bayes-TS
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Simple example (code of MRF function)
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This method is not restricted to square lattices

18



12. The Metropolis-Hastings algorithm and Markov Chain Monte Carlo

In our analysis of the Metropolis algorithm, we found that

Moreover, we found that the algorithm preserves detailed balance

where P(C) is the stationary probability of configuration C. Indeed, at equilibrium we 

found that, if E’ > E,
 

Boltzmann’s 

distribution
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In summary

This definition of the transition probability is the starting point for an important further step, the Metropolis-
Hastings algorithm.

Notice that we only need the ratio P(C')/P(C): the partition function (the normalization integral) has 
disappeared. In this, the method is similar to the acceptance-rejection method.
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we define the transition probability – which includes a proposal function q –  

and the target density  

and we take the state

next we choose randomly another state y and we accept it with probability
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Note that if the proposal function q is symmetrical, then the acceptance probability takes 
on the simpler form

and it depends on the target density only. 
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The M-H  algorithm defines a Markov chain, and it is easy to show that detailed balance holds. The 
transition probability is 

• case 

a x,y( ) = 1; a y,x( ) =
p x( )q x,y( )
p y( )q y,x( )

P x® y( ) = q x,y( )

P y® x( ) = q y,x( )
p x( )q x,y( )
p y( )q y,x( )

p x( )P x® y( ) = p x( )q x,y( )

p y( )P y® x( ) = p y( )q y,x( )
p x( )q x,y( )
p y( )q y,x( )

= p x( )q x,y( )
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Detailed balance holds in both cases and 
therefore            is stationaryp x( )

p y( )q y,x( )
p x( )q x,y( )

<1

a x,y( ) =
p y( )q y,x( )
p x( )q x,y( )

; a y,x( ) = 1
P x® y( ) = q x,y( )

p y( )q y,x( )
p x( )q x,y( )

P y® x( ) = q y,x( )

p x( )P x® y( ) = p x( )q x,y( )
p y( )q y,x( )
p x( )q x,y( )

= p y( )q y,x( )

p y( )P y® x( ) = p y( )q y,x( )

• case

Edoardo Milotti - Bayesian Methods - Spring 2025 24



The following figure shows a simulation with the MCMC algorithm and the distribution

(a three-component mixture model)
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n=1000 n=10000

- 4 - 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30
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MCMC simulation of a 2D three-component mixture model
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100000 steps

28
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100000 steps

29
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100 steps

31



Edoardo Milotti - Bayesian Methods - Spring 2025

1000 steps
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4000 steps
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10000 steps
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Notice that when the peaks are very narrow, the random walker may have problems visiting all of the peaks
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100000 steps10000 steps

With isolated, narrow peaks, increasing the number of steps may not suffice
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100000 steps, subdivided into 10 parallel chains with random starting points
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The starting points of the chains are uniformly 
distributed in the plot region, however the "regions 
of influence" of each peak vary considerably.

This leads to more chains being attracted into the 
lower peaks, with the result that the distribution is 
somewhat deformed (wrong alpha's in the mixture 
model) 

original

MCMC result (deformed)

Many techniques have been developed 
to avoid these pitfalls

38
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Example of application of the MCMC technique in radiobiology

Survival curve for HeLa cells in culture exposed to x-rays. (From Puck TT, Markus Pl: Action of 
x-rays on mammalian cells. J Exp Med 103:653-666, 1956)

39
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Phenomenology: the linear-quadratic law

40
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Example: Target theory

Simple Poisson model: 

Probability of hitting n times a given target, when the average number of good hits is a:

Probability missing the target: 

Average number of hits:

41
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Multitarget model, asymptotic behavior and threshold effect. 

If there are multiple targets, say n targets, all of which must be hit to kill a cell, then the probability of missing 
at least one of them – i.e., the survival probability – is

then, for large dose

i.e., 

which is a linear relation with intercept ln n, and slope -1/D0.
 

42
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Notice that

and that 

The derivatives differ in the origin, and the multitarget model fails to reproduce 
the observed linear-quadratic law. 
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The RCR (Repairable-Conditionally Repairable Damage) model

 In this case the surviving fraction is 

This is a 3-parameter expression, which is not easy to fit to data when the data set is 
small. 
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S = exp -aD( )+bDexp -cD( )
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1.0

D (Gy)
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1a. Simple Gaussian likelihood for the LQ model

1b. Chose exponential priors for the parameters

1c. Complete posterior pdf

1d. Use MCMC to find the MAP estimate (and any moment of the pdf)

46

a rather arbitrary choice of priors 
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a

b

sample points for the 
posterior distribution
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2a. Simple Gaussian likelihood for the RCR model

2b. Chose exponential priors for the parameters

2c. Complete posterior pdf

2d. Use MCMC to find the MAP estimate (and any moment of the pdf)

49

yet another arbitrary choice of priors 
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Path in (a,b,c) space
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Fit showing individual components: unsatisfactory result
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S = exp -aD( )+bDexp -cD( )
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Revise priors to include constraint on derivative

(priors vanish where derivative in the origin is positive)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

D (Gy)

S = exp -aD( )+bDexp -cD( )
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D (Gy)
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