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Chapter 1

Markov Chains

This chapter introduces Markov chatna special kind of random process which is said to have “no angimthe
evolution of the process in the future depends only on thegmiestate and not on where it has been in the past. In
order to be able to study Markov chains, we first need to intcecthe concept of a stochastic process.

1.1 Stochastic processes

Definition 1.1 (Stochastic process). A stochastic procesX is a family {X; : ¢ € T} of random variables
X, : 2 — S.Tis hereby called thendex sef(*time”) and S is called thestate space

We will soon focus on stochastrocesses in discrete timiee. we assume thdt € N or 7' C Z. Other choices
would beT = [0, 00) or T" = R (processes in continuous tijner I’ = R x R (spatial procesp

An example of a stochastic process in discrete time wouldhbesequence of temperatures recorded every
morning at Braemar in the Scottish Highlands. Another exeamwuld be the price of a share recorded at the
opening of the market every day. During the day we can tragsltlare price continuously, which would constitute
a stochastic process in continuous time.

We can distinguish between processes not only based oririek setl’, but also based on their state space
which gives the “range” of possible values the process dem t&n important special case arises if the state space

S is a countable set. We shall then cAlladiscrete processThe reasons for treating discrete processes separately

are the same as for treating discrete random variablesaepamwe can assume without loss of generality that the
state space are the natural numbers. This special caseimilbut to be much simpler than the case of a general
state space.

Definition 1.2 (Sample Path).  For a given realisationv € {2 the collection{ X, (w) : ¢t € T'} is called thesample
pathof X atw.

If T = N (discrete time) the sample path is a sequencg;4# R (continuous time) the sample path is a function
fromRto S.
Figure 1.1 shows sample paths both of a stochastic procetisdrete time (panel (a)), and of two stochastic

processes in continuous time (panels (b) and (c)). The psacepanel (b) has a discrete state space, whereas the

process in panel (c) has the real numbers as its state spam#ifuous state space”). Note that whilst certain
stochastic processes have sample paths that are (almelsf) stantinuous or differentiable, this does not need to
be the case.

* named after the Andrey Andreyevich Markov (1856-1922), a Rossithematician.
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Figure 1.1. Examples of sample paths of stochastic processes.

A stochastic process is not only characterised by the malrdistributions ofX;, but also by the dependency
structure of the process. This dependency structure carfressed by thénite-dimensional distributionsf the
process:

P(Xy, € Ay,.... Xy, € Ay)

wherety,....t, € T, k € N, and Ay, ..., A, are measurable subsets $f In the case ofS c R the finite-
dimensional distributions can be represented using tbit glistribution functions

Fuy (@1, mp) = P(Xy, € (00,21, ..., Xy, € (=00, 2]).

This raises the question whether a stochastic prakesdully described by its finite dimensional distributions.
The answer to this is given by Kolmogorov’s existence theorElowever, in order to be able to formulate the
theorem, we need to introduce the concept of a consisteriyfaffinite-dimensional distributions. To keep things
simple, we will formulate this condition using distributi® functions. We shall call a family of finite dimensional
distribution functiononsistentf for any collection of timeg, ... ¢, forall j € {1,...,k}

Fty oty tgtyoreti) (@15 251,400,251, o) = Flay syt eeti) (B0 1, s+ )
(CONH)
This consistency condition says nothing else than that talireensional members of the family have to be the
marginal distributions of the higher-dimensional memlzéithe family. For a discrete state space, (1.1) corresponds
to

wherep,_..)(-) are the joint probability mass functions (p.m.f.). For atimmous state space, (1.1) corresponds to

/f(t] ,,,,, oastitipnsenti) (Tl ooy T, T Tty @8) dy = fray ) (T 1 Ty D)

wheref_.)(-) are the joint probability density functions (p.d.f.).
Without the consistency condition we could obtain diffénesults when computing the same probability using
different members of the family.

Theorem 1.3 (Kolmogorov).  LetFy, ..., be afamily of consistent finite-dimensional distributiondtions. Then

there exists a probability space and a stochastic procéssuch that
Fuy iy (@1, mp) = P(X, € (00,21, .., Xy, € (=00, 2]).

Proof. The proof of this theorem can be for example found in (Gihnmah 3kohorod, 1974). O
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Thus we can specify the distribution of a stochastic probgseriting down its finite-dimensional distributions.
Note that the stochastic proce&sis not necessarily uniquely determined by its finite-dimenal distributions.
However, the finite dimensional distributions uniquelyedatine all probabilities relating to events involving an at
most countable collection of random variables. This is h@seat least as far as this course is concerned, all that
we are interested in.

In what follows we will only consider the case of a stochagtiocess in discrete time i.&. = Ny (or Z).
Initially, we will also assume that the state space is discre

1.2 Discrete Markov chains

1.2.1 Introduction

In this section we will define Markov chains, however we wiltfis on the special case that the state spasdat
most) countable. Thus we can assume without loss of getyeifadit the state spaceis the set of natural numbers
N (or a subset of it): there exists a bijection that uniquelypseach element t§ to a natural number, thus we can
relabel the statek, 2,3, .. ..

Definition 1.4 (Discrete Markov chain).  Let X be a stochastic process in discrete time with countables¢dite”)
state spaceX is called aMarkov chain (with discrete state spa@eX satisfies thévlarkov property

P(Xip1 = 21| Xe = 1,00, Xo = 20) = P(Xey1 = 241 | Xe = @)

This definition formalises the idea of the process dependimthe past only through the present. If we know the
current stateX,, then the next stat&, ., is independent of the past stat&s, ... X, ;. Figure 1.2 illustrates this

idea?
X
c
. 8
Past 5] Future
. - ./.\\ ﬁ- //.\
7 ~ - - N
: »7 i \\\\E‘/// AN

.

t—1 t t41

Figure 1.2. Past, present, and future of a Markov chain.at

Proposition 1.5. The Markov property is equivalent to assuming that foriadt Nand allt; < ... <t <t
P(Xip1 = 21| Xy, = @y, Xy, = 24y) = P(Xyg1 = 20| Xy, = 24,).
Proof. (homework) O

Example 1.1 (Phone line). Consider the simple example of a phone line. It can eitheulsg fwe shall call this state
1) or free (which we shall cal)). If we record its state every minute we obtain a stochasticgss{ X; : ¢t € No}.

2 A similar concept larkov proc g=Xxists for processes in continuous time. Seeletg.p: / / en. wi ki pedi a. or g/
wi ki / Mar kov_process.
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If we assume thaf X, : ¢ € Ny} is a Markov chain, we assume that probability of a new phofieeang ended

is independent of how long the phone call has already laSiilarly the Markov assumption implies that the
probability of a new phone call being made is independenbuf long the phone has been out of use before.

The Markov assumption is compatible with assuming that #egyea pattern changes over time. We can assume that
the phone is more likely to be used during the day and morégyltkebe free during the night. <

Example 1.2 (Random walk on Z). Consider a so-callechndom walkon Z starting atX, = 0. At every time, we
can either stay in the state or move to the next smaller or laexer number. Suppose that independently of the
current state, the probability of staying in the currentesisil —« — 3, the probability of moving to the next smaller
number iso and that the probability of moving to the next larger numises,iwherea, 5 > 0 with o + 5 < 1.
Figure 1.3 illustrates this idea. To analyse this processare detail we writeX;; as

l-a-f8 1-a-p 1-a—-fp 1l—-a-p l—-a—-p l1l-a-f0 l-a-—
,O0,0,0,0,0,0,0

e O C e C s () e O Yo C) it €
@ a a @ @

Figure 1.3. lllustration (“Markov graph”) of the random walk dA.

8
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«

X1 =X, + E,,
with the E, being independent and for all
P(E=-1)=a P(E,=0)=1-a—4 P(E, =1) =p.
Itis easy to see that
PXepi=x—1Xe=at)=a PXpp=a|Xi=2)=1—a—-0 PXip=x:+1Xs=a24) =0

Most importantly, these probabilities do not change whenasedition additionally on the pastX; ; =

Ti1,...,Xo = o}

P(Xip =z | X =24, Xy 1 =241, Xo = m0)
P(E; = z1 — @] By = @ — @1, Eo = 1 — 20, Xo = 7o)
E,LE;
=OP(E = w1 — @) = P(Xep1 = 2| Xy = 24)
Thus{X, : t € Ny} is a Markov chain. <

The distribution of a Markov chain is fully specified by itstial distribution I’(X, = () and thetransition
probabilitiesP (X1 = x,4+1|X; = z,), as the following proposition shows.
Proposition 1.6.  For a discrete Markov chaif X, : ¢ € Ny} we have that

t—1
P(Xy =, X1 =2-1,...,Xo = x0) = P(Xo = x0) - H P(X7q1 =27 01| X7 = 7).

=0

Proof. From the definition of conditional probabilities we can serihat
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P(X: = x4, Xeo1 = 24-1,..., Xo = m0) = P(Xo = w0)
CP(Xy = 2| Xo = 20)
P(Xy = 22| Xy = 21, Xo = x0)

=P(Xy=22|X1=21)

P(Xy =2y Xy =1, Xo = 1)

=P(Xi=a¢|Xe—1=2¢-1)

t—1
= IP(XT+1 = :I;7+1‘XT = 17) 0
0

=

Comparing the equation in proposition 1.6 to the first equmif the proof (which holds for any sequence of
random variables) illustrates how powerful the Markoviaawanption is.

To simplify things even further we will introduce the contey a homogeneous Markov chaiwhich is a
Markov chains whose behaviour does not change over time.

Definition 1.7 (Homogeneous Markov Chain). A Markov chain{X; : ¢ € Ny} is said to behomogeneoul
P(Xpp1 = j|Xe = 1) = pyj
forall i, 5 € S, and independent gfe Nj.
In the following we will assume that all Markov chains are lageneous.

Definition 1.8 (Transition kernel). ~ The matrixK = (k;;);; with k;; = P(X,41 = j| X, = 4) is called thetransi-
tion kernel(or transition matriy of the homogeneous Markov chaih

We will see that together with the initial distribution, vehiwe might write as a vectoxy = (P(Xo = 7)) ics),
the transition kerneK fully specifies the distribution of a homogeneous Markovicha
However, we start by stating two basic properties of thesitam kernelK:

— The entries of the transition kernel are non-negative (treyprobabilities).
— Each row of the transition kernel sumsitoas

Zktj = Z]P(Xiﬂ =jIXi=1) =P(Xe1 € S|Xe =i) =1
J J

Example 1.3 (Phone line (continued)). Suppose that in the example of the phone line the probaliléy/someone
makes a new call (if the phone is currently unused) is 10% hadtobability that someone terminates an active
phone call is 30%. If we denote the states)pphone not in use) ant(phone in use). Then
P(X; 41 =0/X;,=0)=09
P(Xip1 =01X;, =1) =103

0.9 0.1
K= .
( 03 0.7 )

The transition probabilities are often illustrated usirgpecalled Markov graph. The Markov graph for this example

P(X.1 = 1)X, = 0) = 0.1
P(Xip1 =1X; =1) =07,

and the transition kernel is

is shown in figure 1.4. Note that knowirl§ alone is not enough to find the distribution of the statestligs we
also need to know the initial distributioky,. <

10 1. Markov Chains
0.9 0.7
0.3
Figure 1.4. Markov graph for the phone line example.

Example 1.4 (Random walk on Z (continued)). The transition kernel for the random walk @nis a Toeplitz matrix
with an infinite number of rows and columns:

a l-a—g 53 0 0 0
K= 0 @ l—a—0 Jo] 0 0
0 0 « l—a—p ) 0
0 0 0 o l-a—-03 p
The Markov graph for this Markov chain was given in figure 1.3. <

We will now generalise the concept of the transition kermglich contains the probabilities of moving from
statei to stepj in one step, to then-step transition kernel, which contains the probabilibésoving from state
to stepj in m steps:

Definition 1.9 ( m-step transition kernel). ~ The matrixK (™) = (kf;”)),;] with kf;rz) = P(X¢ym = j| Xt = i) is
called them-step transition kernedf the homogeneous Markov chainh

We will now show that then-step transition kernel is nothing other than thepower of the transition kernel.
Proposition 1.10. Let X be a homogeneous Markov chain, then

i. KM = K™ and
i. P(X, =j) = (AK™);.

Proof. i. We will first show that formn,, m, € N we have thakK (m1tm2) = K (m1) . g (m2):

P( Xt tms = kX =) = ZP(Xt+m1+m2 =k, Xeym, = j|X¢ = 1)

J
=3 P(Xismms = kX, =5, X0 =) P(Xppm, = j|X; =)
T =P (X my=El Xt pm, =) =P (X g my=k| X, =)

=D P(Xigm, = KXy = §)P(Xigm, = j|X; =)

J
SR RGE = ()
J

ThusK® = K - K = K?, and by inductiorK (") = K.

i P(X, =35) =Y P(Xp =j,Xo=1) =Y P(Xp = j|Xo =) P(Xo = i) = (\K™); O
n N— — ——
(3 g :Kg;,,,) :(AO%

Example 1.5 (Phone line (continued)). In the phone-line example, the transition kernel is

0.9 0.1
K- .
( 0.3 0.7 >

Them-step transition kernel is
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m 3+(2)" 1-()"
om g (09 01\ _ (%)m (“i)m
03 07 @) a-(3)

Thus the probability that the phone is free given that it was fLO hours ago B(X¢410 = 0|X; = 0) = K((,‘l(?) =

(D" 7assom _
1 = Grengos = 0.7515. q

1.2.2 Classification of states

Definition 1.11 (Classification of states). (a) A statei is said tolead toa statej (“i ~ j”) if thereisanm > 0
such that there is a positive probability of getting fromtetato statej in m steps, i.e.

Y = P(Xpam = j| X0 = 1) > 0.
(b) Two states andj are said tocommunicaté” i ~ ;") if i ~» j andyj ~ i.
From the definition we can derive for stateg, k € S:

— i i (@skY) = P(Xyo = i[X, = i) = 1 > 0), thusi ~ i.

— If i ~ j,then alsgj ~ i.

— If i ~ jandj ~~ k, then there existu;;, m2 > 0 such that the probability of getting from statéo statej in
m;; Steps is positive, i.ekf;"”) =P(X¢ym,; = j|X: = 1) > 0, as well as the probability of getting from stgte
to statek in i steps, ek = P(Xiim,, = k|X; = j) = P(Xesm,, 4m,, = k| Xem, = j) > 0. Thus
we can get (with positive probability) from stat¢o statek in m;; + m ;. Steps:

mij+m; . o 1. . _ .
kﬁk ») = ]P(XHm,JerJk = k‘Xt = Z) = Z]P(X:erlﬁm]k = ]"|Xt+m“ = L)]P(prmﬁ7 = L‘Xt = Z)

> P(Xitmiy+mp = B[ Xtwmy; = 5) P(Xigm,; = j1Xe =1) >0

>0 >0

Thusi ~ j andj ~ kimply i ~ k. Thusi ~ j andj ~ k also implyi ~ k

Thus~ is an equivalence relation and we can partition the stateespanto communicating classesuch that all
states in one class communicate and no larger classes camietf A clas€” is calledclosedif there are no paths
going out ofC, i.e. for alli € C we have that ~ j implies thatj € C.

We will see that states within one class have many propértiesmmon.

Example 1.6. Consider a Markov chain with transition kernel

110300
000100
KZOO%OUi
000010
02000 %
00 5 o004

The Markov graph is shown in figure 1.5. We have that 4,2 ~ 5,3 ~ 6,4 ~ 5. Thus the communicating
classes ar¢l}, {2,4,5}, and{3,6}. Only the clas{3, 6} is closed. <

Finally, we will introduce the notion of aireducible chain This concept will become important when we
analyse the limiting behaviour of the Markov chain.

Definition 1.12 (Irreducibility). A Markov chain is calledrreducibleif it only consists of a single class, i.e. all
states communicate.

12 1. Markov Chains
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Figure 1.5. Markov graph of the chain of example 1.6. The communicating clasedd & {2,4,5}, and{3,6}.

The Markov chain considered in the phone-line example (gesl.1,1.3, and 1.5) and the random walkZon
(examples 1.2 and 1.4) are irreducible chains. The chairarhple 1.6 is not irreducible.

In example 1.6 the stat@s4 and5 can only be visited in this order: if we are currently in staige. X; = 2),
then we can only visit this state again at time 3, ¢ + 6, .... Such a behaviour is referred to as periodicity.

Definition 1.13 (Period). (a) A statei € S is said to haveperiod
d(i) = ged{m >1: Kl(im) >0},

wheregced denotes the greatest common denominator.
(b) If d(i) = 1 the state is calledaperiodic
(c) If d(i) > 1 the statei is calledperiodic

For a periodic state, the number of steps required to possibly get back to thte staist be a multiple of the
periodd(i).

To analyse the periodicity of a stateve must check the existence of paths of positive probalafiy of length
m going from the state back tos. If no path of lengthm exists, thean;") = 0. If there exists a single path of
positive probability of lengthn, thean;”) > 0.

Example 1.7 (Example 1.6 continued). In example 1.6 the statehas periodi(2) = 3, as all paths from back to2
have a length which is a multiple 8f thus

K >0, K9 >0 K >o

All other I(ﬁ;"’) = 0(% & Ny), thus the period ig(2) = 3 (3 being the greatest common denominatas,f, 9, . . .).
Similarly d(4) = 3 andd(5) = 3.

The states and6 are aperiodic, as there is a positive probability of rentegrin these states, thu'éég”) >0
and K" > 0 for all m, thusd(3) = d(6) = 1. q

In example 1.6 all states within one communicating classthadsame period. This holds in general, as the
following proposition shows:

Proposition 1.14. (a) All states within a communicating class have the samioger
(b) In anirreducible chain all states have the same period.

Proof. (a) Supposé ~ j. Thus there are paths of positive probability between thesestates. Suppose we can
get fromi to j in m;; steps and fronj to i in m;; steps. Suppose also that we can get froback toj in m;;
steps. Then we can get fronback toi in m;; +m;; steps as well as im;; +m; +m;; steps. Thusn;; +m;
andmg; + m;; + m;; must be divisible by the period(i) of statei. Thusm;;; is also divisible byd(:) (being
the difference of two numbers divisible k).
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The above argument holds for any path betwgandj, thus the length of any path frojrback toj is divisible
by d(i). Thusd(i) < d(j) (d(j) being the greatest common denominator).
Repeating the same argument with tbkes ofi and;j swapped gives ug(j) < d(i), thusd(i) = d(j).

(b) Anirreducible chain consists of a single communicatifegs, thus (b) is implied by (a). O

1.2.3 Recurrence and transience

If we follow the Markov chain of example 1.6 long enough, wel eventually end up switching between state
and6 without ever coming back to the other states Whilst the staggl6 will be visited infinitely often, the other
states will eventually be left forever.

In order to formalise these notions we will introduce thenber of visitsn state i:

+o00
Vi=> lix,—g
t=0

The expected number of visits in statgiven that we start the chain iris

+o0 +oo +oo too
E(Vi|Xo=i)=F <Z Lixo—iy| Xo = i) =S BOx gl Xe =) = Y P(X =i[X, = i) = Y &
t=0 t=0 t=0 t=0

Based on whether the expected number of visits in a statdimgténor not, we will classify states as recurrent
or transient:

Definition 1.15 (Recurrence and transience).  (a) A statei is calledrecurrentf E(V;| X, = i) = +o0.
(b) A statei is calledtransientf E(V;| X = i) < +o0.

One can show that a recurrent state will (almost surely) biéed infinitely often, whereas a transient state will
(almost surely) be visited only a finite number of times.

In proposition 1.14 we have seen that within a communicatiags either all states are aperiodic, or all states
are periodic. A similar dichotomy holds for recurrence araghsience.

Proposition 1.16.  Within a communicating class, either all states are transi all states are recurrent.

Proof. Suppose ~ j. Then there exists a path of lengify; leading from: to j and a path of lengtim;; from j
back toi, i.e.kgj"‘“) >0 andk-](;””) > 0.
+o0
Suppose furthermore that the state transient, i.eE(V;| X, = i) = Z kf? < +o0.

. . t=0
This implies

+oo

1 +oo 1 +oo
E(V;|Xo =) = Zk(t) I Z g pOplms) 2 Zk(m.Wth«FmJ,L)
t=0 t=0

Ji (mij) g (mji) ij J3 it = (mij)1.(mji)
t=0 kij ]"jz S kiy kji ¢
Skl(:nﬂﬁ.)

+o00
1 (s)
< g 2k < oo,
ij ji

s=0
thus state is be transient as well. O
Finally we state without proof two simple criteria for deteéning recurrence and transience.

Proposition 1.17.  (a) Every class which is not closed is transient.
(b) Every finite closed class is recurrent.

Proof. For a proof see (Norris, 1997, sect. 1.5). O
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Example 1.8 (Examples 1.6 and 1.7 continued). The chain of example 1.6 had three class@s;, {2,4,5}, and
{3,6}. The classe$1} and{2,4,5} are not closed, so they are transient. The c{8s§} is closed and finite, thus
recurrent. q

Note that an infinite closed class is not necessarily rentrfthe random walk of. studied in examples 1.2
and 1.4 is only recurrent if it is symmetric, i@.= 3, otherwise it drifts off to—oco or +0c. An interesting result is
that a symmetric random walk G&¥ is only recurrent ifp < 2 (see e.g. Norris, 1997, sect. 1.6).

1.2.4 Invariant distribution and equilibrium

In this section we will study the long-term behaviour of Mawkchains. A key concept for this is the invariant
distribution.

Definition 1.18 (Invariant distribution). Lety = (u;):cs be a probability distribution on the state spaggeand let
X be a Markov chain with transition kern&. Theng is called theinvariant distributior(or stationary distributiop
of the Markov chainy if®
WK =y
If u is the stationary distribution of a chain with transitiorrie! K, then
HI _ “/ K= M/Kz — = H/Km _ M/K(m)

~~

=p'K
for all m € N. Thus if X, in drawn fromg, then all.X,,, have distributionu: according to proposition 1.10

P(Xy = j) = (WK™); = (n);
for all m. Thus, if the chain hag as initial distribution, the distribution ok will not change over time.

Example 1.9 (Phone line (continued)). In example 1.1,1.3, and 1.5 we studied a Markov chain wittlestates)
(“free”) and1 (“in use”) and which modeled whether a phone is free or netrénsition kernel was

09 0.1
K= .
0.3 0.7
To find the invariant distribution, we need to solu&K = p’ for u, which is equivalent to solving the following
system of linear equations:

o _ ~01 03\ () _[0
(K'-Dp=0, e (041 70~3> (“1> (O>

It is easy to see that the corresponding system is underrdieted and that-1p + 31 = 0, i.e.pp = (po, 1)’ x
(3,1),i.e.p= (3, ]Z)' (asp has to be a probability distribution, thug + 1 = 1). q

Not every Markov chain has an invariant distribution. Thedam walk onZ (studied in examples 1.2 and 1.4)
for example does not have an invariant distribution, as alieviing example shows:

Example 1.10 (Random walk on Z (continued)). The random walk o had the transition kernel (see example 1.4)

a l-a—p 153 0 0 0
K= 0 @ l—a—-p 53 0 0
0 0 o 1-a—p ) 0
0 0 0 @ l-a—3 0§

3i.e. u is the left eigenvector K corresponding to the eigenvaliie
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Asa+(1—a—pF)+ 3 =1wehaveforun=(...,1,1,1,...) thatp'K = p, howeveru cannot be renormalised
to become a probability distribution. <

We will now show that if a Markov chain is irreducible and dpélic, its distribution will in the long run tend
to the invariant distribution.

Theorem 1.19 (Convergence to equilibrium). Let X be an irreducible and aperiodic Markov chain with invariant
distribution p. Then
P(X, =) =5

for all statesi.

Outline of the proof. We will explain the outline of the proof using the idea of cbing.
Suppose thak has initial distribution\ and transition kerneK. Define a new Markov chailr” with initial
distributionp and same transition kernBl. Let 7" be the first time the two chains “meet” in the statee.

T=min{t>0: X;, =Y, =i}
Then one can show th#t(7' < o) = 1 and define a new procegsby
Xy ift<T
Zy = )
Y, ift>T

Figure 1.6 illustrates this new chaifi. One can show thaf is a Markov chain with initial distribution\ (as

Figure 1.6. lllustration of the chains{ (— — —), Y (— —) andZ (thick line) used in the proof of theorem 1.19.

Xy = Zy) and transition kernek (as bothX andY have the transition kern&). ThusX andZ have the same
distribution and for alt € Ny we have thal’ (X, = j) = P(Z; = j) for all statesj € S.

The chainY” has its invariant distribution as initial distribution ulP(Y; = j) = y; forall t € Ny andj € 5.

Ast — +oo the probability of{Y; = Z,} tends tol, thus

P(X: =j) =P(Z =j) = P(Y; = j) = ;-
A more detailed proof of this theorem can be found in (No897, sec. 1.8).

Example 1.11 (Phone line (continued)). We have shown in example 1.9 that the invariant distributitthe Markov
chain modeling the phone line js = (%, 1), thus according to theorem 1.19.X, = 0) — 2 andP(X;, = 1) —
%. Thus, in the long run, the phone will be free 75% of the time. <

Example 1.12. This example illustrates that the aperiodicity conditiortieorem 1.19 is necessary.
Consider a Markov chaiX’ with two statesS = {1,2} and transition kernel
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K:<?;>4

This Markov chains switches deterministically, thus go#isee1, 0, 1, 0, ... or0, 1, 0, 1, .... Thusitis
periodic with perioc.
Its invariant distribution igs’ = (3,1), as

11\/0 1 11
K=(>-= =(z2)=u.
= (1) (1)) = (53) =

However if the chain is started iy = 1, i.e. A = (1,0), then

1 iftisodd 0 if tisodd
P(X,=0)= I B PX,=1)= e )
0 if tiseven 1 iftiseven
which is different from the invariant distribution, undehigh all these probabilities would b%a <

1.2.5 Reversibility and detailed balance

In our study of Markov chains we have so far focused on coorlitig on the past. For example, we have defined
the transition kernel to consist &f; = P(X:4, = j|X; = i). What happens if we analyse the distribution’gf
conditional on the future, i.e we turn the universal clockkveards?

P(X; =7, X111 =1) P(X:=3j)
P(Xp1 =1) P(X¢p1 =1)
This suggests defining a new Markov chain which goes backnie.tiAs the defining property of a Markov

P(Xy = j[Xip1 = 1) = =P(Xpp1 =i Xy =) -

chain was that the past and future are conditionally indégengiven the present, the same should hold for the
“backward chain”, just with the@les of past and future swapped.

Definition 1.20 (Time-reversed chain). For 7 € Nlet{X, : ¢ = 0,...,7} be a Markov chain. Thefly; : ¢ =
0,...,7} defined byy; = X, _, is called thetime-reversed chaicorresponding toX .

We have that

: ; . . . . P(Xs=j,Xe41=1
P = lYit =) = POy = X1 =) = PO, = | = ) = O Pt 20
s - v
x . P =) P(X, =J)
=P (X1 =1 X5 =) - =k - -,
Ko =X =) B =0 =M B = 1)

thus the time-reversed chain is in general not homogenewas, if the forward chaiX is homogeneous.

This changes however if the forward chathis initialised according to its invariant distributign In this case
P(Xe41 = i) = p; andP(X, = j) = p; for all s, and thusY” is a homogeneous Markov chain with transition
probabilities

P(Y; = j[Yimy = i) = ki - f— (12)
In general, the transition probabilities for the time-nesesl chain will thus be different from the forward chain.

Example 1.13 (Phone line (continued)). In the example of the phone line (examples 1.1, 1.3, 1.5ah8,1.11) the
transition matrix was
The invariant distribution wag = (3 ‘)’.

0.9 0.1
K= .
( 0.3 0.7 >
11

If we use the invariant distributiop as initial distribution forXy, then using (1.2)
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P(Y, = 0]Y; -1 = 0) = koo - % = koo = P(X; = 0]X; 1 = 1)
0
3
P(Y; = 0|Y;_1 = 1) = kop - % =014 =03=kio=P(X; =0[X,_, =1)
4
H1 i
P(Y; =1]Y;-1 =0) = k1o - o= 0.3- % =0.1=kp =P(X; =1/X;-1 =0)
4
’
P, =1Y,o1=1) =k - ﬁTi =k =P(X; =1|X;-1 =1)
Thus in this case both the forward chaihand the time-reversed chain have the same transition probabilities.
We will call such chainsime-reversibleas their dynamics do not change when time is reversed. <

We will now introduce a criterion for checking whether a chai time-reversible.

Definition 1.21 (Detailed balance). A transition kernelK is said to be irdetailed balancwith a distributiony if
foralli,j € S
pikij = pjk;i-

It is easy to see that Markov chain studied in the phone lianple (see example 1.13) satisfies the detailed-
balance condition.

The detailed-balance condition is a very important contegit we will require when studying Markov Chain
Monte Carlo (MCMC) algorithms later. The reason for its valece is the following theorem, which says that if a
Markov chain is in detailed balance with a distributianthen the chain is time-reversible, and, more importantly,
pis the invariant distribution. The advantage of the detbidalance condition over the condition of definition 1.18
is that the detailed-balance condition is often simplertieak, as it does not involve a sum (or a vector-matrix
product).

Theorem 1.22. Let X be a Markov chain with transition kern® which is in detailed balance with some distribu-
tion p on the states of the chain. Then

i. pis the invariant distribution ofX".
ii. If initialised according tou, X is time-reversible, i.e. botiX and its time reversal have the same transition
kernel.

Proof. i. We have that
(WK); = E Hikji = pi E kij = i,
J J

=niki; N———'
=1

thusp/K = ¢/, i.e. o is the invariant distribution.
ii. LetY be the time-reversal of, then using (1.2)

Hikij
o 7’,7#]’]@‘1’7’ _ o .
P(Y; =j|Yio1 =1) = T kij = P(Xy = j| X1 = 14),
thusX andY have the same transition probabilities. O

Note that not every chain which has an invariant distributstime-reversible, as the following example shows:
Example 1.14. Consider the following Markov chain aft = {1, 2, 3} with transition matrix

0 08 0.2
K=]02 0 08
08 02 0

The corresponding Markov graph is shown in figure 1.7: Thtiostary distribution of the chainip = (3,1, 1).
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Uy N;s
0.20.2
OF=10)
0.8
Figure 1.7. Markov graph for the Markov chain of example 1.14.

However the distribution is not time-reversible. Using ation (1.2) we can find the transition matrix of the time-

reversed chaiiy’, which is
0 0.2 08

0.8 0 0.2

02 08 0
which is equal tdK’, rather tharK. Thus the chains{ and its time reversal” have different transition kernels.
When going forward in time, the chain is much more likely to arkwise in figure 1.7; when going backwards in
time however, the chain is much more likely to go counteckiaise. <

1.3 General state space Markov chains

So far, we have restricted our attention to Markov chainb witliscrete (i.e. at most countable) state sgacEhe
main reason for this was that this kind of Markov chain is meabier to analyse than Markov chains having a more
general state space.

However, most applications of Markov Chain Monte Carlo altipons are concerned with continuous random
variables, i.e. the corresponding Markov chain has a coatis state spacs, thus the theory studied in the preced-
ing section does not directly apply. Largely, we defined ncosicepts for discrete state spaces by looking at events
of the type{ X; = j}, which is only meaningful if the state space is discrete.

In this section we will give a brief overview of the theory wmtying Markov chains with general state spaces.
Although the basic principles are not entirely differemtrfrthe ones we have derived in the discrete case, the study
of general state space Markov chains involves many moraiealities and subtleties, so that we will not present
any proofs here. The interested reader can find a more rigoreatment in (Meyn and Tweedie, 1993), (Nummelin,
1984), or (Robert and Casella, 2004, chapter 6).

Though this section is concerned with general state spaeesilivnotationally assume that the state space is
S =R%

First of all, we need to generalise our definition of a Markbaia (definition 1.4). We defined a Markov chain
to be a stochastic process in which, conditionally on thegmg the past and the future are independent. In the
discrete case we formalised this idea using the conditipraiability of { X, = j} given different collections of
past events.

In a general state space it can be that all events of the{tpe= ;j} have probability 0, as it is the case for
a process with a continuous state space. A process with @oons state space spreads the probability so thinly
that the probability of exactly hitting one given statedigor all states. Thus we have to work with conditional
probabilities of sets of states, rather than individuaiesta

Definition 1.23 (Markov chain).  Let X be a stochastic process in discrete time with general staéeeS. X is
called aMarkov chainif X satisfies thévlarkov property

P(Xi1 € AlXo =20,..., X = a) = P(X14y € AIX, = 2)

for all measurable setd C S.
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If S is at most countable, this definition is equivalent to debnitl.4.

In the following we will assume that the Markov chairhismogeneous.e. the probabilitie® (X, € A|X; =
x;) are independent d@f For the remainder of this section we shall also assume tbaan express the probability
from definition 1.23 using &ansition kernelk : S x S — RJ:

P(Xtp1 € AlX;y = a4) = / K(wy,2441) dwgg (1.3)
A

where the integration is with respect to a suitable dommgatieasure, i.e. for example with respect to the Lebesgue
measure ifS = R%.* The transition kerneK (z, y) is thus just the conditional probability density &f; given
X, =z

We obtain the special case of definition 1.8 by settig, j) = k;;, wherek;; is the(s, j)-th element of the
transition matrixiK. For a discrete state space the dominating measure is théirgpueasure, so integration just
corresponds to summation, i.e. equation (1.3) is equivaten

P(Xp €AX =)= Y huapyr-

Trp1€A

We have for measurable sétC S that
P(Xipm € A|X; = xy) = AL"'/SK(IuItJrl)K(th-THz) o K(Zrpme1s Topm) dtian - dtim1dTgm,
thus them-step transition kernel is
K(’”)(zu,xm) = /S . </SK($0.IL) s K (@1, @) ATy - day
Them-step transition kernel allows for expressing thestep transition probabilities more conveniently:

P(Xeym € Al Xy =) = / K(m)(wt,l‘wrm) dZiym
A

Example 1.15 (Gaussian random walk on R). Consider the random walk di defined by

X1 =Xy + By,

2
whereE, ~ N(0, 1), i.e. the probability density function df, is ¢(z) = exp <7%> This is equivalent to

1
. V2T
assuming that
Xip1| Xy =z ~ N(zy, 1).

We also assume thét, is independent oK, £, . .., E;_;. Suppose thak, ~ N(0,1). In contrast to the random
walk onZ (introduced in example 1.2) the state space of the Gausailom walk isR. In complete analogy with
example 1.2 we have that

P(Xip1 € AlXy =ay,...,Xo=20) =P(E; € A— 2| Xy = 4,..., X0 = )
=P(E; € A—24) = P(Xiy1 € A|X; = a),
whereA — z; = {a — z; : a € A}. ThusX is indeed a Markov chain. Furthermore we have that
P(Xip1 €AlXy=a) =P(E, € A—xy) = /Ad)(.'t,,ﬂ — ) dzpgq
Thus the transition kernel (which is nothing other than theditional density ofX,,|X; = x;) is thus
K(2e, x141) = o(Te41 — a1)

To find them-step transition kernel we could use equation (1.3). Howee resulting integral is difficult to
compute. Rather we exploit the fact that

* A more correct way of stating this would B&(X,+1 € A|X; = 2;) = [

3 K (e, deesr).
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Xigm =Xe +Ev+ ...+ Etym—1,
—_———

~N(0,m)
thus X4, | Xt = ¢ ~ N(z¢,m).
P(Xism € AIXy = 20) = P(Xppm — X¢ € A — 1) = / L <M> A iim
avm\" v
Comparing this with (1.3) we can identify
K“’”(zt‘mum) =

T — Tt
® +m
vm

asm-step transition kernel. <

3~

In section 1.2.2 we defined a Markov chain to be irreducibleéfe is a positive probability of getting from any
statei € S to any other statg € S, possibly via intermediate steps.

Again, we cannot directly apply definition 1.12 to Markov tisawith general state spaces: it might be — as
it is the case for a continuous state space — that the pratyadifilhitting a given state i§ for all states. We will
again resolve this by looking at sets of states rather thdimidual states.

Definition 1.24 (Irreducibility). ~ Given a distributiornu, on the statess, a Markov chain is said to bg-irreducible
if for all sets A with ;1(A) > 0 and for allz € S, there exists am € N, such that

P(Xiym € AlX; =) = / KO (2, y) dy > 0.
A

If the number of steps, = 1 for all 4, then the chain is said to kstrongly -irreducible

Example 1.16 (Gaussian random walk (continued)). In example 1.15 we had thaf, | X; = z; ~ N(x,1). As
the range of the Gaussian distributiorlfiswe have thalP(X; 4, € A|X; = ;) > 0 for all setsA of non-zero
Lebesgue measure. Thus the chain is strongly irreducilitetive respect to any continuous distribution. <

Extending the concepts of periodicity, recurrence, andsience studied in sections 1.2.2 and 1.2.3 from the
discrete case to the general case requires additionaliteticnncepts likatomsandsmall setswhich are beyond
the scope of this course (for a more rigorous treatment aitisencepts see e.g. Robert and Casella, 2004, sections
6.3 and 6.4). Thus we will only generalise the concept of menice.

In section 1.2.3 we defined a discrete Markov chain to be rentyrif all states are (on average) visited infinitely
often. For more general state spaces, we need to consideuithiger of visits to a set of states rather than single
states. LeV, = zj;g 11x,e4) be the number of visits the chain makes to states in thd setS. We then define
the expected number of visits it C .S, when we start the chainine S:

+00 too oo
E(ValXo=2z)=E <Z 1(xteA}‘Xo = I) = ZE(l{x,eA}lXo =)= Z/ K (z,y) dy
t=0 t=0 =074

This allows us to define recurrence for general state speéestart with defining recurrence of sets before extend-
ing the definition of recurrence of an entire Markov chain.

Definition 1.25 (Recurrence). (a) A setA C S'is said to berecurrenfor a Markov chainX if forall z € A
E(Va| Xy = x) = +o0

(b) A Markov chain is said to beecurrentif
i. The chain isu-irreducible for some distributiop.
ii. Every measurable set C S with pu(A) > 0 is recurrent.
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According to the definition a set is recurrent if on average visited infinitely often. This is already the case if
there is a non-zero probability of visiting the set infinjtefften. A stronger concept of recurrence can be obtained
if we require that the set is visited infinitely often with jability 1. This type of recurrence is referred totdarris
recurrence

Definition 1.26 (Harris Recurrence). (&) A setA C S is said to beHarris-recurrenfor a Markov chainX if for
alze A
P(Vy =4 Xg=2) =1,
(b) A Markov chain is said to bearris-recurrentif
i. The chain isu-irreducible for some distributiop.
ii. Every measurable set C S with ;i(A) > 0 is Harris-recurrent.

Itis easy to see that Harris recurrence implies recurréfmediscrete state spaces the two concepts are equiva-

lent.

Checking recurrence or Harris recurrence can be very diffitve will state (without) proof a proposition
which establishes that if a Markov chain is irreducible aad & unique invariant distribution, then the chain is also
recurrent.

However, before we can state this proposition, we need taeefvariant distributions for general state spaces.

Definition 1.27 (Invariant Distribution). A distribution; with density functiory,, is said to be thénvariant distri-
butionof a Markov chainX with transition kernelK if

50) = [ S o) do
S
for almost ally € S.

Proposition 1.28. Suppose thaX is a u-irreducible Markov chain having as unique invariant distribution. Then
X is also recurrent.

Proof. see (Tierney, 1994, theorem 1) or (Athreya et al., 1992) O

Checking the invariance condition of definition 1.27 regaicomputing an integral, which can be quite cum-
bersome. A simpler (sufficient, but not necessary) comligpjust like in the case discrete case, detailed balance.

Definition 1.29 (Detailed balance). A transition kernelK is said to be indetailed balancevith a distribution
with densityf,, if for almost allz,y € S

'f“((E)K(JJA,]/) = ,f“(y)K(y. 'L)

In complete analogy with theorem 1.22 one can also show igéneral case that if the transition kernel of a
Markov chain is in detailed balance with a distributjorthen the chain is time-reversible and heas its invariant
distribution. Thus theorem 1.22 also holds in the genersg ca

1.4 Ergodic theorems

In this section we will study the question whether we can useovations from a Markov chain to make inferences
about its invariant distribution. We will see that under somegularity conditions it is even enough to follow a single
sample path of the Markov chain.

For independent identically distributed data the Law ofgealumbers is used to justify estimating the expected
value of a functional using empirical averages. A similautecan be obtained for Markov chains. This result is
the reason why Markov Chain Monte Carlo methods work: itvedlais to set up simulation algorithms to generate
a Markov chain, whose sample path we can then use for estignedrious quantities of interest.
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Theorem 1.30 (Ergodic Theorem). Let X be apu-irreducible, recurrentR?-valued Markov chain with invariant
distribution .. Then we have for any integrable functipn R — R that with probability1

L1 B
i 3 00%) — Eulolx) = /S 9(@) fula) dz

t—oo 4
for almost every starting valu&, = z. If X is Harris-recurrent this holds for every starting value

Proof. For a proof see (Roberts and Rosenthal, 2004, fact 5), (RaebdrCasella, 2004, theorem 6.63), or (Meyn
and Tweedie, 1993, theorem 17.3.2). O

Under additional regularity conditions one can also deai@entral Limit Theorem which can be used to justify
Gaussian approximations for ergodic averages of Markoinsh@his would however be beyond the scope of this
course.

We conclude by giving an example that illustrates that thedi@mns of irreducibility and recurrence are neces-
sary in theorem 1.30. These conditions ensure that the eéhpgrmanently exploring the entire state space, which
is a necessary condition for the convergence of ergodiagest

Example 1.17. Consider a discrete chain with two stafes-= {1, 2} and transition matrix

(1)

The corresponding Markov graph is shown in figure 1.8. Thairchvill remain in its intial state forever. Any

(O 0O
© ©

Figure 1.8. Markov graph of the chain of example 1.17

distributiony on {1, 2} is an invariant distribution, as
H/K — ;L’I — “/

for all . However, the chain is not irreducible (or recurrent): wergat get from staté to state2 and vice versa.
If the initial distribution isp = («, 1 — «)’ with « € [0, 1] then for everyt € N we have that

P(X;=1)=a P(X,=2)=1-a.

By observing one sample path (which is eithiet, 1,... or2,2,2,...) we can make no inference about the distri-
bution of X, or the parameter. The reason for this is that the chain fails to explore thesiae. switch between
the stated and2). In order to estimate the parametewe would need to look at more than one sample patha

Note that theorem 1.30 does not require the chain to theagerin example 1.12 we studied a periodic chain.
Due to the periodicity we could not apply theorem 1.19. We leawever apply theorem 1.30 to this chain. The
reason for this is that whilst theorem 1.19 was about theibligion of states at a given timg theorem 1.30 is
about averages, and the periodic behaviour does not afferages.



Chapter 2

An Introduction to Monte Carlo Methods

2.1 What are Monte Carlo Methods?

This lecture course is concerned with Monte Carlo methotig;iware sometimes referred tostechastic simula-
tion (Ripley (1987) for example only uses this term).

Examples of Monte Carlo methods include stochastic integrawhere we use a simulation-based method to
evaluate an integral, Monte Carlo tests, where we resoitrtolation in order to compute the p-value, and Markov-
Chain Monte Carlo (MCMC), where we construct a Markov chalricl (hopefully) converges to the distribution
of interest.

A formal definition of Monte Carlo methods was given (amorakers) by Halton (1970). He defined a Monte
Carlo method as “representing the solution of a problem aaranpeter of a hypothetical population, and using
a random sequence of numbers to construct a sample of théagiopufrom which statistical estimates of the
parameter can be obtained.”

2.2 Introductory examples

Example 2.1 (A raindrop experiment for computing 7). Assume we want to compute an Monte Carlo estimate of
using a simple experiment. Assume that we could producddtmirain” on the squarg-1, 1] x [—1, 1], such that
the probability of a raindrop falling into a regidR C [—1,1]? is proportional to the area &, but independent of
the position ofR. It is easy to see that this is the case iff the two coordinates are i.i.d. realisations of uniform
distributions on the intervdl-1, 1] (in shortX, Y "= U[—1,1)).

Now consider the probability that a raindrop falls into thtwircle (see figure 2.1). Itis

1 dzdy
o area of the unit circle  {a2+y2<1} T T
P(drop within circle = = Z = L
(drop 9 area of the square J[ ldedy 2-2 4
{-1<z,y<1}

In other words,
m = 4 - P(drop within circle,

i.e. we found a way of expressing the desired quantiés a function of a probability.

Of course we cannot compul®drop within circlg without knowingz, however we can estimate the probability
using our raindrop experiment. If we observeaindrops, then the number of raindrapshat fall inside the circle
is a binomial random variable:
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Figure 2.1. lllustration of the raindrop experiment for estimating

Z ~ B(n,p), with p = IP(drop within circlg.

Thus we can estimafeby its maximum-likelihood estimate

. 7
p=—,
n
and we can estimate by
Z
f=dp=4-=.
n

Assume we have observed, as in figure 2.1, that 77 of the 10@rogis were inside the circle. In this case, our

estimate ofr is
4-77
=00 7P

B8

which is relatively poor.
However thdaw of large numberguarantees that our estimateonverges almost surely to Figure 2.2 shows the
estimate obtained afteriterations as a function of for n = 1,...,2000. You can see that the estimate improves
asn increases.
We can assess the quality of our estimate by computing a errdfédinterval forr. As we haveZ ~ B(100, p) and
p= % we use the approximation that ~ N(100p, 100p(1 — p)). Hencep ~ N(p,p(1 — p)/100), and we can
obtain a 95% confidence interval fpusing this Normal approximation:
0.77 - (1 - 0.77) 0.77 - (1 - 0.77)

{0.77—1.96» — =, 0.77+ 1.96 -

00 , 00 } = [0.6875, 0.8525),

As our estimate ofr is four times the estimate @f we now also have a confidence interval for
[2.750, 3.410]

In more general, let,, = 4p,, denote the estimate after having observedindrops. A(1 —2«) confidence interval

N [Pn(1 —Pn) . pn (1 — P
|:Pn*31—a P - pn),Pn‘i’Zlf(y P - pn):| ;

thus a(1 — 2«) confidence interval forr is

(4 — 7 n(4 — T,
[irn — Z1-a\/ (4 = ) " ﬂ"),frn +21,M/7ﬂ”( - in) N

for pis then
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Monte Carlo estimate ofr (with 90% confidence interval)

Estimate ofr
3
L

n
A
o
S
T T T T T
0 500 1000 1500 2000
Sample size

Figure 2.2. Estimate ofr resulting from the raindrop experiment

Let us recall again the different steps we have used in thepbea

— We have written the quantity of interest (in our cageas an expectatioh.

— Second, we have replaced this algebraic representatitve gfiantity of interest by a sample approximation to it.
The law of large numbers guaranteed that the sample appagiinconverges to the algebraic representation, and
thus to the quantity of interest. Furthermore we used the@dimit theorem to assess the speed of convergence.

It is of course of interest whether the Monte Carlo methodsrahore favourable rates of convergence than
other numerical methods. We will investigate this in theecaisMonte Carlo integration using the following simple
example.

Example 2.2 (Monte Carlo Integration). Assume we want to evaluate the integral

1
/ f(z)de  with  f(z) = %{765536.%8 +2621442" — 4096002° + 3112962° — 114688z + 163842%)
JO

using a Monte Carlo approaéiFigure 2.3 shows the function farc [0, 1]. Its graph is fully contained in the unit
squar€0, 1]2.

Once more, we can resort to a raindrop experiment. Assumeaw@roduce uniform rain on the unit square. The
probability that a raindrop falls below the curve is equathe area below the curve, which of course equals the
integral we want to evaluate (the area of the unit squareds fye don’t need to rescale the result).

A more formal justification for this is, using the fact thé(t:) = fof(z) 1dt,

1dt dx

1 Lorf@) {(m.,tigf(m)}
/Uf(z)d:v:/O‘/O 1dt do = // 1dtd1:w

{(z,t):t<f(x)} {0<z,t<1}
The numerator is nothing other than the dark grey area umgecurve, and the denominator is the area of the
unit square (shaded in light grey in figure 2.3). Thus the esgipn on the right hand side is the probability that a

' A probability is a special case of an expectatiorPds!) = IE(I4).

? As f is a polynomial we can obtain the result analytically, &S — -2

35.5-7

~ 0.4816.
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raindrop falls below the curve.

We have thus re-expressed our quantity of interest as alpititpn a statistical model. Figure 2.3 shows the result
obtained when observing 100 raindrops. 52 of them are bdievctrve, yielding a Monte-Carlo estimate of the
integral 0f0.52.

If after n raindrops a proportiop,, is found to lie below the curve, @ — 2«) confidence interval for the value of

[pa(1 — pn (1 —
{ﬁnlefa P - p”),ﬁ,ﬁzlw P = Pn)

Thus the speed of convergence of our (rather crude) Monte Gethod isOp (n~1/2). <

the integral is

0 1

Figure 2.3. lllustration of the raindrop experiment to compgﬂef(w)dw

When using Riemann sums (as in figure 2.4) to approximate thgria from example 2.2 the error is of order
O(n=1)34

Recall that our Monte Carlo method was “only” of ord@p (n~'/2). However, it is easy to see that its speed
of convergence is of the same order, regardless of the dioren§the support off. This is not the case for other
(deterministic) numerical integration methods. For a tlimensional functiory the error made by the Riemann
approximation using function evaluations i€)(n~/2). 5

This makes the Monte Carlo methods especially suited fdr-Hignensional problems. Furthermore the Monte
Carlo method offers the advantage of being relatively sengpid thus easy to implement on a computer.

2.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old @ent (1 Kings vii. 23 and 2 Chronicles iv. 2) contains
a rough estimate af (using the columns of King Solomon'’s temple). Monte Carldimes are a somewhat more
recent discipline. One of the first documented Monte Carfieeinents iBuffon’s needlexperiment (see example

2.3 below). Laplace (1812) suggested that this experimembe used to approximate

3 The error made for each “bar” can be upper bounde%feynax |f'(z)|. Letn denote the number evaluationsjfofand thus
the number of “bars”). AsA is proportional tol, the error made for each bar@(n2). As there are: “bars’, the total
errorisO(n™1).

4 The order of convergence can be improved when using the trapeseidnd (even more) by using Simpson’s rule.

5 Assume we partition both axes inta segments, i.e. we have to evaluate the functios: m? times. The error made for
each “bar” isO(m %) (each of the two sides of the base area of the “bar” is proportional &, so is the upper bound on
|f(x) = f(&mia)|, yieldingO(m~?)). There are in totain? bars, so the total error is ony(m "), or equivalentlyO (n~'/2).
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If (@) = f(Emia)| < 5 - max [ f'(x)] for jo—emal< 2

0 Emid 1

Figure 2.4. lllustration of numerical integration by Riemann sums

Example 2.3 (Buffon’s needle). In 1733, the Comte de Buffon, George Louis Leclerc, askedidi@ving question
(Buffon, 1733): Consider a floor with equally spaced linedistancey apart. What is the probability that a needle
of length! < ¢ dropped on the floor will intersect one of the lines?

Buffon answered the question himself in 1777 (Buffon, 1777)

Assume the needle landed such that its angle(&ee figure 2.5). Then the question whether the needle @utisra
line is equivalent to the question whether a box of wititn 6 intersects a line. The probability of this happening
is

P(interseci)) = 151(;19.

Assuming that the anglis uniform on[0, =) we obtain

) I 1 Tlsinf 1 l 4 21
P = P - = e = . si = —.
(intersecy ' A (intersecit)) - o ' A PR a6 s /0 sin 6 d >

=2

When dropping: needles the expected number of needles crossing a linesis thu

2nl
"
Thus we can estimate by
) ) )
T/
| 01
| —~
Py S——
lsin6
(a) lllustration of the geometry behind (b) Results of theBuffon’s needleexperi-
Buffon’s needle ment using 50 needles. Dark needles inter-
sect the thin vertical lines, light needles do
not.

Figure 2.5. lllustration of Buffon’s needle
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whereX is the number of needles crossing a line.
The Italian mathematician Mario Lazzarini performed Buffoneedle experiment in 1901 using a needle of length
I = 2.5¢cm and linesd = 3cm apart (Lazzarini, 1901). Of 3408 needles 1808 needlesedaséine, so Lazzarini’s

estimate ofr was
N 2-3408-2.5 17040 355

TETI808-3 424 1337
which is nothing other than the best rational approximat@mn with at most 4 digits each in the denominator and

the numeratof. q

Historically, the main drawback of Monte Carlo methods whaat tthey used to be expensive to carry out.
Physical random experiments were difficult to perform and/ae the numerical processing of their results.

This however changed fundamentally with the advent of tigéalicomputer. Amongst the first to realise this
potential were John von Neuman and Stanistaw Ulam, who wene working for the Manhattan project in Los
Alamos. They proposed in 1947 to use a computer simulatiorsdtving the problem of neutron diffusion in
fissionable material (Metropolis, 1987). Enrico Fermi poesly considered using Monte Carlo techniques in the
calculation of neutron diffusion, however he proposed te asmechanical device, the so-called “Fermiac”, for
generating the randomness. The name “Monte Carlo” goestba®tanistaw Ulam, who claimed to be stimulated
by playing poker (Ulam, 1983). In 1949 Metropolis and Ulanbighed their results in thdournal of the American
Statistical AssociatioMetropolis and Ulam, 1949). Nonetheless, in the follow@tgyears Monte Carlo methods
were used and analysed predominantly by physicists, anldyngtatisticians: it was only in the 1980s — following
the paper by Geman and Geman (1984) proposing the Gibbseamyhat the relevance of Monte Carlo methods
in the context of (Bayesian) statistics was fully realised.

2.4 Pseudo-random numbers

For any Monte-Carlo simulation we need to be able to repredaadomness by a computer algorithm, which,
by definition, is deterministic in nature — a philosophical@dox. In the following chapters we will assume that
independent (pseudo-)random realisations from a unifdffn1] distribution’ are readily available. This section
tries to give very brief overview of how pseudo-random nurstman be generated. For a more detailed discussion
of pseudo-random number generators see Ripley (1987) ahh097).

A pseudo-random number generator (RNG) is an algorithm farse output th& [0, 1] distribution is a suitable
model. In other words, the number generated by the pseutiBnanumber generator should have the segievant
statistical properties as independent realisationslgifial] random variable. Most importantly:

— The numbers generated by the algorithm should reproduepémtience, i.e. the numbexs, . .., X,, that we
have already generated should not contain any discermfdemation on the next valu&,, , ;. This property is
often referred to as the lack of predictability.

— The numbers generated should be spread out evenly acrassethal [0, 1].

In the following we will briefly discuss the linear congrughtgenerator. It is not a particularly powerful gen-
erator (so we discourage you from using it in practise), hawé is easy enough to allow some insight into how
pseudo-random number generators work.

S That Lazzarini's experiment was that precise, however, casts soniat over the results of his experiments (see Badger,
1994, for a more detailed discussion).

™ We will only use theU(0, 1) distribution as a source of randomness. Samples from other distribationise derived from
realisations ofJ(0, 1) random variables using deterministic algorithms.
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Algorithm 2.1 (Congruential pseudo-random number generator). 1. Choose:, M € N, ¢ € Ny, and the initial

value (“seed”)Z, € {1,... M — 1}.
2. Fori=1,2,...

SetZ; = (aZ;—1 + ¢) mod M, andX; = Z; /M.

The integersZ; generated by the algorithm are from the &&t1, ..., M — 1} and thus theX; are in the interval
[0,1).

It is easy to see that the sequence of pseudo-random nuntihgdepends on the seéfy. Running the pseudo-
random number generator twice with the same seed thus desenactly the same sequence of pseudo-random

numbers. This can be a very useful feature when debuggingoyau code.
Example 2.4. Cosider the choice of = 81, ¢ = 35, M = 256, and seed;, = 4.
Zy = (81-4+35) mod 256 =359 mod 256 = 103

(81-103+35) mod 256 = 8378 mod 256 = 186
(81-186+35) mod 256 = 15101 mod 256 = 253

Z
Zs3

The correspondingl; are X; = 103/256 = 0.4023438, Xo = 186/256 = 0.72656250, X; = 253/256 =
0.98828120.

The main flaw of the congruential generator its “crystallinature (Marsaglia, 1968). If the sequence of gen-
erated values(, X,, ... is viewed as points in an-dimension cubg they lie on a finite, and often very small
number of parallel hyperplanes. Or as Marsaglia (1968)tptthie points [generated by a congruential generator]
are about as randomly spaced in the unitube as the atoms in a perfect crystal at absolute zero.hiheber of
hyperplanes depends on the choice.of, and/.

An example for a notoriously poor design of a congruenti@ug®-random number generator is RANDU,
which was (unfortunately) very popular in the 1970s and deedxample in IBM’s System/360 and System/370,
and Digital's PDP-11. It used = 2'° + 3, ¢ = 0, andM = 23'. The numbers generated by RANDU lie on only
15 hyperplanes in the 3-dimensional unit cube (see figune 2.6

Figure 2.7 shows another cautionary example (taken froneRif987). The left-hand panel shows a plot of
1,000 realisations of a congruential generator with= 1229, ¢ = 1, and M = 2''. The random numbers lie
on only 5 hyperplanes in the unit square. The right hand pstmals the outcome of the Box-Muller method for
transforming two uniform pseudo-random numbers into ag@aBaussians (see example 3.2).

Due to this flaw of the congruential pseudo-random numbeeggar, it should not be used in Monte Carlo
experiments. For more powerful pseudo-random number georersee e.g. Marsaglia and Zaman (1991) or Mat-
sumoto and Nishimura (1998). GNU R (and other environmemtsyide you with a large choice of powerful
random number generators, see the corresponding help PBYEKi nd) for details.

8 The (k + 1)-th point has the coordinaté .1, . - ., Xnr+n—1)-
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Figure 2.6. 300,000 realisations of the RANDU pseudo-random number gengafatted in 3D. A point corresponds to a triplet
(23k—2, Tak—1,23,) for k = 1,...,100000. The data points lie on 15 hyperplanes.
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(a) 1,000 realisations of this congruential generator plot-
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(b) Supposedly bivariate Gaussian pseudo-random num-
bers obtained using the pseudo-random numbers shown

in panel (a).

Figure 2.7. Results obtained using a congruential generator wit 1229, ¢ = 1, andM = 2!



Chapter 3

Fundamental Concepts: Transformation, Re-

jection, and Reweighting

3.1 Transformation methods

In section 2.4 we have seen how to create (pseudo-)randorberarfrom the uniform distributiot[0, 1]. One
of the simplest methods of generating random samples froistabaition with cumulative distribution function
(c.df)F(z) = P(X < z) is based on the inverse of the c.d.f..

F(z) 1

_/

F"(u) z‘

Figure 3.1. lllustration of the definition of the generalised inverse of a c.d.f.F’

The c.d.f. is an increasing function, however it is not neagly continuous. Thus we define theneralised
inverse'~ (u) = inf{z : F(z) > w}. Figure 3.1 illustrates its definition. If" is continuous, therd~ (u) =
F~Y(u).

Theorem 3.1 (Inversion Method).  LetU ~ U[0, 1] and F' be a c.d.f.. Thed~ (U) has the c.d.fF".

Proof. Itis easy to see (e.qg. in figure 3.1) that (u) < x is equivalent tax < F'(z). Thus forU ~ U0, 1]
P(F~(U) < #) = P(U < F(x)) = F(x),

thusF is the c.d.f. ofX = F~(U). O

Example 3.1 (Exponential Distribution). The exponential distribution with rate > 0 has the c.d.fF\(z) = 1 —
exp(—Az) for & > 0. Thus Fy (u) = Fy *(u) = —log(1 — u)/\. Thus we can generate random samples from
Expo(\) by applying the transformation log(1 — U) /A to a uniformU|0, 1] random variablé/. AsU and1 — U,
of course, have the same distribution we can-useg(U)/\ as well. q
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The Inversion Method is a very efficient tool for generatingdom numbers. However very few distributions
possess a c.d.f. whose (generalised) inverse can be eakfitiently. Take the example of the Gaussian distribu-
tion, whose c.d.f. is not even available in closed form.

Note however that the generalised inverse of the c.d.f.ssgoe possible transformation and that there might
be other transformations that yield the desired distridsutAn example of such a method is the Box-Muller method
for generating Gaussian random variables.

Example 3.2 (Box-Muller Method for Sampling from Gaussians). When sampling from the normal distribution, one
faces the problem that neither the c.ef:), nor its inverse has a closed-form expression. Thus we ¢arsecthe
inversion method.

It turns out however, that if we consider a pair, X, <" N(0,1), as a point X;, X») in the plane, then its
polar coordinate$R, #) are again independent and have distributions we can easilpls from:9 ~ U0, 2x], and
R? ~ Expo(1/2).

This can be shown as follows. Assume that U[0, 27] andR? ~ Expo(1/2). Then the joint density oft, %)

1 1 1 1 1
f((,w,,z)(é, 1"2) = El[ogﬂ](ﬁ) 3 exp <7§r2> = Eexp <7§r2> . 1[1)727,](0)
To obtain the probability density function of

X1 = VR?-cos(f), Xo = VR? -sin(f)

we need to use the transformation of densities formula.

oz, Oxy
om 0ny 1
f(X1,X2)(1'111‘2):f(H,TQ)(e(Il-IZ)vrz(Il-IZ»" i 2“ o &P <*§($%+Z§>2> 2

96 or’

(e () (29

2 27! 2 ?
as
‘707”0‘ g:; | —rsin(0) %&0) 7‘ rsin(0)?  rcos(9)? 1
S T

Thus X, X5 ~ N(0, 1). As their joint density factorisesy; and X, are independent, as required.
Thus we only need to generate~ U[0, 2], andR? ~ Expo(1/2). UsingU,, U, "< U[0, 1] and example 3.1
we can generat® = v/ R? andd by

R=+/—2log(Uh), 0 = 27Us,

and thus
Xy =/ —2log(Uy) - cos(2nU>), Xo = /—2log(Uy) - sin(27Us)
are two independent realisations frofl €0, 1) distribution. q

The idea of transformation methods like the Inversion Mdtivas to generate random samples from a distribu-
tion other than the target distribution and to transfornmitseich that they come from the desired target distribution.
In many situations, we cannot find such a transformationdsed form. In these cases we have to find other ways
of correcting for the fact that we sample from the “wrong”tdisution. The next two sections present two such
ideas: rejection sampling and importance sampling.
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3.2 Rejection sampling

The basic idea of rejection sampling is to sample froniretrumental distributioh and reject samples that are
“unlikely” under the target distribution.

Assume that we want to sample from a target distribution whaensity f is known to us. The simple idea
underlying rejection sampling (and other Monte Carlo alhans) is the rather trivial identity

@) 1
f(z) = / 1du= / Locu<f(z) du
0 0 N——
)

Thus f(z) can be interpreted as the marginal density of a uniformiligion on the area under the densjtj)
{(z.u): 0<u<f(x)}.

Figure 3.2 illustrates this idea. This suggests that we eaegte a sample frofhby sampling from the area under
the curve.

0 1

Figure 3.2. lllustration of example 3.3. Sampling from the area under the curvé @tay) corresponds to sampling from the
Beta(3,5) density. In example 3.3 we use a uniform distribution of the light grey ne¢aas proposal distribution. Empty
circles denote rejected values, filled circles denote accepted values.

Example 3.3 (Sampling from a Beta distribution). The Beta(a, b) distribution @, b > 0) has the density

fla) = %w“’l(l — ) foro <z <1,

wherel'(a) = f(;r” ta~1exp(—t) dt is the Gamma function. Fer, b > 1 the Beta(a, b) density is unimodal with
mode(a — 1)/(a + b — 2). Figure 3.2 shows the density ofBeta(3,5) distribution. It attains its maximum of
1680/729 ~ 2.305 atz = 1/3.

Using the above identity we can draw frddata(3, 5) by drawing from a uniform distribution on the area under the
density{(z,u) : 0 <u < f(z)} (the area shaded in dark gray in figure 3.2).

In order to sample from the area under the density, we willausienilar trick as in examples 2.1 and 2.2. We will
sample from the light grey rectangle and only keep the sasriplat fall in the area under the curve. Figure 3.2
illustrates this idea.

Mathematically speaking, we sample independestly~ U[0,1] andU ~ UJ[0,2.4]. We keep the paitX,U) if

U < f(X), otherwise we reject it.

The conditional probability that a paiX, U) is kept if X = x is

P(U < f(X)IX =) = P(U < f(x)) = f(a)/2.4

! The instrumental distribution is sometimes referred tpraposal distribution
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As X andU were drawn independently we can rewrite our algorithm asawDX from U[0, 1] and accepX’ with
probability f(X')/2.4, otherwise rejeck . <

The method proposed in example 3.3 is based on bounding tisitylef the Beta distribution by a box. Whilst
this is a powerful idea, it cannot be directly applied to ottistributions, as the density might be unbounded or
have infinite support. However we might be able to bound tmsitieof f(x) by M - g(x), whereg(z) is a density
that we can easily sample from.

Algorithm 3.1 (Rejection sampling).  Given two densitied, g with f(z) < M - g(z) for all z, we can generate a
sample fromf as follows:

1. DrawX ~ g
2. AcceptX as a sample fronf with probability

fX)
M-g(X)’
otherwise go back to step 1.
Proof. We have
; o f(z) ,,7fxf(1')dz
P(X € X and is accepted= /X g(x) M- g(0) dx = % s (3.1)
=P(X is accepteflX =x)
and thus
P(X is acceptefi= P(X < S and is accepted= % (3.2)
yielding
) P(X € X andis accepted [, f(x) du/M /
Pz e X|X = == = x) dx. .
(z € X|X is accepteyl P (X is acceptel 1M . f(z) de (3.3)
Thus the density of the values accepted by the algorithfif-is O

Remark 3.2. If we know f only up to a multiplicative constant, i.e. if we only knewjz), wheref(z) = C - 7(x),

we can carry out rejection sampling using
m(X)
M- g(X)

as probability of rejecting(, providedr(z) < M - g(z) for all z. Then by analogy with (3.1) - (3.3) we have

() e — Jym(@)de [ f(x) dx
M) T T M T oM

P(X € X and is accepted= / g(x)
JX
P(X is acceptefi=1/(C - M), and thus

P(z € X|X is acceptefl= M :/ f(z) dz
X

1/(C- M)

Example 3.4 (Rejection sampling from the N(0, 1) distribution using a Cauchy proposal). Assume we want to sam-
ple from theN(0, 1) distribution with density

using a Cauchy distribution with density
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Figure 3.3. lllustration of example 3.3. Sampling from the area under the deffiity (dark grey) corresponds to sampling from
theN(0, 1) density. The proposal(z) is aCauchy(0, 1).

as instrumental distributiohThe smallesfl/ we can choose such thatz) < Mg(z) is M = /27 - exp(—1/2).
Figure 3.3 illustrates the results. As before, filled cisaterrespond to accepted values whereas open circles corre-
spond to rejected values.

Note that it is impossible to do rejection sampling from a €rgudistribution using (0, 1) distribution as
instrumental distribution: there is N’ € R such that

1

M
(1 +a?) <

1 o x?
I. <p [ — .
V2mo? b 2)’

the Cauchy distribution has heavier tails than the GausBgribution. <

3.3 Importance sampling

In rejection sampling we have compensated for the fact tkeasampled from the instrumental distributigf)
instead off(x) by rejecting some of the values proposeddgfy). Importance sampling is based on the idea of
using weights to correct for the fact that we sample from tterumental distributiog(x) instead of the target
distribution f(z).

Importance sampling is based on the identity

P(X € A) :/Af(z) dr = /Ag(x) ﬁ—;}i dr = /Ag(m)w(:c) dx (3.4)
=:w(x)

for all g(-), such thay(z) > 0 for (almost) allz with f(z) > 0. We can generalise this identity by considering the
expectatiorE s (h(X)) of a measurable functioh:

= x)h\x T = (EMLI T = x)w(x)h(x T = w - n
By (X)) = [ fhie)do = [ o) T be) do = [ gloput@nta) de = Byw(x)-1x). 39
if g(x) > 0 for (@lmost) allz with f(z) - h(z) # 0.
Assume we have a samplg , ..., X, ~ g. Then, provideds,|w(X) - h(X)] exists,

a.s.

%Zw(X»h(Xi) = By (w(X) - A(X))

(by the Law of Large Numbers) and thus by (3.5)

n a.s.

S w(XDR) " By (X)),

2 We denote bys the set of all possible value can take, ie.fg flz)de = 1.
3 There is not much point is using this method is practise. The Box-Mulleraddthmore efficient.
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In other words, we can estimate= IE;(h(X)) by

3

S

w(X;)h(X;)
1

=

i

Note that whilsti, (w(X)) = [5 L8 g(x) do = [ f(z) = 1, the weightsw; (X), ..., w,(X) do not neces-

sarily sum up toe, so one might want to consider teelf-normalisedrersion

1

= () ;w(Xi)h(Xi).

This gives rise to the following algorithm:
Algorithm 3.2 (Importance Sampling).  Choosey such that supfy) D supff - k).

1. Fori=1,...,n:
i. GenerateX; ~ g.

il. Setw(X;) = 434

2. Return either ”
= Zicy wXDh(X)
Xty w(X)

= Sy w(X)h(X)
n
The following theorem gives the bias and the variance of itgmze sampling.

or

Theorem 3.3 (Bias and Variance of Importance Sampling). (@) Ey(ir) = p
N Var,(w(X) - h(X
(0) Var, (1) = Va2 () (X))

© Ey(@)=p - +0(n?)
_ Vary(w(X) - h(X)) — 2uC0v, (w(X), w(X) - h(X)) + uVar, (w(X))

(d) Var, (i) = +0(m™?)

. Var, (w(X) = Cov,(w(X), w(X) -h(X))

Proof. (a) I, (l Zw(mh(xi)) - % SE, (w(X)h(X:) = Ef(h(X))
i=1

n
i=1

(b) Var, <% S w(X)h(xX) ) = % ZVarg(w(X,-,)h(X,,)) _ Vary (w(X)h(X))

i=1 i
(c) and (d) see (Liu, 2001, p. 35) O

Note that the theorem implies that in contrasttihe self-normalised estimatpris biased. The self-normalised
estimator;, however might have a lower variance. In addition, it has lamoadvantage: we only need to know
the density up to a multiplicative constant, as it is oftea tase in hierarchical Bayesian modelling. Assume
f(z) =C - 7(x), then

7 Xi n  Cw(X; n (X
o TiawXoa(X) | Xin gehO0) _ Xin Gt Tk fixgh(40)
- n . - X - Con(X; - n w(X; )
Lz w(X) ey Y Sy Y eS

i.e. the self-normalised estimatgrdoes not depend on the normalisation cons@ntOn the other hand, as we
have seen in the proof of theorem 3.3 it is a lot harder to @eatlye theoretical properties of the self-normalised
estimatoryi.

Although the above equations (3.4) and (3.5) hold for eyenith supfg) > supff - ») and the importance
sampling algorithm converges for a large choice of sgichne typically only considers choices gthat lead to
finite variance estimatorsThe following two conditions are each sufficient (albeithiex restrictive) for a finite
variance ofii:

4 By complete analogy one can show that is enough to ke to a multiplicative constant.
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— f(z) < M - g(z) andVars(h(X)) < +o0.
— Sis compact,f is bounded above ofi, andg is bounded below o1§.

Note that under the first condition rejection sampling cao &le used to sample frofn

So far we have only studied whether a distributipfieads to a finite-variance estimator. This leads to the
question which instrumental distributiondptimal i.e. for which choicévar (/i) is minimal. The following theorem
answers this question:

Theorem 3.4 (Optimal proposal).  The proposal distributiory that minimises the variance gfis

_ Ih@lf@)
Js L@ dt°

9" (x)
Proof. We have from theroem 3.3 (b) that
2 2
n-Varg (1) = Vary (w(X) - h(X)) = Var, (%) =1, <(%) )— (]Eg (%) > .
=Bg(A)=pn

2
Thus we only have to minimisg,, ((%) ) When plugging ing* we obtain:

~( [ s d)

2
On the other hand, we can apply the Jensen inequatiyE, ((%) ) yielding

() ) (o (A1) - (s

An important corollary of theorem 3.4 is that importance plng can besuper-efficienti.e. when using the

O

optimal g* from theorem 3.4 the variance fpfis less than the variance obtained when sampling direaiiy ff:

MX1)+ ...+ h(X,)

n - Varg ( ) = E;(h(X)?) — p?

2
> <Ef|h(X>\>2—u2:( [ nlse dz) 12 = - Vary. ()

by Jensen’s inequality. Unleé$.X) is (almost surely) constant the inequality is strict. Thisran intuitive expla-
nation to the super-efficiency of importance sampling. gsihinstead off causes us to focus on regions of high
probability whergh| is large, which contribute most to the integiéy} (h(X)).

Theorem 3.4 is, however, a rather formal optimality restMhen usingi: we need to know the normalisation
constant ofy*, which is exactly the integral we are looking for. Furthermeed to be able to draw samples frgm
efficiently. The practically important corollary of theone3.4 is that we should choose an instrumental distribution
g whose shape is close to the onefof|h/|.

Example 3.5 (Computing IE;| X | for X ~ t3). Assume we want to compuié;|X| for X from at-distribution with
3 degrees of freedomy) using a Monte Carlo method. Three different schemes arsidered

5If X is real-valued random variable, arica convex function, theg(IE(X)) < BE(1(X)).
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— SamplingX,, ..., X,, directly fromt; and estimatingc | X | by
1
= Z"lX'i"
n =

— Alternatively we could use importance sampling using &vhich is nothing other than a Cauchy distribution)
as instrumental distribution. The idea behind this chasadbat the density,, (z) of at; distribution is closer to
f(z)|z|, wheref(x) is the density of a; distribution, as figure 3.4 shows.

— Third, we will consider importance sampling usin§l€0, 1) distribution as instrumental distribution.

3] — fal fa) (Targen
---- f(x) (direct sampling)

9 () (IS t1)
gneo.n (@) (ISN(0, 1))

o

o

~ A

(=}

- A

o

o A

o T ; : ‘ ‘

-4 2 0 2 4

Figure 3.4. lllustration of the different instrumental distributiohs in example 3.5.

Note that the third choice yields weights of infinite varianas the instrumental distributioN (0, 1)) has lighter
tails than the distribution we want to sample from)( The right-hand panel of figure 3.5 illustrates that thisich
yields a very poor estimate of the integialz| f () da.

Sampling directly from the; distribution can be seen as importance sampling with algtisiw; = 1, this choice
clearly minimises the variance of the weights. This howedl@es not imply that this yields an estimate of the
integral [ || f () d2 of minimal variance. Indeed, after 1500 iterations the eivgi standard deviation (over 100
realisations) of the direct estimate(i$)345, which is larger than the empirical standard deviatiop @fhen using
aty distribution as instrumental distribution, whichli$182. So using a; distribution as instrumental distribution
is super-efficient (see figure 3.5).

Figure 3.6 somewhat explains why the distribution is a far better choice than th&0, 1) distributon. As the
N(0,1) distribution does not have heavy enough tails, the weigtdgéeo infinity agz| — +oc. Thus larggz| get
large weights, causing the jumps of the estimaghown in figure 3.5. The; distribution has heavy enough tails,
so the weights are small for large values|ef, explaining the small variance of the estimatevhen using a;
distribution as instrumental distribution. q

Example 3.6 (Partially labelled data). Suppose that we are given count data from observations igtewps, such
that

Y; ~ Poi(\;) if the i-th observation is from group 1
Y; ~ Poi(A2) if the i-th observation is from group 2
The data is given in the table 3.1. Note that only the first teseovations are labelled, the group label is missing

for the remaining ten observations.
We will use aGamma(a, 3) distribution as (conjugate) prior distribution fay, i.e. the prior density of; is
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Sampling directly from t; IS usingt; as instrumental distribution 1S using N(0, 1) as instrumental distribution
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Figure 3.5. Estimates of2| X | for X ~ t; obtained after 1 to 1500 iterations. The three panels correspond to teeltfiezent
sampling schemes used. The areas shaded in grey correspondangbef 100 replications.

Sampling directly from ts IS usingt; as instrumental distribution IS using N(0, 1) as instrumental distribution

3.0
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SampleX;; from the instrumental distribution

Figure 3.6. WeightsIV; obtained for20 realisationsX; from the different instrumental distributions.
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Group  Count; Group  Countt; Group  Countt; Group Countt;
1 3 2 14 * 15 * 21
1 6 2 12 * 4 * 11
1 3 2 11 * 1 * 3
1 5 2 19 * 6 * 7
1 9 2 18 * 11 * 18
Table 3.1. Data of example 3.6.
1

) = MG exp(—6)).

I(a)
Furthermore, we believe that a priori each observationiskyjlikely to stem from group 1 or group 2.
We start with analysing the labelled data only, ignoringXBainlabelled observations. In this case, we can analyse
the two groups separately. In grolipve have that the joint distribution of;, . .., Y5, \; is given by
TeRAM ) 1 e
fly, - yss A1) = flyn, .-, ys M) f() = (H Tl . W/\l g exp(—p£A)

i=1

1 1 at+30 a+35
T T AT TR 9% ep(—(8 4 5)A1) oc AT T exp(—(6 4+ 5) M)
i=1Yi-

The posterior distribution of; given the data from group 1 is

LS. ys ) dA

O(A(IHZ?:‘ Y exp(—(8+5)A1)

Falys, - ys) o f(yrs - Y5, A1)

Comparing this to the density of the Gamma distribution wiaiokthat

i=1

M|Y1, ..., Y5 ~ Gamma <a+2yi,ﬂ+5),

and similarly
10
A2|Ys, ..., Yip ~ Gamma (a + Zgﬁ,/} —+ 5) .
=6
Thus, when only using the labelled data, we do not have totres®onte Carlo methods for finding the posterior
distribution.
This however is not the case any more once we also want tadethe unlabelled data. The conditional density of
Y;|A1, A2 for an unlabelled observation £ 10) is
Lexp(— AN 1exp(—Ao) A

FWilA, A2) = 3 ol 2 ol

The posterior density for the entire sample (using bothllebend unlabelled data) is

T A2y, s y20)< f(AD) F (Y, - ysIA) FOA2) f (W6, - - -5 y10lA2) - F(ya1, -+ Y20l A1, A2)

o< f(Alyr,eys) < f(A2lYs, - y10) =T122,, F(wilAr,x2)
20
o Falyrs o us) falyes - o) [ Flwild de)
i=11

This suggests using importance sampling with the produtttetlistributions of\, |Y7, ..., Y5 and ;| Y, ..., Yigo
as instrumental distributions, i. e. use

g1, A2) = F(Mlyns - ys) f(A2yss - -5 y10)-

The target distribution ig (A1, Aa|y1, .. ., y20), thus the weights are
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_ J(A1, A2lyrs -+, y20)
Wi, hp) = FRTEIC (3.6)
o Ty, - y5) FO2lyo, -y y10) T2y F(yilArs A2)
Fuly, - y5) f(N2lye, - - -, y10)
20 20 . .
=11 fwihr) = T <18xp(*/\1))\1{ +lexp(*A2))\g )

| -1
i=11 i=11 2 Yi: 2 Yi:

Thus we can draw a weighted sample of siZieom the distribution off (A1, A2|y1, . . ., y20) by repeating the three
steps below: times:

1. Draw)\; ~ Gamma (a + ZL Yi, B+ 5)

2. Draw)\y ~ Gamma (a + Eili(; vi, B+ 5)

3. Compute the weight/(\1, A2) using equation (3.6).

From a simulation withh = 50, 000 | obtained4.4604 as posterior mean of; and14.5294 as posterior mean

of \o. The posterior densities are shown in figure 3.7. <
Posterior density of Ay Posterior density of Ap
— Al data o — Al data
--- Labelled data ™ --- Labelled data
0 o
2
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IS
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fat o °
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[S)
o | __. e I3 - I
© [S]
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2 4 6 8 10 10 15 20
N =50000 Bandwidth =0.1036 N =50000 Bandwidth =0.1742

Figure 3.7. Posterior distributions ok; and A, in example 3.6. The dashed line is the posterior density obtained only fem th
labelled data.



Chapter 4

The Gibbs Sampler

4.1 Introduction

In section 3.3 we have seen that, using importance samplégan approximate an expectatign(h (X)) without
having to sample directly fronf. However, finding an instrumental distribution which albws toefficiently
estimatel;(h(X)) can be difficult, especially in large dimensions.

In this chapter and the following chapters we will use a sohawlifferent approach. We will discuss methods
that allow obtaining ampproximatesample fromf without having to sample fronfi directly. More mathematically
speaking, we will discuss methods which generate a Markainalthose stationary distribution is the distribution
of interestf. Such methods are often referred to as Markov Chain Monte QdCMC) methods.

Example 4.1 (Poisson change point model). Assume the following Poisson model of two regimes forandom
variablesys, ..., Y,.!

Y; ~Poi(\;) for i=1,...,M

Y; ~Poi(Ag) for i=M+1,....n
A suitable (conjugate) prior distribution fov; is theGamma(«;, 3;) distribution with density

L aj—1ga; 3
F(O/j))\J B;7 exp(—=f;A;)-

The joint distribution ofY7, ..., Y}, A1, A2, andM is

F(A) =

M

et d o M) = <HM)( 11 M)

] |

i=1 Yi: i=M+1 Yi:

1
I'(as)

L
I'(a1)

If M is known, the posterior distribution of; has the density

)\‘1"171‘3?1 exp(—f1A1) - )\grlﬂ;z exp(—LF2A2).

M
FOIYi, oo Yo, M) o AT RS Y ey ((8) + M)A,

SO
M
M1, Yy, M ~ Gamma (a1+z ,;j1+M> (4.1)
=1
n
AolYi,... Y, M ~ Gamma (ag + > vt M) . (4.2)
i=M+1

! The probability distribution function of thBoi()) distribution isp(y) = SRCAA”

ot
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Now assume that we do not know the change painand that we assume a uniform prior on thefset .., M —
1}. It is easy to compute the distribution 8f given the observationss, ...Y,, and); andX,. It is a discrete
distribution with probability density function proportial to

POMIYL, ., Yoo Ay Az) 0 A2 AT (g — Ay - M) 3)
The conditional distributions in (4.1) to (4.3) are all easysample from. It is however rather difficult to sample
from the joint posterior of Ay, A2, M). <

The example above suggests the strategy of alternatelylisanfiwm the (full) conditional distributions ((4.1)
to (4.3) in the example). This tentative strategy howevisesasome questions.

— Is the joint distribution uniquely specified by the condité distributions?

— Sampling alternately from the conditional distributionislgis a Markov chain: the newly proposed values only
depend on the present values, not the past values. Will gpsoach yield a Markov chain with the correct
invariant distribution? Will the Markov chain converge ketinvariant distribution?

As we will see in sections 4.3 and 4.4, the answer to both guresis — under certain conditions — yes. The
next section will however first of all state the Gibbs samgplahgorithm.

4.2 Algorithm

The Gibbs sampler was first proposed by Geman and Geman (a884urther developed by Gelfand and Smith
(1990). Denote withe _; := (x1,...,%i—1, Tiy1,. .., Tp).

Algorithm 4.1 ((Systematic sweep) Gibbs sampler). Starting With(Xl(O), ... ,XISU)) iterate fort = 1,2,...

1. Dranf") ~ fxux,l(-\Xz("’]), XS,
Jo Draw X7 ~ f e (10, XL XU LX),

p. Draw X! ~ fxp‘Xfp(»\X{‘)p4.,X1(f7)1).

Figure 4.1 illustrates the Gibbs sampler. The conditionstributions as used in the Gibbs sampler are often
referred to afull conditionals Note that the Gibbs samplemstreversible. Liu et al. (1995) proposed the following
algorithm that yields a reversible chain.

Algorithm 4.2 (Random sweep Gibbs sampler). Starting With(X{O), .. ,X,(,O)) iterate fort = 1,2,. ..

1. Draw an indey from a distribution on{1,...,p} (e.g. uniform)
2. DrawX " ~ fy (XL x D XY xY), and ety = X7V forall o # 5.

4.3 The Hammersley-Clifford Theorem

An interesting property of the full conditionals, which t&#bs sampler is based on, is that they fully specify the
joint distribution, as Hammersley and Clifford proved in708. Note that the set of marginal distributions does
have this property.

2 Hammersley and Clifford actually never published this result, as they amfiéxtend the theorem to the case of non-
positivity.
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. x®, x) x@, X0y
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x, x)

x{

Figure 4.1. lllustration of the Gibbs sampler for a two-dimensional distribution
Definition 4.1 (Positivity condition). A distribution with densityf (z1, ..., ;) and marginal densitiegx, (z;) is
said to satisfy the positivity condition ff, (z;) > 0 for all z1,...,z, implies thatf(x1,...,z;,) > 0.

The positivity condition thus implies that the support & fhint densityf is the Cartesian product of the support
of the marginalsfy, .

Theorem 4.2 (Hammersley-Clifford).  Let (Xy,...,X,,) satisfy the positivity condition and have joint density
f(z1,...,2p). Thenforall(¢y, ... &) € sup f)

Fxgixo @l @i-1,841, -, &)
T1,...
fa H Fxixo, Gl w1, 8,0 &)
Proof. We have
floy,. o ap,ap) = fx,,\x,,,(zp|11,~~~,Zp—l)f(117~~~,zp—1) (4.4)
and by complete analogy
f@ o @p-1,8) = fx,ix_, (Gl - zp1) fan, .o 2po1), (4.5)
thus
(4.4)
flar,.. mp) = fl@r, . ap-1) Ixpix_, (@plan, .y wpm1)
—_

(4:5)f(1'1y---wlp—1.ﬁp)/fxp\x,p(fp\l'lu--»wp—l)

_ Ixpix, (@ploe, o wpo1)

= floy,... ,prhfp)fxp‘x,p(ﬁple,.“,zp_l)

= f(e 5)fxux J(@l€s - 6)  fxx, (@plTy, - 2po1)
P kL @& 6) T Fxx, Glrn )

The positivity condition guarantees that the conditioreaigities are non-zero.

O

Note that the Hammersley-Clifford theorem does guarantee the existence of a joint probability distribatio

for every choice of conditionals, as the following examlewss. In Bayesian modeling such problems mostly arise
when using improper prior distributions.
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Example 4.2. Consider the following “model”
X1|X2 ~ Expo(AX3)
Xo|X1 ~  Expo(AXy),
for which it would be easy to design a Gibbs sampler. Tryinggply the Hammersley-Clifford theorem, we obtain

Sxi5,(@11&) - fx1x, (w2]21) A&y exp(—An1&) - Azy exp(—Aziao)
Ixixa(§1lé2) - fxax, (Galzr)  Aaexp(—A&ia) - Azy exp(—Az1€2)

The integralffexp(f)\zlzg) dzy dzo however is not finite, thus there is no two-dimensional philitg distri-

flay,@2) o

o exp(—Azi22)

bution with f (1, 22) as its density. 4

4.4 Convergence of the Gibbs sampler

First of all we have to analyse whether the joint distribati(z1, ..., x,) is indeed the stationary distribution
of the Markov chain generated by the Gibbs saniplEor this we first have to determine the transition kernel
corresponding to the Gibbs sampler.

Lemma 4.3. The transition kernel of the Gibbs sampler is

KD x0) = fyx @080, a0 ) ey @@, 2, el )
Pxpix, @Plal, o al))
Proof. We have

PX" e XD =xY) = / Foxepxee—) (W x71) ax®
X

= /X P, @128, 2 D) - g x (@820 a0, e )

corresponds to step 1. of the algorithm

P, @t dx® o

corresponds to step 2. of the algorithm

corresponds to step p. of the algorithm

3 All the results in this section will be derived for the systematic scan Gibbglsaifalgorithm 4.1). Very similar results hold
for the random scan Gibbs sampler (algorithm 4.2).



Proposition 4.4.  The joint distributionf (1, ..., z,) is indeed the invariant distribution of the Markov ch&iK(?), X(1), .. .) generated by the Gibbs sampler.
Proof.
/f(x(t—l))K(X(z—l)7x(r)) dx(t-D
_ /.H/f(lgt—l)).“,wg—])) AV fr @180, @010, 2 e e

)

o o
=f@{?af ™ el Y)

- /.4./f(z§'),x§”” ..... 2V) del ™V fypvy @2 2l D) i @0 2P e da D

@0 2D el D)

1@ a0 2D, )

= / Sl lD) dalf ™ fy i, @O, )

=f(af )

O al®)
= @)

Thus according to definition 1.2f7is indeed the invariant distribution.

Joidwes SqaI9 au1 J0 3UABIAAUOD 1

Ly
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So far we have established thais indeed the invariant distribution of the Gibbs samplexxt\we have to analyse
under which conditions the Markov chain generated by thé&dampler will converge té.

First of all we have to study under which conditions the rissgIMarkov chain is irreducibfe The following
example shows that this does not need to be the case.

Example 4.3 (Reducible Gibbs sampler). Consider Gibbs sampling from the uniform distribution@nu Cs with
Cy = {(x1,22) : (1, 22) — (1,1)|| < 1} andCs := {(z1,22) : [|(21,22) — (=1,—-1)|| < 1}, i.e.

1
flxy,22) = ﬁﬂclucg (w1, 2)

Figure 4.2 shows the density as well the first few samplesmdxdeby starting a Gibbs sampler wifh{o) < 0and
Xéo) < 0. Itis easy to that when the Gibbs sampler is starte@iit will stay there and never react}. The reason

x{
|

Iy
; A
- N i |
! il
i
e
i
2 1 0 1 2
x{

Figure 4.2. lllustration of a Gibbs sampler failing to sample from a distribution with uncotetesupport (uniform distribution
on{(z1,m2) : [(z1,22) — (L 1} U{(@r,22) : [[(21,22) — (=1, -1)[| < 1]})

for this is that the conditional distributioli;| X; (X7|X5) is for X; < 0 (X> < 0) entirely concentrated ofiz. <

The following proposition gives a sufficient condition foréducibility (and thus the recurrence) of the Markov
chain generated by the Gibbs sampler. There are less giniditons for the irreducibility and aperiodicity of the
Markov chain generated by the Gibbs sampler (see e.g. Rahéi€asella, 2004, Lemma 10.11).

Proposition 4.5.  If the joint distributionf (x4, ..., z,) satisfies the positivity condition, the Gibbs sampler yeld
an irreducible, recurrent Markov chain.

Proof. Let X' C sup(f) be asetwithf,, f(z\",...,2{")d(@", ... a) > 0.

/ K(X(t—l)ﬁx(l))dx(t) _ / fxl\x,l(ﬂﬂgt)|$§t71),---,zét_l))"‘fx,ﬂ|x,p($§f)\$¥)7---,xs_)l)dx(t) >0,
x Jx

>0 (on a set of non-zero measure) >0 (on a set of non-zero measure)

where the conditional densities are non-zero by the pitgitiondition. Thus the Markov ChaifX ")), is strongly
f-irreducible. Asf is the unique invariant distribution of the Markov chainjstas well recurrent (proposition
1.28). O

4 Here and in the following we understand by “irreducibilty” irreducibility witlspect to the target distributiof
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If the transition kernel is absolutely continuous with respto the dominating measure, then recurrence even
implies Harris recurrence (see e.g. Robert and Caselld, 2@0nma 10.9).

Now we have established all the necessary ingredientst®ataergodic theorem for the Gibbs sampler, which
is a direct consequence of theorem 1.30.

Theorem 4.6. If the Markov chain generated by the Gibbs sampler is irrdiolecand recurrent (which is e.g. the
case when the positivity condition holds), then for anygrable function: : E — R

L
im — (®)
Jim — ; MX®) = B (h(X))
for almost every starting valui (). If the chain is Harris recurrent, then the above result rofdr every starting

valueX©),

Theorem 4.6 guarantees that we can approximate expectéitiofh(X)) by their empirical counterparts using
a singleMarkov chain.

Example 4.4. Assume that we want to use a Gibbs sampler to estimate thalptiop P(X; > 0, X, > 0) for a
2 b
Ny (( m > s ( 1 0122 )) distribution® The marginal distributions are

o o2 03
Xy ~ N(p1,0%) and Xy ~ N(ua,09)

In order to construct a Gibbs sampler, we need the condltiisributions X| X, = 25 and X»|X; = z1. We

havé
1 Ty 1 ' o} o2 B T1 15}
flzi,x2) o exp ) << os ) B ( 1o >> (0‘12 o2 ) (( T > B ( I ))
(1 = ( + o2/ (22 — p2)))?
> e""( 2(0% = (012)2/73) )
i.e.

X1| Xy = a2 ~ N(u1 + 012/03 (22 — p2), 07 — (012)*/03)
Thus the Gibbs sampler for this problem consists of itegafint = 1,2, ...
1. Draw X' ~ Ny + 012/03 (XS = ), 0% — (012)/02)

° A Gibbs sampler is of course not the optimal way to sample froN @, X) distribution. A more efficient way is: draw

iid.

Ziy..o  Zy NON(0,1) and se( Xy, ..., Xp) = V3 Z1,..., Z) +

5 We make use of
()Gl ) ((2)-()
T2 M2 T12 (7% ZT2 M2
_ 1 x1 _ J25 ' (7% —012 1 _ J5
0202 — (012)? 2 2 —o12 o} T2 H2

= m(of(zl —1)? = 2012(z1 — p1) (w2 — p2)) + const
= m ((rg.'l;f — 20521 ju1 — 201221 (22 — /12)) -+ const

= m(ﬁ—Qﬂ(m +U|2/U§(Iz—ﬂz)))+ const

= m (w1 = (pu1 + o12/0% (w2 — p2))” + const
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2. DrawXy{"” ~ N(ps + 012/02(X\Y — 1), 02 — (012)%/02).

Now consider the special cagg = p2 = 0, 07 = 05 = 1 andoy2 = 0.3. Figure 4.4 shows the sample paths of
this Gibbs sampler.

Using theorem 4.6 we can estim@éX; > 0, X, > 0) by the proportion of samplest ™, x{9) with X > 0
andXz(t) > 0. Figure 4.3 shows this estimate. <

0.1

0 2000 4000 6000 8000 10000

t

Figure 4.3. Estimate of thdP(X; > 0, X, > 0) obtained using a Gibbs sampler. The area shaded in grey correspahes
range of 100 replications.

Note that the realisation&X(?), X(1), .. .) form a Markov chain, and are thumt independent, but typically
positively correlated. The correlation between X&) is larger if the Markov chain moves only slowly (the chain
is then said to bslowly mixing. For the Gibbs sampler this is typically the case if thealslesX; are strongly
(positively or negatively) correlated, as the followingaexple shows.

Example 4.5 (Sampling from a highly correlated bivariate Gaussian). Figure 4.5 shows the results obtained when
sampling from a bivariate Normal distribution as in exampig however withr,, = 0.99. This yields a correlation

of p(X1,X2) = 0.99. This Gibbs sampler is a lot slower mixing than the one carsid in example 4.4 (and
displayed in figure 4.4): due to the strong correlation thiebGisampler can only perform very small movements.
This makes subsequent samp!éf@”l) ande) highly correlated and thus yields to a slower convergerséia
plot of the estimated densities show (panels (b) and (c) aféig4.4 and 4.5). <
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Figure 4.4. Gibbs sampler for a bivariate standard normal distribution with correlaiiéh , X») = 0.3.
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Chapter 5

The Metropolis-Hastings Algorithm

5.1 Algorithm

In the previous chapter we have studied the Gibbs samplpeaas case of a Monte Carlo Markov Chain (MCMC)
method: the target distribution is the invariant distribatof the Markov chain generated by the algorithm, to which
it (hopefully) converges.

This chapter will introduce another MCMC method: the MetiigHastings algorithm, which goes back to
Metropolis et al. (1953) and Hastings (1970). Like the regecsampling algorithm 3.1, the Metropolis-Hastings
algorithm is based on proposing values sampled from aruimgntal distribution, which are then accepted with a
certain probability that reflects how likely it is that theyedrom the target distributioff.

The main drawback of the rejection sampling algorithm 3.that it is often very difficult to come up with
a suitable proposal distribution that leads to an efficiégo@thm. One way around this problem is to allow for
“local updates”, i.e. let the proposed value depend on thedacepted value. This makes it easier to come up
with a suitable (conditional) proposal, however at the @€ yielding a Markov chain instead of a sequence of
independent realisations.

Algorithm 5.1 (Metropolis-Hastings). ~ Starting withX(®) := (X{O)7 AU X,(,O)) iterate fort = 1,2,...

1. DrawX ~ g(-|X(=1),
2. Compute

XD) - (XX D) ¢

3. With probabilitya(X|X 1) setX® = X, otherwise seK*) = X (-1,

a(x\x(t—l)) — min {1 f(X) ) q(x(t71)|x) }
) f( .

Figure 5.1 illustrates the Metropolis-Hasting algorithxute that if the algorithm rejects the newly proposed
value (open disks joined by dotted lines in figure 5.1) it stayits current valu&(*~1). The probability that the
Metropolis-Hastings algorithm accepts the newly propagateX given that it currently is in stat& (*~1) is

a(xt=V) = /a(x|x(t’1))q(x\x(t’l)) dx. (5.2)
Just like the Gibbs sampler, the Metropolis-Hastings dtlgar generates a Markov chain, whose properties will be
discussed in the next section.
Remark 5.1. The probability of acceptance (5.1) does not depend on theaitsation constant, i.e. if (x) =
C - w(x), then
Jx) g Vx) Cr(x) - g(x""V|x) m(x) - q(x""V|x)

FOUD) - q(xxD) T Cr(xD) - g(xxD) T m(x(D) - q(x]x(1)
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X

Figure 5.1. lllustration of the Metropolis-Hastings algorithm. Filled dots denote accepételss open circles rejected values.

Thusf only needs to be known up to normalisation constant.

5.2 Convergence results

Lemma 5.2. The transition kernel of the Metropolis-Hastings algonitlis
K(x" x0) = a(x® [xED)q(xO x4+ (1 — a(x))5, -1 (xP), (5.3)
whered, -1 (-) denotes Dirac-mass ofx(*~1}.
Note that the transition kernel (5.3)ri®t continuous with respect to the Lebesgue measure.
Proof. We have
P(X® e x|X~D = x(t=1) = P(X® e x, new value acceptéd (‘1) = x(t=1))
+P(X® e x,new value rejectg®X ‘1) = x(t~1))

_ / a(® x D) g(x D [xt=D)) dx®
X

+  Tx(x"Y)  P(new value rejecte® ) = x(*~1)

—_———
=L 6 t—1) (dx(®) =1-—a(x(t=D)

:fx(l—a(x(**l)))(;x(,,l)(dx(ff))
= / a(x®xED)g(xD[xDy ax® 4 / (1 —a(x""D)bn (dx®) O
X X
Proposition 5.3.  The Metropolis-Hastings kernel (5.3) satisfies the detidilalance condition

K(x,x0) f(xD) = K (x®,x0D) f(x®)

and thusf(x) is the invariant distribution of the Markov chaifX(?), X(1)...) generated by the Metropolis-
Hastings sampler. Furthermore the Markov chain is revedesib

! On a similar note, it is enough to knay¢x* =) |x) up to a multiplicative constant independent«f—") andx.
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Proof. We have that

SO0 g (1)
D) g (e
= min { £GD)g( ), F(xO)g(x!V k") |

P (x W xY) (t=1) (1) )y _ (t=1) (1) (t=1) | (t) (t)
HH“{WJ g(x" V) f(x) = alx Y)Y ) f(x)

O ) = i {1, a0 )

and thus

KD 5 f ) = b)) £ )
=a(x(t=1 |x(1))g(x(t=1) |x(1) f(x(1))
F(1—ax")) S (xP) FxITY)
—_——

=0if x(* # x(t=1

(1=a(x(0))5 ) (x0=1)

= KX 1)
The other conclusions follow by theorem 1.22, which alsdiappn the continuous case (see page 21). O

Next we need to examine whether the Metropolis-Hastingsrilgn yields an irreducible chain. As with the
Gibbs sampler, this does not need to be the case, as the ifujl@xample shows.

Example 5.1 (Reducible Metropolis-Hastings). Consider using a Metropolis-Hastings algorithm for sangpfrom
a uniform distribution orf0, 1]U[2, 3] and aU (2"~ —¢, (!=1) 4-5) distribution as proposal distributiayf-|z(*—1)).
Figure 5.2 illustrates this example. It is easy to see thatrdisulting Markov chain isotirreducible if6 < 1:in
this case the chain either staysiin1] or [2, 3]. <

1/(20) 4 0——m——

12 70)

Figure 5.2. lllustration of example 5.1

Under mild assumptions on the propogalx*~1)) one can however establish the irreducibility of the reaglti
Markov chain:

— If ¢(x®|x(*~1D) is positive for allx*~1 x(*) ¢ supgf), then it is easy to see that we can reach any set of
non-zero probability undef within a single step. The resulting Markov chain is thusrsgty irreducible. Even
though this condition seems rather restrictive, many papehoices ofy(-|x(* 1)) like multivariate Gaussians or
t-distributions fulfil this condition.

— Roberts and Tweedie (1996) give a more general conditiothiirreducibility of the resulting Markov chain:
they only require that

Vedd: qx®xtD) > eif [x¢D —xB|| < §

together with the boundedness fobn any compact subset of its support.

The Markov chainX(®, X)) is further aperiodic, if there is positive probability thae chain remains in
the current state, i.@(X® = X(*~1) > 0, which is the case if
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P (XXX D) > £(X)g(XDX)) > 0.

Note that this condition isot met if we use a “perfect” proposal which hfiss invariant distribution: in this case
we accept every proposed value with probability

Proposition 5.4. The Markov chain generated by the Metropolis-Hastings w@ilgm is Harris-recurrent if it is
irreducible.

Proof. Recurrence follows from the irreducibility and the facttthfais the unique invariant distribution (using
proposition 1.28). For a proof of Harris recurrence seer(iEig, 1994). O

As we have now established (Harris-)recurrence, we are pagirto state an ergodic theorem (using theorem
1.30).

Theorem 5.5. If the Markov chain generated by the Metropolis-Hastinggosithm is irreducible, then for any
integrable functiom : E — R

Lo
i ®)
Jim ; MX®) = Ef (h(X))
for every starting valu& (©).

As with the Gibbs sampler the above ergodic theorem allowmference using a single Markov chain.

5.3 The random walk Metropolis algorithm

In this section we will focus on an important special casehefetropolis-Hastings algorithm: the random walk
Metropolis-Hastings algorithm. Assume that we generagendwly proposed stal€ not using the fairly general

X ~ g(-|XED), (5.4)

from algorithm 5.1, but rather
X =Xt 4 g, e~y (5.5)

with g being asymmetricdistribution. It is easy to see that (5.5) is a special casgsd) usingg(x|x( 1) =
g(x — x(*=1)), When using (5.5) the probability of acceptance simplifies to

min {1 FX) - q(X(til)‘X) } = min {1-, ﬂ} s
) I

LX) (XX fX0)

asq(X|X(1) = g(X — XDy = g(Xt-D — X) = ¢(X~D|X) using the symmetry of. This yields the
following algorithm which is a special case of algorithm Sahich is actually the original algorithm proposed by
Metropolis et al. (1953).

Algorithm 5.2 (Random walk Metropolis).  Starting withX(© := (X .. x{”) and using a symmetric dis-
tributong, iterate fort = 1,2, ...

1. Drawe ~ g and sefX = X(—1 4 ¢,
2. Compute

(y(X|X(t_”) = min {lﬁ %} . (5.6)

3. With probabilitya(X|X 1) setX® = X, otherwise seK*) = X (-1,
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Example 5.2 (Bayesian probit model). In a medical study on infections resulting from birth by Gesa section
(taken from Fahrmeir and Tutz, 2001) three influence fadtaxg been studied: an indicator whether the Cesarian
was planned or notf; ), an indicator of whether additional risk factors were presat the time of birth4;.), and

an indicator of whether antibiotics were given as a prophiglé;;). The respons&; is the number of infections
that were observed amongst patients having the same influence factors (covariate®.deta is given in table
5.1.

Number of births planned| risk factors | antibiotics
with infection | total
Yi i Zi1 Zi2 Zi3

11 98 1 1 1

1 18 0 1 1

0 2 0 0 1

23 26 1 1 0

28 58 0 1 0

0 9 1 0 0

8 40 0 0 0

Table 5.1. Data used in example 5.2

The data can be modeled by assuming that
Y; ~ Bin(n;, m;), T =®(z.0),

wherez; = (1, 21, zi2, 2i3) and®(-) being the CDF of th&l(0, 1) distribution. Note tha®(t) € [0,1] forall ¢ € R.
A suitable prior distribution for the parameter of inter@ss 3 ~ N (0,1/)). The posterior density ¢8 is

n 3
F(Blun, ) <H@(zzﬂ>% 30 74’(ZQﬁ)>””y’> o (333

i=1 j=0

We can sample from the above posterior distribution usieddHowing random walk Metropolis algorithm. Start-
ing with any3(") iterate fort = 1,2, .. .:

1. Drawe ~ N (0, X) and sef3 = 8"V 4 ¢.

2. Compute

(B|8"Y) = min {1,

3. With probabilitya (8|8 Y) set3® = B, otherwise seB) = g(=1).

To keep things simple, we choose the covariaktef the proposal to b8.08 - I.
Figure 5.3 and table 5.2 show the results obtained usinddBGample% Note that the convergence of thfé”)

Posterior mead 95% credible interval

intercept 3o -1.0952 | -1.4646 -0.7333
planned e 0.6201| 0.2029 1.0413
risk factors 3> 1.2000| 0.7783 1.6296
antibiotics 33 -1.8993 | -2.3636 -1.471

Table 5.2. Parameter estimates obtained for the Bayesian probit model from é&xar@p

is to a distribution, whereas the cumulative averaEé;l ;9](.")/t converge, as the ergodic theorem implies, to a
value. For figure 5.3 and table 5.2 the first 10,000 samples begn discarded (“burn-in”). <

2 You might want to consider a longer chain in practise.
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5.4 Choosing the proposal distribution

The efficiency of a Metropolis-Hastings sampler dependshenchoice of the proposal distributiayf:|x*—1)).
An ideal choice of proposal would lead to a small correlatidrsubsequent realisatios(—1) and X*). This
correlation has two sources:

— the correlation between the current st&té 1) and the newly proposed valdg ~ ¢(-|X 1)), and
— the correlation introduced by retaining a valé?) = X(—1) because the newly generated vaKichas been
rejected.

Thus we would ideally want a proposal distribution that ballows for fast changes in ti&(Y) and yields a high
probability of acceptance. Unfortunately these are twometng goals. If we choose a proposal distribution with
a small variance, the probability of acceptance will be higbwever the resulting Markov chain will be highly
correlated, as th& (*) change only very slowly. If, on the other hand, we choose pgsal distribution with a large
variance, theX (*) can potentially move very fast, however the probability af@ptance will be rather low.

Example 5.3. Assume we want to sample fromM(0, 1) distribution using a random walk Metropolis-Hastings
algorithm withe ~ N(0,02). At first sight, we might think that setting? = 1 is the optimal choice, this is
however not the case. In this example we examine the chaides: 0.1, 02 = 1, 0? = 2.38%, ando? = 10%.
Figure 5.4 shows the sample paths of a single run of the qmneng random walk Metropolis-Hastings algorithm.
Rejected values are drawn as grey open circles. Table 5\gssitie average correlatignf X =9, X)) as well

as the average probability of acceptandeX | X *~1)) averaged over 100 runs of the algorithm. ChoosiAgoo
small yields a very high probability of acceptance, howetehe price of a chain that is hardly moving. Choosing
o2 too large allows the chain to make large jumps, however midsteoproposed values are rejected, so the chain
remains for a long time at each accepted value. The resujgestithatz? = 2.382 is the optimal choice. This
corresponds to the theoretical results of Gelman et al. 5199 <

Autocorrelationp(X =1, X)) | Probability of acceptance(X, X ¢~ 1)

Mean 95% ClI Mean 95% ClI
0?=0.17 | 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)
o?=1 0.7733  (0.7676,0.7791) 0.7038  (0.7014,0.7061)
02 =2.38% | 0.6225 (0.6162,0.6289) 0.4426  (0.4401,0.4452)
0% =10% 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Table 5.3. Average correlatiop(X =1, X)) and average probability of acceptanegX |X “~V) found in example 5.3 for
different choices of the proposal variantg

Finding the ideal proposal distributigrt-|x(*~1)) is an ar This is the price we have to pay for the generality
of the Metropolis-Hastings algorithm. Popular choicesramdom walk proposals are multivariate Gaussians or
t-distributions. The latter have heavier tails, makingnthee safer choice. The covariance structure of the proposal
distribution should ideally reflect the expected covarentthe (X, ..., X,). Gelman et al. (1997) propose to
adjust the proposal such that the acceptance rate is aig@rfdr one- or two dimensional target distributions, and
aroundl1 /4 for larger dimensions, which is in line with the results weaibed in the above simple example and the
guidelines which motivate them. Note however that thesg¢usteough guidelines.

Example 5.4 (Bayesian probit model (continued)). In the Bayesian probit model we studied in example 5.2 we drew

3 The optimal proposal would be sampling directly from the target distribLiibe very reason for using a Metropolis-Hastings
algorithm is however that we cannot sample directly from the target!

60 5. The Metropolis-Hastings Algorithm

0.12

(72:
2 0
1

2.382

o 2
2
1

=10%
0

o 2
2
1

0 200 400 600 800 1000

Figure 5.4. Sample paths for example 5.3 for different choices of the prop@sinces>. Open grey discs represent rejected
values.
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N(0, )

with 3 = 0.08 - I, i.e. we modeled the componentseofo be independent. The proportion of accepted values we

obtained in example 5.2 wds.9%. Table 5.4 (a) shows the corresponding autocorrelatior.r€bulting Markov

chain can be made faster mixing by using a proposal distoibuhat represents the covariance structure of the

posterior distribution of3.

This can be done by resorting to the frequentist theory obgaised linear models (GLM): it suggests that the

asymptotic covariance of the maximum likelihood estir'rﬁie (Z'DZ)~!, whereZ is the matrix of the covariates,

andD is a suitable diagonal matrix. When usi&f= 2-(Z'DZ) ™! in the algorithm presented in section 5.2 we can

obtain better mixing performance: the autocorrelatioreduced (see table 5.4 (b)), and the proportion of accepted

values obtained increases to 20.0%. Note that the detentnifidoth choices of2 was chosen to be the same, so

the improvement of the mixing behaviour is entirely due taffecence in the structure of the the covariance.<

@ % =0081
Bo B B2 B3
Autocorrelationp(8\" ", 5”) | 0.9496 0.9503 0.9562 0.9532
(b) ¥ =2-(ZDZ)"’
Bo A B2 B3

Autocorrelationp(\" ", 55)

0.8726 0.8765 0.8741 0.8792

Table 5.4. Autocorrelatiory;(ﬂ]("“,ﬂ](.‘)) between subsequent samples for the two choices of the covatance
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Chapter 6

Diagnosing convergence

6.1 Practical considerations

The theory of Markov chains we have seen in chapter 1 guasilat a Markov chain that is irreducible and
has invariant distributiory converges to the invariant distribution. The ergodic tkews 4.6 and 5.5 allow for
approximating expectatiors;(h(X)) by their the corresponding means

1 T
=2 (X)) — By (h(X))

t=1

q

using theentirechain. In practise, however, often only a subset of the cfi¥i®), is used:

Burn-in Depending on howX () is chosen, the distribution ofX®)); for small + might still be far from the
stationary distributiory. Thus it might be beneficial to discard the first iteratidd€), ¢t = 1,...,Tp. This
early stage of the sampling process is often referred tbuas-in period. How largel}, has to be chosen
depends on how fast mixing the Markov ch&ii (")), is. Figure 6.1 illustrates the idea of a burn-in period.

burmnin period (iscardec)

Figure 6.1. lllustration of the idea of a burn-in period.

Thinning Markov chain Monte Carlo methods typically yield a Markovaghwith positive autocorrelation, i.e.
p(Xk(,”,Xff”)) is positive for smallr. This suggests building a subchain by only keeping evetth value
(m > 1), i.e. we consider a Markov chaify ("), with Y(*) = X(™*) instead of( X("),. If the correlation
(X" X(#+7)) decreases monotonically in then

P V) = p(X 0 X)) < (X0 X,

i.e. the thinned chaifiy ()), exhibits less autocorrelation than the original ch@*));. Thus thinning can be
seen as a technique for reducing the autocorrelation, hevegthe price of yielding a cha(l’Y“))t:LmLT/,,d ,
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whose length is reduced ta/m)-th of the length of the original chaifX *));—, . r. Even though thinning is

very popular, it cannot be justified when the objective isnesting £/ (h(X)), as the following lemma shows.

Lemma6.1. Let(X®),_; . r be asequence of random variables (e.g. from a Markov chath)¥/(*) ~ f

and (Y1),

|7/m) @ second sequence definedB§) := X If Var; (h(X®)) < +oo, then

T 1 |T/m)
t) t
(Tg R(X®) ) < Var Tm] Z R(Y®)

Proof. To simplify the proof we assume thétis divisible bym, i.e.T//m € N. Using

T m—1T/m
Zh(x(f,)) _ Z Z (X Em)y
t=1 7=0 t=1

and

T/m T/m
Var [ 3 a(XEmm) | = Var [ 37 p(xtmir))
t=1

t=1

for 71,7 € {0,...,m — 1}, we obtain that

T 1 T/m
ar (Z h(Xm)) = Var (Z Z ]I(X(f'erT)))
=1

=0 t=1

T/m m—1 T/m T/m
= m- Var Z h(X(t'm)) + Z Cov Z X(’ ’”J”’) Z h(X(t"”*T))
t=1 =1

n#T=0 t=1

<vdr(z " (Xt >))

m /m
m? - Var (Z X (tm)) ) m? - Var (Z Y©®) )

T/m | Tm
(Z h(Y“))) = Var (T/m Z h(Y(ﬂ)) .

IN

t=1

O

The concept of thinning can be useful for other reasonselttmputer’s memory cannot hold the entire chain
(X®),, thinning is a good choice. Further, it can be easier to asmsconvergence of the thinned chain
(Y®), as opposed to entire chaiX ®)),.

6.2 Tools for monitoring convergence

Although the theory presented in the preceding chaptersagtees the convergence of the Markov chains to the
required distributions, this does not imply théftrdte sample from such a chain yields a good approximation to the
target distribution. As with all approximating methodssthiust be confirmed in practise.

This section tries to give a brief overview over various @gghes to diagnosing convergence. A more detailed
review with many practical examples can be diagnofound inil{€nnec-Jouyaux et al., 1998) or (Robert and
Casella, 2004, chapter 12). There is an R pack&@@bg) that provides a vast selection of tools for diagnosing
convergence. Diagnosing convergence is an art. The tesbsigresented in the following are nothing other than
exploratory tools that help you judging whether the chais re&ched its stationary regime. This section contains
several cautionary examples where the different toolsifigribsing convergence fail.

Broadly speaking, convergence assessment can be splthimtimllowing three tasks of diagnosing different
aspects of convergence:
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Convergence to the target distributioihe first, and most important, question is whett?)), yields a sample
from the target distribution? In order to answer this questie need to assess ...
- whether(X('>), has reached a stationary regime, and
— whether(X(®)), covers the entire support of the target distribution.

Convergence of the average@oesZ,T:1 h(X®) /T provide a good approximation to the expectatiop(h(X))
under the target distribution?

Comparison to i.i.d. samplingHow much information is contained in the sample from the Marghain compared
to i.i.d. sampling?

6.2.1 Basic plots

The most basic approach to diagnosing the output of a MarkmirCMonte Carlo algorithm is to plot the sample
path (X)), as in figures 4.4 (b) (c), 4.5 (b) (c), 5.3 (a), and 5.4. Note the convergence afX*)), is in dis-
tribution, i.e. the sample path i®t supposed to converge to a single value. Ideally, the platlshoe oscillating
very fast and show very little structure or trend (like fomexple figure 4.4). The smoother the plot seems (like for
example figure 4.5), the slower mixing the resulting chain is

Note however that this plot suffers from the “you'’ve only s@ehere you've been” problem. It is impossible to
see from a plot of the sample path whether the chain has ethe entire support of the distribution.

Example 6.1 (A simple mixture of two Gaussians). In this example we sample from a mixture of two well-sepatate
Gaussians

f(x) =04+ d(_1,0.22)(2) + 0.6 d2,032)(7)

(see figure 6.2 (a) for a plot of the density) using a randonk Wétropolis algorithm with proposed valug =
X1 4 ¢ with ¢ ~ N(0, Var(e)). If we choose the proposal variandar (<) too small, we only sample from
one population instead of both. Figure 6.2 shows the sangitesfor two choices oVar(¢): Var(¢) = 0.4 and
Var(e) = 1.22. The first choice oWar(¢) is too small: the chain is very likely to remain in one of thetmodes of

the distribution. Note that it is impossible to tell from figu6.2 (b) alone that the chain has not explored the entire

support of the target. 4
z z - = .
R g g
a0 1 s e e S
. sample sample
(a) Densityf(z) (b) Sample path of a random wdly) Sample path of a random walk
Metropolis algorithm with proposal varfMetropolis algorithm with proposal vari-
anceVar(s) = 0.4° anceVar(c) = 1.22

Figure 6.2. Density of the mixture distribution with two random walk Metropolis samples usimgdifferent variance¥ar(c)
of the proposal.

In order to diagnose the convergence of the averages, onéookrat a plot of the cumulative averages
(Z‘T:1 h(X(7)/t);. Note that the convergence of the cumulative averages is theagrgodic theorems sug-
gest — to a valuel{;(h(X)). Figures 4.3, and 5.3 (b) show plots of the cumulative awsagn alternative
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t
=1

to plotting the cumulative means is using the so-called CMSL{T;(XJ) - h(XE“)/t) with 1(X;) =
N t
ST h(X{7)/T, which is nothing other than the difference between the dative averages and the estimate of

the limit I (h(X)).

Example 6.2 (A pathological generator for the Beta distribution). The following MCMC algorithm (for details, see
Robert and Casella, 2004, problem 7.5) yields a sample fraBéta(q, 1) distribution. Starting with anyx (©)
iterate fort = 1,2,...

1. With probabilityl — X (-1, setx(®) = x (-1,
2. Otherwise drawk ) ~ Beta(a + 1,1).

This algorithm yields a very slowly converging Markov chaimwhich no central limit theorem applies. This slow
convergence can be seen in a plot of the cumulative meansg#g8 (b)). <
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sample pathy ()
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|
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Figure 6.3. Sample paths and cumulative means obtained for the pathological Betagen

Note that it is impossible to tell from a plot of the cumulatimeans whether the Markov chain has explored the
entire support of the target distribution.

6.2.2 Non-parametric tests of stationarity

This section presents the Kolmogorov-Smirnov test, whichn example of how nonparametric tests can be used
as a tool for diagnosing whether a Markov chain has alreadyerged.

In its simplest version, it is based on splitting the chaintointhree parts: (X(’>)t:17____LT/;;J,
(XO)o13)41,. 20773 And (XB), 7511, 7. The first block is considered to be the burn-in period. If
the Markov chain has reached its stationary regime aff¢#3| iterations, the second and third block should be
from the same distribution. Thus we should be able to tellthrethe chain has converged by comparing the distri-
bution of (X)), 7/3)41....27/3) t0 the one of XM);_y 7511
tests. One such test is the Kolmogorov-Smirnov test.

As the Kolmogorov-Smirnov test is designed for i.i.d. sa@splwe do not apply it to théX®), directly,
but to a thinned chaifY ®), with Y® = X(m®): the thinned chain is less correlated and thus closer to
being an i.i.d. sample. We can now compare the distributib(nﬂ‘)),:LT/(S,”,)H,

7 using suitable nonparametric two-sample

2/7/(3m)| 10 the one of
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(YD) a7/ (3m)J+1,....|7/m, USING the Kolmogorov-Smirnov statistic

. . oz
K= qg{é F(Y“))::\T/(Sm)ul,, 21T/ (3m)) (T) F(Y(”)t:ﬂT/(sm)Hl,, LT/ m) (T) .
>

As the thinned chain is not an i.i.d. sample, we cannot us&timogorov-Smirnov test as a formal statistical
test (besides we would run into problems of multiple testitgpwever, we can use it as an informal tool by
monitoring the standardised statisti@ K; as a function of.2 As long as a significant proportion of the values of
the standardised statistic are above the correspondingtiguaf the asymptotic distribution, it is safe to assume
that the chain has not yet reached its stationary regime.

Example 6.3 (Gibbs sampling from a bivariate Gaussian (continued)). In this example we consider sampling from a
bivariate Gaussian distribution, once wjthX;, X») = 0.3 (as in example 4.4) and once witi.X;, X») = 0.99

(as in example 4.5). The former leads a fast mixing chainatter a very slowly mixing chain. Figure 6.4 shows the
plots of the standardised Kolmogorov-Smirnov statistisulggests that the sample size of 10,000 is large enough

for the low-correlation setting, but not large enough fa kigh-correlation setting. <
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Figure 6.4. Standardised Kolmogorov-Smirnov statistic ﬂéfs") from the Gibbs sampler from the bivariate Gaussian for two
different correlations.

Note that the Kolmogorov-Smirnov test suffers from the “yeuonly seen where you've been” problem,
as it is based on comparin@ )),_ 7/ Gm))+1,....217/m)) AN (YD), a7/ (3m)j+1,.... 7/m)- A plot of the
Kolmogorov-Smirnov statistic for the chain wittiar(s) = 0.4 from example 6.1 would not reveal anything un-
usual.

! The two-sample Kolmogorov-Smirnov test for comparing two i.i.d. S@s\gi 1, ..., Zi,, andZs.1, . .., Zs,, is based on
comparing their empirical CDFs

. L&
F == T(—oo,2)(Zkyi)-
A(Z) n; ( fx,,z]( i)
The Kolmogorov-Smirnov test statistic is the maximum difference betweetwih empirical CDFs:
K =sup|Fi(2) — Fa(2)].
z€R

Forn — oo the CDF of\/n - K converges to the CDF

+00
R(k) = 1= (1) exp(-2i*k?).

i=1

2 K. is hereby the Kolmogorov-Smirnov statistic obtained from the sample dimmsisf the firstt observations only.
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6.2.3 Riemann sums and control variates

A simple tool for diagnosing convergence of a one-dimeralidarkov chain can be based on the fact that

/Ef(T) de = 1.

We can estimate this integral by the Riemann sum
e
D ox M - Xy ), (6.1)
t=2
wherex ] < ... < X" is the ordered sample from the Markov chain. If the Markovirlmas explored all the
support off, then (6.1) should be arouridNote that this method, often referred to as Riemann sumBgfdand
Robert, 2001), requires that the densftis known inclusive of normalisation constants.

Example 6.4 (A simple mixture of two Gaussians (continued)). In example 6.1 we considered two random-walk
Metropolis algorithms: oneVar(e) = 0.42) failed to explore the entire support of the target distiitmy whereas
the other oneVar(e) = 1.22) managed to. The corresponding Riemann sum§.868 and1.001, clearly indicat-
ing that the first algorithm does not explore the entire suppo <

Riemann sums can be seen as a special case of a techniqaecoali®| variates The idea of control variates
is comparing several ways of estimating the same quant#yloAg as the different estimates disagree, the chain
has not yet converged. Note that the technique of contrétes is only useful if the different estimators converge
about as fast as the quantity of interest — otherwise we wolidin an overly optimistic, or an overly conservative
estimate of whether the chain has converged. In the spexsel af the Riemann sum we compare two quantities:
the constant and the Riemann sum (6.1).

6.2.4 Comparing multiple chains

A family of convergence diagnostics (see e.g. Gelman andrRd992; Brooks and Gelman, 1998) is based on
running L > 1 chains — which we will denote bgX ":9),, ..., (X)), — with overdispersetistarting values
X100 X(L0) covering at least the support of the target distribution.

All L chains should converge to the same distribution, so comgahe plots from section 6.2.1 for the
different chains should not reveal any difference. A morenfal approach to diagnosing whether thehains are
all from the same distribution can be based on comparingiee-guantile distances.

We can estimate the inter-quantile distances in two ways. fifet consists of estimating the inter-quantile
distance for each of the chain and averaging over these results, i.e. our estim@ﬂg 6g)/L, wheres!! is the
distance between theand(1 — a) quantile of the-th chair(X :*)),. Alternatively, we can pool the data first, and
then compute the distance between ¢hand (1 — «) quantile of the pooled data. If all chains are a sample from
the same distribution, both estimates should be roughlgahnee, so their ratio

Slnterval _ Zlbzl 6g)/L
“ o)
can be used as a tool to diagnose whether all chains samplextiie same distribution, in which case the ratio
should be around 1.
Alternatively, one could compare the variances within thehains to the pooled estimate of the variance (see
Brooks and Gelman, 1998, for more details).

3 i.e. the variance of the starting values should be larger than the variatieetarget distribution.
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Example 6.5 (A simple mixture of two Gaussians (continued)). In the example of the mixture of two Gaussians we

will consider L = 8 chains initialised from &l(0, 10?) distribution. Figure 6.5 shows the sample paths of&he
chains for both choices far(c). The corresponding values §§? are:

0.9789992
Var(e) = 0.42 ; Sitteval — 22 2222 — 2696962
ar(e) = 3.630008
. 3.634382
Var(e) = 1.22 ; Sitenval — 3616163 = 0-996687. 4
o oo "
N N,M”w m,h
= ~ \\ “
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(@) Var(e) = 0.4° (b) Var(e) = 1.2%

Figure 6.5. Comparison of the sample paths for= 8 chains for the mixture of two Gaussians.

Note that this method depends crucially on the choice ofinialuesX (1) ... X (L.0)

, and thus can easily
fail, as the following example shows.

Example 6.6 (Witch's hat distribution). Consider a distribution with the following density:

Fn,2) o (1 =0)p(u.o>1y(w1,22) +6  if 21,20 € (0,1)
1,2
0 else

which is a mixture of a Gaussian and a uniform distributiasthitruncated tdo, 1] x [0, 1]. Figure 6.6 illustrates

the density. For very smadl?, the Gaussian component is concentrated in a very smalbaoeady.
The conditional distribution ok | X is

Fnlas) = (1 = 02y)P(p,o21) (w1, 2) + 05,  fOray €(0,1)
0 else.

0
84 (1= 8)@(uy,02) (22) )
Assume we want to estimai®(0.49 < X, X, < 0.51) for § = 103, p = (0.5,0.5)', ando = 10~° using a
Gibbs sampler. Note that 99.9% of the mass of the distribu§i@oncentrated in a very small area around, 0.5
i.e.P(0.49 < X, X5 <0.51) = 0.999.

with 0, =

Nonetheless, it is very unlikely that the Gibbs samplertsihis part of the distribution. This is due to the fact
that unlesse, (or ) is very close touy (Or 1), 05, (Or d5,) is almost 1, i.e. the Gibbs sampler only samples
from the uniform component of the distribution. Figure 6®ws the samples obtained from 15 runs of the Gibbs
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sampler (first 100 iterations only) all using different iafisations. On average only 0.04% of the sampled values
lie in (0.49,0.51) x (0.49,0.51) yielding an estimate oP(0.49 < X1, X, < 0.51) = 0.0004 (as opposed to
P(0.49 < X1, Xo < 0.51) = 0.999).

It is however close to impossible to detect this problem waitly technique based on multiple initialisations.
The Gibbs sampler shows this behaviour for practicallytalitsg values. In figure 6.6 all 15 starting values yield

a Gibbs sampler that is stuck in the “brim” of the witch’s hatlahus misses 99.9% of the probability mass of the

target distribution. <

R

(a) Density ford = 0.2, p
(0.5,0.5)’, ando = 0.05

(b) First 100 values from 15 samples using different
starting values.

(6 =103 p=(0.5,0.5), ando = 10~°)

Figure 6.6. Density and sample from the witch'’s hat distribution.

6.2.5 Comparison to i.i.d. sampling and the effective sample size

MCMC algorithms typically yield a positively correlatedrsple (X(*)),_,

_____ 7, which contains less information
than an i.i.d. sample of sizB. If the (X(*),_,

VVVVV 7 are positively correlated, then the variance of the average

"
ar <% M h(x<t>)> (6.2)
t=1

is larger than the variance we would obtain from an i.i.d. gemwhich isVar(h(X®))/T.
The effective sample size (ESS) allows to quantify this lefsformation caused by the positive correlation.

The effective sample size is the size an i.i.d. sample woale tto have in order to obtain the same variance (6.2)
as the estimate from the Markov chdiK®)),_,

In order to compute the variance (6.2) we make the simplifyassumption tha(th,(X(‘))),:lmT is from a

second-order stationary time series, Ver(h(X®)) = o2, andp(h(X®), (X*+7))) = p(7). Then
1 & 1
— (t) — (i) (s) (t)
ar (T Zh(X )) = T ZVdr (M(X Z Cov(h(X')), L(X"))
1 t=1 ey 1<s<t<T :02'“’/)(178)

a? — o? ol T
= = <T+2;(T7T)/)(T)> =% <1+2; (1 - f) p(T)) .

If 7% |p(7)| < +o00, then we can obtain from the dominated convergence theéftrean

4 see e.g. Brockwell and Davis (1991, theorem 7.1.1) for details.
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el

1 T +o0
T - Var < D h(X(t))> — 02 (1 +23° p(T))

asT — oo. Note that the variance would b€ /Ttssif we were to use an i.i.d. sample of siZess We can now
obtain the effective sample siZessby equating these two variances and solvingffess, yielding

1
T2y )
If we assume thaih(X(")),—, .. 1 is afirst-order autoregressive time series (AR, i.e.p(7) = p(h(X®), h(X(+7))) =
271, then we obtain using + 2 -1 o™ = (1 + p)/(1 — p) that

=1

Tess -T.

1—
P'T

Tess= ——
ESS T+p

Example 6.7 (Gibbs sampling from a bivariate Gaussian (continued)). In examples 4.4 and 4.5 we obtained for the
low-correlation setting thazt(X{t’”, X}”) = 0.078, thus the effective sample size is

1-0.078
Tess= ————< -1 = 8547.
ESS= T 0078 0000 = 8547

For the high-correlation setting we obtair}e(d(f”’” , Xl“’)) = 0.979, thus the effective sample size is considerably

smaller:
1-0.979
Tess= 150979 10000 = 105.
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pe(x¢). In most applications of interest, it is not possible to abtxact samples from these evolving distributions,
so the goal is to reuse an approximate sample, representdtpy_; (x;—1), to obtain a good representation of
p(x¢). Moreover, since inference is to be performed in real timees observations arrive, it is necessary that
the computational cost be fixed inWe will see in the sequel that SMC methods are highly flexiaied widely
applicable; we restrict our attention to a particular clafssynamic models called theate-space modésSM).

Chapter 7

7.2 State-space models

State-SpaCG m Od eIS an d th e Kal m an fl |tel’ SSMs are a class of dynamic models that consist of an undgryiarkov process, usually called thte process

X, that is hidden, i.e., unobserved, and an observed progssally called thebservation procesd’;. Consider
the following notation for a state-space model:

algorithm

observation: y; = a(zy, ui) ~ g(-|ze, )

hidden state: @, = b(zy—1,v) ~ f(:|zi—1,0),

wherey, andx, are generated by functiorg-) andb(-) of the state and noise disturbances, denoted bgnd
7.1 Motivation vy, respectively. Assume and to be known. Letp(x;) denote the distribution of the initial statg. The state

process is a Markov chain, i.eo(z¢|z1,...,2-1) = p(vi|wi—1) = f(xi|@—1,0), and the distribution of the

In many real-world applications, observations arrive sedjally in time, and interest lies in performing on-line observationy,, conditional onz,, is independent of previous values of the state and obsenvptocesses, i.e.,

inference about unknown quantities from the given obsemat If prior knowledge about these quantities is avail- Pl yie—1) = pyelze) = g(ye|ze, ¢). See Figure 7.1 for illustration.

able, then it is possible to formulate a Bayesian model thedrporates this knowledge in the form of a prior

distribution on the unknown quantities, and relates thesthé observations via a likelihood function. Inference i1 ~ fwe|zi-1,0)

on the unknown quantities is then based on the posteriorilmition obtained from Bayes’ theorem. Examples @ . @ . @ . . L @ L @ L
include tracking an aircraft using radar measurementgcpeecognition using noisy measurements of voice sig-

nals, or estimating the volatility of financial instrumentsing stock market data. In these examples, the unknown l l l l l l l
quantities of interest might be the location and velocitytta# aircraft, the words in the speech signal, and the @ @ @ @ @
variance-covariance structure, respectively. In allefeeamples, the data is modelled dynamically in the sense tha

the underlying distribution evolves in time; these modetskmnown asdynamic modelsSequential Monte Carlo velee ~ 9(yiles, 9)

(SMC) methods are a non-iterative, alternative class afrittyms to MCMC, designed specifically for inference Figure 7.1. The conditional independence structure of the first few states andvatises in a hidden Markov Model.

in dynamic models. A comprehensive introduction to thesthous is the book by Doucet et al. (2001). We point

out that SMC methods are applicable in settings beyond dimaradels, such as non-sequential Bayesian infer- Note that we use the notatian.; to denotery, . . ., 2, and similarly fory,.,. For simplicity, we drop the explicit

ence, rare events simulation, and global optimizationviges that it is possible to define an evolving sequence of dependence of the state transition and observation dessiti) and¢, and writef (-|;—1), andg(-|z¢).

artificial distributions from which the distribution of ietest is obtained via marginalisation. The literature sometimes distinguishes between stateespadels where the state process is given by a discrete
Let p;(x;) denote the distribution at time> 1, wherex; = (z1, ..., ;) typically increases in dimension with Markov chain, callechidden Markov model§HMM), as opposed to a continuous Markov chain. An extensive

t, but it is possible that the dimensionxf be constant't > 1, or thatx; have one dimension less thap_;. The monograph on inference for state-space models is the bodkapye et al. (2005), and a more recent overview

particular feature of dynamic models is the evolving nanfréhe underlying distribution, wherg, (x;) changes is Cape et al. (2007). In the present chapter and the following, Mmduce several algorithms for inference in

in time ¢ as new observations are generated. Note thatre the quantities of interest, not the observations; the state-space models, and point out that the algorithms ip@h& apply more generally to dynamic models.

observations up to timedetermine the form of the distribution, and this is impligdtbe subscript in p;(-). This

is in contrast to non-dynamic models where the distribuisoronstant as new observations are generated, denoted 7.2.1 Inference problems in SSMs
by p(x). In the latter case, MCMC methods have proven highly effedti generating approximate samples from
low-dimensional distributiong(x), when exact simulation is not possible. In the dynamic caiseach time step Under the notation introduced above, we have the joint dgnsi

a different MCMC sampler with stationary distributipp(x; ) is required, so the overall computational cost would t t
p(@1e, Y1) = p(x1)g(y1|71) HP(-TI'- Yil1i-1, y1ii-1) = p(x1)g(y1|21) H f(@ilwi-1)g(yslzs),

increase witht. Moreover, for large, designing the sampler and assessing its convergence Wwedittreasingly 5 5
i= i=

ifficult.
difficut and, by Bayes’ theorem, the density of the distribution tériest
SMC methods are a non-iterative alternative to MCMC albyoni, based on the key idea thapif ; (x;—1)

does not differ much from, (x,), then it is possible to reuse the samples fram; (x;_1) to obtain samples from p(@ra|yr:e) X p(x1e|yre—1)9(yelze) = p(@ra—1|yre—1) f@dze—1)g(ye|@e). (7.1)
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To connect this with the notation introduced for dynamic elsdwe can writey;,(z1..) = p(z1.¢|y1.¢), but we
believe that stating the dependence on the observatioflisidhypeads to less confusion.

There exist several inference problems in state-space It involve computing the posterior distribution
of a collection of state variables conditional on a batchlifesvations:

— filtering: p(x¢|y1:¢)

— fixed lag smoothingy(z;—|y1.¢), for0 <1<t —1

— fixed interval smoothingy(x.x|y1.¢), for1 <l <k <t
— prediction: p(z;.x|y1.¢), fork > tandl <1 < k.

The first three inference problems reduce to marginalisatiothe full smoothing distributiom(z1..|y1.¢), i.e.,
integrating over the state variables that are not of intevésereas the fourth reduces to marginalisation of

k
plerelyie) = plarlye) [] flileio).
i=t+1

So far we assumed that the state transition and observatisitis are completely characterised, i.e., that the
parameter$ and¢ are known. If they are unknown, then Bayesian inference isemed with the joint posterior
distribution of the hidden states and the parameters:

t

P(w1:4,0, 8ly11) o p(yr.elare, 0, 6)p(w1.410,6)p(6, &) = (0, $)p(w1)g (|1, @) [ | f(@ilwior, 0)g(yil s, 6)-
=2

If interest lies in the posterior distribution of the paraers, then the inference problem is called:
— static parameter estimatiomi(6, ¢|y1..),

which reduces to integrating over the state variables ifjdine posterior distribution(z1.., 6, |y1.1).

It is evident, then, that these inference problems dependhentractability of the posterior distribution
p(z1:¢|y1.1), if the parameters are known, pfz1., 0, ¢|y1..), otherwise. Notice that equation (7.1) gives the pos-
terior distribution up to a normalising constafip(x1.¢|y1.c—1)g(y¢|x+)dz1.¢, and it is oftentimes the case that the
posterior distribution is known only up to a constant. Irtfticese posterior distributions can be computed in closed
form only in a few specific cases, such as the hidden Markovemod., when the state process is a discrete Markov
chain, and the linear Gaussian model, i.e., when the fumgti) andb() are linear, and the noise disturbaneags
andv; are Gaussian.

For HMMs with discrete state transition and observationritlistions, the tutorial of Rabiner (1989) presents
recursive algorithms for the smoothing and static paranestigmation problems. The Viterbi algorithm returns the
optimal sequence of hidden states, i.e., the sequence éxithises the smoothing distribution, and the Expectation-
Maximization (EM) algorithm returns parameter values faiieh the likelihood function of the observations attains
a local maximum. If the observation distribution is contiog, then it can be approximated by a finite mixture
of Gaussian distributions to insure that the EM algorithmlis to the problem of parameter estimation. These
recursive algorithms involve summations over all statethénmodel, so they are impractical when the state space
is large.

For the linear Gaussian model, the normalising constant i) can be computed analytically, and thus the
posterior distribution of interest is known in closed forim;fact, it is the Gaussian distribution. Th&lman fil-
ter algorithm (Kalman, 1960) gives recursive expressions liermean and variance of the filtering distribution
p(at|y1:+), under the assumption that all parameters in the model anerkrkKalman (1960) obtains recursive ex-
pressions for the optimal values of the mean and variana@ngeters via a least-squares approach. The algorithm
alternates between two steps: a prediction step (i.e.iqiribe state at time conditional ony;.;—1), and an update
step (i.e., observeg,, and update the prediction in light of the new observati@gction 7.3 presents a Bayesian
formulation of the Kalman filter algorithm following Meinkband Singpurwalla (1983).
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When an analytic solution is intractable, exact inferenaepdaced by inference based on an approximation to
the posterior distribution of interest. Grid-based methasing discrete numerical approximations to these posteri
distributions are severely limited by parameter dimensiliternatively, sequential Monte Carlo methods are a
simulation-based approach that offer greater flexibilitgl &cale better with increasing dimensionality. The key
idea of SMC methods is to represent the posterior distobuby a weighted set of samples, calfeatticles that
arefiltered in time as new observations arrive, through a combinatiosamfipling and resampling steps. Hence
SMC sampling algorithms are oftentimes callgatticle filters (Carpenter et al., 1999). Chapter 8 presents SMC
methods for the problems of filtering and smoothing.

7.3 The Kalman filter algorithm

From (7.1), the posterior distribution of the state conditional on the observationg.; is proportional to
p(e|y1—1)9(ye|ze). The first term is the distribution of, conditional on the first — 1 observations; comput-
ing this distribution is known as thgredictionstep. The second term is the distribution of the new observat
y; conditional on the hidden state at timeUpdatingp(z;|yi..—1) in light of the new observation involves taking
the product of these two terms, and normalising; this is kmew theupdatestep. The result is the distribution of
interest:

p(@e|yr:i—1)g(yelze)
Ti|yre) = T1.4|yre)dey ..o drp 1 = — .
Platy) /p( R T T YA r

We now show how the prediction and update stages can be perdaexactly for the linear Gaussian state-space
model, which is represented as follows:

observation: y, = Ay 4 uy ~ N(Azy, D?) (7.2)
hidden state: x; = Byxs_1 + v ~ N(Bt:vt,l,@z), (7.3)

whereu; ~ N(0,$2) andv, ~ N(0,0?) are independent noise sequences, and the paramigtels, ¢2, ando?

are known. It is also possible to let the noise variankgand©? vary with time; the derivation of the mean and
variance of the posterior distribution follows as detaitedlow. We assume that both states and observations are
vectors, in which case the parameters are matrices of apat®gizes.

The Kalman filter algorithm proceeds as follows. Start withiaitial Gaussian distribution om;: z; ~
N(u1, X1). Attimet — 1, let u,—1 and X, be the mean and variance of the Gaussian distribution_of condi-
tional ony;.;—;. Looking forward to time, we begin by predicting the distribution of conditional ony;.;—1.

Prediction step: From equation (7.3)z; = Bixi—1 + ve, wherezy_q1|yr4—1 ~ N(pe—1, Xi—1), andv; ~
N(0, ©2) independently. By results in multivariate statisticallgas (Anderson, 2003), we have that

Te|Y1—1 ~ N(Bt#t—lanZﬁ—leT + 92), (7.4)

where the superscrigt indicates matrix transpose. This can be thought of as tlee gistribution onz;.
Update step:Upon observing,,, we are interested in

P(welyre) o p(yelze, yra—1)p(eelyie—1)-

Following equation (7.2) and the result in (7.4), considedictingy, by 4§, = A;Bu—1, where By, is the
prior mean one;. The prediction error is; = y; — 9+ = y+ — A+ B:u:—1, Which is equivalent to observing. So
it follows thatp(z|y1.¢) o< plei|xe, yi.e—1)p(@i|y1.0—1). Finally, from (7.2),e; = Ay(xy — Bypu—1) + uq, where
U ~ N(O,@z), soe|xe, yri—1 ~ N(Ag(xp — Btﬂf,_l),@z).

We now use the following results from Anderson (2003). Ketan X, have a bivariate normal distribution:
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X X pRY
I N H1 7 11 12 ) (7.5)
Xo H2 o1 X
If equation (7.5) holds, then the conditional distributmnX; given X, = x5 is given by

X/ Xy =22 ~N (M + 2122272l (g — p2), X1 — 2122272l 221) . (7.6)

Conversely, if (7.6) holds, andl; ~ N(u2, Xs2), then (7.5) is true.
Sincee; |z, y1:4—1 ~ N(Ay (@ — Bype—1), P?) anday|yr.4—1 ~ N(Byuy—1, By X,—1 B} + ©2), it follows that

(1‘:) ) N ((Bim_l> < B,% BT + 02 (B,5,_1BY + 02)AT ))
Yrig—1 ~ )
€t

0 At(BtEi,lB,T +6?) At(BtEt,lB,T + (—)Z)ALT + @2
Using the result above, the filtering distributiorpisc: [y1..) = p(@i|es, y1..—1) = N(ue, X4), since observing, is
equivalent to observing;, where

we = By + (B X1 BF + 0% Al (A(B X1 Bl + 6% AT + @) e,
X, = BBl +0°—(BE, 1Bl +0*) AT (Ay(B.5, 1B + ©*)A] + &°) ' A(B, X1 B] + ©?).

Algorithm 1 The Kalman filter algorithm.
1: Input:p; andX;.
. Sett = 2.
: Compute mean and variance of predictipn'= B,ju,—1, X = B.X,—1 Bf + 6.
: Observey; and compute error in prediction; = y. — Ayfis.
: Compute variance of prediction errdt; = A, 3, AT + &>,
: Update the mean and variance of the posterior distribution:

o g s WN

e fie + S AT R e
X o= S-S ATR7TAL

7: Sett =t + 1. Goto step 3.

Example 7.1 (First-order, linear autoregressive (AR(1)) model observed with noise). Consider the following AR(1)
model:

v = w1 +opu ~N(¢z_1,00)

2
ye = x4+ oyve ~ N(zy, o),

whereu; ~ N(0,1) andv; ~ N(0, 1) are independent, Gaussian white noise processes. The Wram{ X, },>1
is a Gaussian random walk with transition kerb&lz;_1,z) corresponding to thd(¢a;_1, o7 distribution.

A normal distributionN(p, 0?) is stationary for{X;},;>1 if X;—1 ~ N(p,0?) and X¢|X;—1 = z41 ~
N(pzi—1,02) imply that X; ~ N(u,o?). We require thals(X;) = ¢p = p andVar(X;) = ¢?0? + o = o2,
which are satisfied by = 0 ando? = o7, /(1 — ¢?), provided|¢| < 1. In fact, theN (0,07 /(1 — ¢?)) distribution
is the unique stationary distribution of the chain.

Start the Kalman filter algorithm with; = 0 and.2, = o7, /(1 — ¢?). Attimet — 1, ¢ > 2, lety,_; andX;_,
denote the posterior mean and variance, respectively. fteemean and variance of the prediction at tihze:
fi = dpy—1 andX, = O*X 1+ oZU. The prediction error is; = y; — fi; with varianceX, + n%. Finally, update
the mean and variance of the posterior distribution:

R o 1 . 5, R 0
e = Nt-‘rztm(?h—ﬂf): (1— = 2’>Nt"" = 2,3/:

S-S =51-5——]].
EtJra‘Z, Et+a‘2,

2
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<

The Kalman filter algorithm (see Figure 1 for pseudo-codepisrobust to outlying observations, i.e., when
the prediction erroe, is large, because the mean is an unbounded function ef;, and the variance’; does
not depend on the observed dgtaMeinhold and Singpurwalla (1989) let the distributionsthoé error termsu,
andv; be Student; and show that the posterior distributionaaf giveny;., converges to the prior distribution of
p(z¢|y1.—1) Whene, is large. In this case, the posterior distribution is no kmgrown exactly, but is approximated.

The underlying assumptions of the Kalman filter algorithra grat the state transition and observation equa-
tions are linear, and that the error terms are normally ibistied. If the linearity assumption is violated, but the
state transition and observation equations are diffablgifunctions, then thextended Kalman filtealgorithm
propagates the mean and covariance via the Kalman filtetieqady linearizing the underlying non-linear model.
If this model is highly non-linear, then this approach wikult in very poor estimates of the mean and covariance.
An alternative is theinscented Kalman filtexhich takes a deterministic sampling approach, reprasgiiie state
transition distribution by a set of sample points that appgated through the non-linear model. This approach
improves the accuracy of the posterior mean and covaridocdetails, see Wan and van der Merwe (2000).



Chapter 8

Sequential Monte Carlo

In this chapter we introduce sequential Monte Carlo (SMC}hoes for sampling from dynamic models; these
methods are based on importance sampling and resamplimgigees. In particular, we present SMC methods the
filtering and smoothing problems in state-space models.

8.1 Importance Sampling revisited

In Section 3.3, importance sampling is introduced as a igdlenfor approximating a given integral =
J h(z)f(x)dz under a distributionf, by sampling from an instrumental distributignwith support satisfying
Supfg) D Supf f - h). This is based on the observation that

p=E;h(X))= /h(m),f(w)d.z‘ = /h(m)%g(w)dw = /h(a:)u,V(:r,)g(w)dw =E,(h(X) w(X)). (8.1)

where the right-most expectation in (8.1) is approximatgdhe empirical average df - w evaluated at i.i.d.
samples frony.

In practice, we want to selegtas close as possible fosuch that the estimator @f has finite variance. One
sufficient condition is thalf (z) < M - g(x) and Var(h(X)) < oo. Under this condition, it is possible to use
rejection sampling to sample frogh and approximate:.. We argue in the following subsection that importance
sampling is more efficient than rejection sampling, in teahgroducing weights with smaller variance.

8.1.1 Importance Sampling versus Rejection Sampling

Let E be the support of . Define the artificial target distributiof(z, y) on E x [0, 1] as

ol . f(x)
Fey) = Mg(xz) for {(L, y):xeEye |:O! Mg(w)]}
0 otherwise

where
f(z)

fa) = / Fay)dy = /0 " Mg(a)dy.

Consider the instrumental distributig, y) = g(x)Uo,1)(y), for (z,y) € Ex[0,1], whereUjy 3 (-) is the uniform
distribution on[0, 1]. Then, performing importance sampling &hx [0, 1] with weights

7 y ) c . Jics
w(z,y) = flz,y) _ M for {(17/) rxe B ye [O, 7A1§<l)]}
' : 0  otherwise

i
—~
8

<
=
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is equivalent to rejection sampling to sample frgiusing instrumental distributiop. In contrast, importance
sampling fromf using instrumental distribution has weightsv(z) = f(x)/g(z).

We now show that the weights for rejection samplingz, y), have higher variance than those for importance
sampling,w(z). For this purpose, we introduce the following technical heawhich relates the variance of a
random variable to its conditional variance and expeatatin the following, any expectation or variance with a
subscript corresponding to a random variable should bepirgged as the expectation or variance with respect to
that random variable.

Lemma 8.1 (Law of Total Variance). ~ Given two random variables) and B, on the same probability space, such
that Var (A) < oo, then the following decomposition exists:

Var (A) = Eg [Vary (A|B)] + Varg (Ea [A|B]) .
Proof. By definition, and the law of total probability, we have:
Var (4) = E [A?] - E[A]® = Ep [Ea [A%|B]] - Ep [Ea [A|B])*.
Considering the definition of conditional variance, anchtkariance, it is clear that:

Var (4) = Ep [Vara (A|B) + Ea [A|BJ’] - g [E4 [4]B]
— Eg [Vara (AB)] + Ez [E [A|B]"] -~ Eg [Ea [AB]

=Ep [VarA (A‘B)] + Varp (EA [A‘BD .

Returning to importance sampling versus rejection sargplire have by Lemma 8.1 that

Var (w(X,Y)) = Var (E (w(X,Y)|X)) + E (Var (w(X,Y)|X)) = Var (w(X)) + E (Var (w(X,Y)| X))
> Var (w(X)),

since

1 e B
Ew(X,Y)|X)= /0 'Iu(a:,y)'{]g?;:‘l)/)dy: /0 ( )Z\Jdv = Z());) =w(X),

and the fact thaVar (w (X, Y')| X) is a non-negative function.

8.1.2 Empirical distributions

Consider a collection of i.i.d. poinfse; }-_; in £ drawn fromf. We can approximat¢ by the followingempirical
measureassociated with these points,

n

| =

f(T): ; ]I(.T,:,qr:l):g
i=1 i=1

_
>,
&
—
8
NS

<

where, for any: € E, 6,, () is the Dirac measure which places all of its mass at painte.,d,, (z) = 1if 2 = z;
and0 otherwise. Similarly, we can define teenpirical distributionfunction

F(z) = % > I < @),

wherel(z; < ) is the indicator of event; < z.
If the collection of points has associated positive, redi+ed weightsz;, w; }!_;, then the empirical measure
is defined as follows
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f(l) _ Zr;lyfljiémm(r)_
Zi:] w;

For fixedz € E, f(z) andF(x), as functions of a random sample, are a random measure aritudisn,
respectively. The strong law of large numbers justifies apiprating the true density and distribution functions by
f(z) and () as the number of samplesincreases to infinity.

From these approximations, we can then estimate integritisrespect tof by integrals with respect to the
associated empirical measure. et E — R be a measureable function. Then

Ef(h(X)) = / h(x) f(x)da ~ / h(x) f(x)de = 1 > h(ai),

n —
or, if the random sample is weighted,

oy wib(w;)
Z:L:1 Wy '

Sequential Importance Sampling exploits the idea of setiplyrapproximating an intractable density function

E;(h(X)) = / h(2) f(z)ds ~ / h(@) f(z)dz =

f by the corresponding empirical measyfrassociated with a random sample from an instrumental lolisioin g,
and properly weighted with weights; o« f(z;)/g(x;).

8.2 Sequential Importance Sampling

Sequential Importance Sampling (SIS) performs importesazepling sequentially to sample from a distribution
p(x¢) in a dynamic model. Le{xi”), wf"’)}nﬂ be a collection of samples, callpdrticles that targetg, (x;). At
timet+1, the target distribution evolves i@: (x¢41); fori =1,...,n, sample thét+1)st componerﬁ:ﬁ1 from
an instrumental distribution, update the weig}ﬁﬂl, and appen(f:t,(if1 to xE“. The desired result is a collection of
samples{xgﬂl,wﬁﬂl}’vl that target®, 1 (x¢41).
The idea is to cholo:sle an instrumental distribution suchithportance sampling can proceed sequentially. Let

q1+1(x¢+1) denote the instrumental distribution, and suppose thainthe factored as follows:

t+1

Q1 (Xe41) = qi (1) H(Ii(l‘i|xz—1) = (Xt ) @1 (Ve 1[x2).
=2

Then, the weightwﬁfl can be computed incrementally fromﬁi). At timet = 1, samplemﬁ” ~ qi(xq) for

i=1,...,n,and sem@ = p1(x1)/q1(z1). Normalise the weights by dividing them @;’:1 wﬁ”. Attimet > 1,
o _p)
wy " = O
a(xy”)

so, at the following time step, we sampj%ﬁll ~ qr1(Teg1 \xﬁ”), and update the weight

@) prﬂ(xgl) _ Pt+1(xgl> () pt+1(><if21>
v () 6] ) 0y @ [ONMOIN 82)
a1y ) @)@ (v x7) Pe(xy ) qe1 (204 1%;7)

t+1 — =

Normalise the weights. The term
Pt+1 (XEQI)

P g ()%

g P n .
is known as th@ncremental weightThe intuition is that if the weighted samp{e«i”,u;ﬁ‘)}_ is a good ap-
i
proximation to the target distribution at tinte p;(x;), then, for appropriately chosen instrumental distributio
. T n
Gr+1(x141]x¢), the weighted samplt{xgl,wﬁl} is also a good approximation {91 (x;+1). For details,
i=1

see Liu and Chen (1998).
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8.2.1 Optimal instrumental distribution

Kong et al. (1994) and Doucet et al. (2000) prove that the nditional variance of the weights increases over
time. So in the long run, a few of the weights contain most efgtobability mass, while most of the particles have
normalised weights with near zero values. This phenomeknaw in the literature aseight degeneracyChopin
(2004) argues that the SIS algorithm suffers from the cufsknoensionality, in the sense that weight degeneracy
grows exponentially in the dimension

So it is natural to seek an instrumental distribution thatimises the variance of the weights. Doucet et al.
(2000) show that the optimal instrumental distributiomis, (z;41|x\”) = p1 (21 ]x(”), in the sense that the
variance ofw,('fgl conditional uporx,(") is zero. This result appears in the following proposition.

Proposition 8.2.  The instrumental distributioqt+1(a:,,+1\xi"')) = le(z,H\xE”) minimises the variance of the

(i)

11 conditional uponx!?.

weightw,

Proof. From (8.2),

) N2 @ .

i i Per1 (% Tey1)

Var, o (“71(421) = (wﬁ)) Var, o <—
genileenba’) geniloenba’) Pt(xgw)fkﬂ(MH\XEI))

2 Q) ? ONE
(i) Pt (X, Tes1) 1 _ Pre1(x;”)
(wl”) @ der ®
x;") @1 ( x;")

pe( 1’t+1|xii)) i (

= 0,
if (i)y _ (i) O
if gre1(zeralxy”) = prsr(@es|x;”).

More intuitively, Liu and Chen (1998) rewrite the incremanreight as

P41 (xiil) _ Pin1 (Xf(,i)) Pr1 (Tt |Xii))
PN (@eealx) px?) qrr (@ lx?)

and interpret the second ratio on the right hand side asatorgethe discrepancy betweml(xiﬂ\xﬁ”) and
D1 (a1 \xi")), when they are different. Hence the optimal instrumentstfithiution iSle(le\xE’)).

In practice, however, sampling from the optimal instruraémlistribution is usually not possible, so other
choices of instrumental distributions are considerede@iines it is possible to find good approximations to the
optimal instrumental distribution; in such instances, thdéance of the corresponding weights is low for small
but weight degeneracy still occurstahcreases.

Wheng;1(zi41 |x£i)) = p(@is1 |x§i)), i.e., the distributiom, (x;) is used to predict, 1, then the incremental
weight simplifies tq; (xgl)/p, (xiﬁl). The resulting SIS algorithm is known as theotstrap filter It was first
introduced by Gordon et al. (1993) in the context of Bayedil#ring for non-linear, non-Gaussian state-space
models.

8.2.2 SIS for state-space models

Recall the state-space model introduced in Section 7.2siRwlicity, assume that all parameters are known.

observation: y; = a(zy, uy) ~ g(-|z¢)

hidden state: z; = b(x;—1,v;) ~ f(-|zi—1).

We present the SIS algorithm to sample approximately frafittering distributionp; 1 (x1+1) = p(z¢+1|y1:041),
and the smoothing distributign 1 (x+1) = p(T1:441|y1:041)-

The instrumental distribution i@tﬂ(xiﬂm(lfi), where the subscript+ 1 indicates that the distribution may
incorporate all the data up to tinte+ 1: yq.,11. For the bootstrap filteg; ;1 (x4 |T§‘i) = p(z441 \mgfl,y]:,,) =
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f(x,+1\m§')), i.e., the instrumental distribution does not incorporite most recent observatian;, and the

weight is
(i) (i) (@), (8) (4)
3 o Py o P(@ 5y 2 )9y |z
0, = (2341 [y1:641) o wf® (2324 u)_ (224 |2 )g( f_+1| i1) — gy 2)

P yne) i)y af) (e yre) () [2)

by equation (7.1). In this case, the incremental weight du¢sdepend on past trajectorieéf), but only on the
likelihood function of the most recent observation.
Gordon et al. (1993) introduce the bootstrap filter in a vatyitive way, without reference to SIS, but rather as

a two-stage recursive process with a propagate step, fedldwy an update step (similar in spirit to the recursions

in the Kalman filter algorithm). Write the filtering density fadlows:

9(Yet1|zer)p(Te1|yre)
p(yt+1|y1:t)

P(@es1lyres1) = x g(ytJrl‘thrl)/p(thrlaxt‘yl:t)dmt

X glaloen) [ flepelnodz. @3

Now, Iet{. w( )} be awelghted sample representing the filtering densityreti such thaE - wi” =

Then, p(z¢|y1:1) = Z = w 6 (1)(Lt) is the empirical measure approximatipge:|y1.:), and p(zii1|y1:¢) =

> w( )f(dnf+1|¢(’)) Furthermore, by (8.3), we have the approximation

DoY) Z“/t 9 ) fig)of?),
and sampling proceeds in two steps:

Propagate step: far=1:n, sampk—:—:br+1 ~ i |nt™).

Update step:  fof =1:n, nghgcHl with nghtwt+1 = wﬁ )g(yt+1|z§21). Normalise the weights.

In contrast to the instrumental distribution of the boatgtfilter, the optimal instrumental distribution incorpo-
rates the most recent observation:

@1 (@ |2)) = p(@ral el yresr)
Pyl wesn, yr)p(we |28, yie)
N I etz yi0p(@en |28,y dee
9Werrlwiin) f(@esa]at”)

T 9estlzen) f(zep o) dees

where the normalising constant equals the predictiveibligton of 4, conditional onz,, i.e.,p(y;41|z:). So the

weight function becometsﬁj1 o u,( )[)(Jerl |2y).

Example 8.1 (AR(1) model observed with noise (continued from example 7.1)). The optimal instrumental distribu-
tion is
Qi1 (Teg1]21:0) X 9(Yr1|@es1) f@a|ae)

1 1
X exp {7ﬁ<yt+l - ﬂ?t+1)2} Xp { 2% 2 (w41 — ¢-’Et)2}
1] o 1 1 Yyl | OT¢ Yia | ¢Pa?
:exp{7§ [wtﬂ ( z " U(/) B ( oi +T%* N oy - of,

1
X exp {7ﬁ(l't+l - H)Z}’

implying that the distribution i&(z, 02) with
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U%YU%/ Ye+1 Qxy
n=—s\ 2tz
op oy \ oy of

2 2

2_ _9u%

- 2 2"
oyt oy

The normalising constant of this optimal instrumentalritisttion is

P(Yes1le) :/.(l(il/t+1\Cﬂt+1)f(l’t+1\1‘t)dfﬂt+1
5 9 N2 2
1, 1/1 1 0'[2/0"2/ Yit1 | 9Ty
o el I N (v AV ! x
X exp ( 20‘2/92+1> exp{2 <0_% + 0‘2/> (U% T o2 + 7
11 1\ 1 ( 11 ) [ ool (yf+1 am)r
— + — expl —= | — + Tip1 — 55— | = + —=- dx
V2 <a%y J%») P 2 0[2, U%; i 0[21 + (7‘2/ O"Z/ a%, B

. 17, 1 2¢x+
Xexpy—= |Yiri—5——5 — 55
P 2 Y1 a[zj + O'V UU + 0'2 Yot

i.e,yep1lze ~ N(gzy, ofs + 0F). <

n
Let {T(l 1+1‘“’§+)1} be a weighted sample, normalised such gt wt+1 = 1, from p(@1.e41|y1:041)-
Then the filtering and smoothlng densities are approximbyettie corresponding empirical measures:

n
P(@eg1|yre41) = Zﬂ7£216w§21(1't+1)7 P(Trt1|yrisr) = Zwt+15 @, Il 1)

i=1
Algorithm 2 is the general SIS algorithm for state-space e®dThe computational complexity to generate
particles representing(z1.¢|y1..) is O(nt).

Algorithm 2 The SIS algorithm for state-space models
1: Sett = 1.
: Fori = 1:n, sampler(”) ~ qi(z1).

) o p(@)g(yi2$7) /a1 (2! )Normallsesuchtha[jlwl” 1.
=

. Fori =1:n, setw

. Attimet + 1, do:
: Fori=1:n, samplerile ~ gt (T |2$D).

c Fori=1:n, setwfﬁ x w( )f(zfﬂ\z )g (yfﬂ\zt“)/qtﬂ(z,“\z, ,) Normalise such thap_ wgi)l =1
j=1

N o s W N

: The filtering and smoothing densities at time 1 may be approximated by

n
D(@eir|yred) = ZlelS @ (@), p@ieplyness) = ngfﬁlyzﬂ(zlwﬂ)
i=1 =

8: Sett =t + 1. Go to step 4.

8.3 Sequential Importance Sampling with Resampling

One approach to limiting the weight degeneracy problem thmse an instrumental distribution that lowers the
variance of the weights; a second approach is to introdueseanplingstep after drawing and weighing the particles
at timet + 1. This idea ofrejuvenatingthe particles by resampling was first suggested by Gordoh @93).

The idea is as follows: Ie{’ 0 >}‘7 be a weighted sample from(x), obtained by importance sampling,
and normalised such thg, 1 w(’) = 1. The empirical measure j(z;) = > i, wt(i)érgl) (z¢). Under suitable
regularity conditions, the law of large number states thoaitany fixed measurable functidn asn — oo,

/h(.x,)ﬁt(x,)d.ri = wal)h,(wgi)) — /h(a:t)pt(mt)dﬂ;,.
im1 .
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Suppose now that we draw a sample of sizérom p, (z,) with replacement, i.e., fof = 1,...,n, i,(” = xii) with
probabilitywt(’). The new particles have equal weighié.”) = 1/n’. Again, invoking the law of large numbers, as

n' — oo, )
LG = D wlhal?),
j=1 i=1
So, forn’ large, the integral of the functiolwith respect to the new empirical measure baseeﬁinﬁ), 1/7/}71
is a good approximation to the integral/ofvith respect tq, (z).

In the SIS algorithm, resampling is applied to the entirjetm{)ryngiH, not simply to the last value,, 1; the
new algorithm is known as SIS with Resampling (SISR). Theaathge of resampling is that it eliminates particle
trajectories with low weights, and replicates those witigéaweights; all of the resampled particles then contribute
significantly to the importance sampling estimates.

On the other hand, replicating trajectories with large \Weigreduces diversity by depleting the number of
distinct particle values at any time step in the past. At time1, new valuesznfi)1 are sampled and appended to
the particle trajectories; resampling then eliminatesesofrthese trajectories. Since the values at ¢ + 1 are not
rejuvenated asincreases, their diversity decreases due to resamplirthelextreme case, the smoothing density
ey (z1:441) is approximated by a system of particle trajectories witthgle common acestor. Figure 8.1 displays
this situation graphically.

In general, at the current time step 1, we can obtain a good approximation to the filtering density (1)
from the particles and their corresponding weights, pregithe number of particles is large enough. However,
approximations to the smoothing density. | (z1..+1) and fixed interval smoothing densitigs; 1 (x1./), for t’ <
t, will be poor. Chopin (2004) argues that for smoothing thst fitatez, i.e., approximating;(z1), the SIS
algorithm is more efficient than the SISR algorithm, but thatlatter can be expected to be more efficient in filtering
the states, i.e., approximatipg; 1 (z,+1). In particular, if the instrumental distribution of the &&lgorithm has a
certain abilitiy to “forget the past” (i.e., to forget itsifiml condition), then the asymptotic variance of the estion
is bounded from above ih

particles
3
|

Figure 8.1. Plot of particle trajectories with a single common ancestor after resampling.
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Moreover, the resampled trajectories are no longer indigren so resampling has the additional effect of in-
creasing the Monte Carlo variance of an estimator at thenttime step (Chopin, 2004). However, it can reduce the
variance of estimators at later times. So, if one is intekst estimating the integrql M@ 1) pes1 (Teg1)dTigq,
for some measurable functidn then the estimatoy_.", wEQIlL(.z-ﬁﬂl) must be computed before resampling (as it
will have lower Monte Carlo error than if it were computedeafthe resampling step). So far we discussed resam-
pling via multinomial sampling; other resampling schemdstehat introduce lower Monte Carlo variance, and no
additional bias, such asratified samplingCarpenter et al., 1999), amdsidual samplindLiu and Chen, 1998).
Chopin (2004) shows that residual sampling always outpex$omultinomial sampling: the resulting estimator
using the former sampling scheme has lower asymptoticvegia

8.3.1 Effective sample size

Resampling at every time step introduces unnecesary iarjao a trade-off is required between reducing the
Monte Carlo variance in the future, and increasing the wagaat the recent time step. Following Kong et al.
(1994), we define theffective sample siZ&SS), a measure of the efficiency of estimation based ones givS
sample, compared to estimation based on a sample of i.adisdirom the target distribution .1 (z;1).
Let h(z:1+1) be a measurable function, and suppose that we're interéstestimating the mean =
. n
Ep, . (@rer) (R(Xi41))- Let {mifl,u:gl} be a weighted sample approximatipg 1 (x.+1), obtained by SIS,
) ) i=1
and Iet{yffﬁl} " be asample of i.i.d. draws from.1(zi41).
i=1
The SIS estimator gf is ) )
Als = i uvgﬂr)]h(xgil)
Z?:I wt@l
and the Monte Carlo estimator is ,
Lo
~MC (1)
=—>h .
f - ; (41
Then the relative efficiency of SIS in estimatingan be measured by the ratio
Var (ﬂ”)
Var (M)’
which, in general, cannot be computed exactly. Kong et 804} propose the following approximation that has the
advantage of being independent of the function
Var (419) i
Var (70 ~ 1 Vata o) (en),
where ¢;41(z41) is the instrumental distribution in SIS, and,; is the normalised version af,1, i.e.,
J Wi 1qey 1 (2ie1)de g = 1. In general Varg, | (o, ,)(w11) is impossible to obtain, but can be approximated
by the sample variance ({fw&)l }7":1, wherelzvt(fﬁ1 = wffﬁl/ i mt(fgl are the normalised weights.
In practice, the ESS is defined as follows:

N2
n n N n (Zjlzl “’ii)l)

ESS =3 (1) F (1) a2 D)2

Geg1(zesr) Wil G (zi41) (Wil nZTLl (mf@l) 2“71 (“"f(ir)l) N

since the weights are normalised to sum to 1, and

. 2
Jp—— (i)
B Wi\ 2 1 nTt Yo (“"Prl)
]E‘Ir+1(1'c+1)(wf+1)2 = Eq:+1(rt+1) ( C ) - aE‘I#l(l‘zAx)(thrl)Z ~ N2’
n—2 (Zn w) )

] j=1Wi¥1

whereC' is the normalising constant. ESS is interpreted as the nuoflié.d. samples from the target distribution
pey1(ze41) that would be required to obtain an estimator with the samanee as the SIS estimator. Sing€'s <
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n (Kong etal., 1994), then an ESS value close todicates that the SIS sample of sizés approximately as “good”
as an i.i.d. sample of sizefrom p,1(z+1). In practice, a fixed threshold is chosen (in general, hatfiefsample
sizen), and if the ESS falls below that threshold, then a resargitap is performed.

A word of caution is required at this point. Via the ESS appave're using the importance sampling weights
possible that the instrumental distribution matches pdﬁﬂ target distribution, but the weights are similar irueal
and thus have small variance. The ESS would then be larggjribarrectly indicating a good match between the

to evaluate how well the weighted sam;{legﬁl, wffﬁl} approximates the target distributipp, ; (z;41). Itis
=1

instrumental and target distributions. This, for examptayld happen if the target distribution places most of its
mass on a small region where the instrumental distribusdtat, and the target distribution is flat in the region of
the mode of the instrumental distribution. Hence, we expastpling from this instrumental distribution to result in
weights that are similar in value. With small probabilitydr@w would fall under the mode of the target distribution,
resulting in a strikingly different weight value. This exal® highlights the importance of sampling a large enough
number of particles such that all modes of the target digioh are explored via sampling from the instrumental
distribution. So choosing an appropriate sample sizéepends on knowing the shape of the target distribution,
which, of course, is not known; in practice, we use as mantigb@s as computationally feasible.

8.3.2 SISR for state-space models

Figure 3 presents the SISR algorithm with multinomial samgpfor state-space models.

Algorithm 3 The SISR algorithm for state-space models
1: Sett = 1.
. Fori = 1:n, sampler{") ~ qi(z1).

:Fori = 1:n, setw!? o pi(a{))g(]2{?)/q1 (2$”). Normalise such thaﬁj w? =1,

: Attimet + 1, do: =

: Resample step: compuieSs = 1/ Z;.':l(w,(”)2.

1 If ESS < threshold, then resample: foi = 1 :
i=1:n, Setwgfi = 7?1 andwﬁ“ =1/n.

7: Fori=1:n, samplezgjzl ~ g1 (e |2).

8: Fori = 1:n,setw’), oc w! f(xl) 2V g(yer1|zlD)) /qrar (21, 2f?). Normalise such thal w(?, = 1.
i=1

o s W N

n, setil) = #{7) with probability w”, j = 1,...,n. Finally, for

9: The filtering and smoothing densities at time 1 may be approximated by
n ) n
ﬁ(l'/,+1 \y1;1,+1) = Z w£215z521 (&L'/,+1)~ [3(11?1;1,+1 \y1:1,+1) = Z U1§215z(1,,3+1 (1'1:/,+1)«
i=1 ' i=1 N

10: Sett =t + 1. Go to step 4.

For the SISR algorithm for state-space models, Crisan antt&d2002) prove that the empirical distributions
converge to their true values almost surelynas» oo, under weak regularity conditions. Furthemore, they show
convergence of the mean square error for bounded, measutatdtions, provided that the weights are upper
bounded; moreover, the rate of convergence is proportianaln. However, only under restrictive assumptions
can they prove that approximation errors do not accumulatetone, so careful implementation and interpretation
is required when dealing with SMC methods. More generaliyiin (2004) proves a Central Limit Theorem result
for the SISR algorithm under both multinomial sampling, aesidual sampling, not restricted to applications to
state-space models.

Example 8.2 (A nonlinear time series model (Cappé et al., 2007)). Consider the following nonlinear time series model:
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o3
Yy = 2 + v~ g(ye|we)
T = 11271 + 25% +8cos(1.2t) + up ~ f(xe|wie1),

wherev, ~ N(0,02), u; ~ N(0,02), and parameters? = 1, 02 = 10. Letz; ~ p(z1) = N(0, 10). The densities

are

Tt Tt
flalee) = N ( ‘2 ! +2Sﬁ +8cos(1A2t)ﬁlO)

(L‘2
el = N(=H1]).
9(yelze) (20, >

Figure 8.2 shows 100 stategand corresponding observatiopisgenerated from this model.

Using these 100 observations, we begin by running the SIg&itim until¢ = 9, with » = 10000 par-
ticles and resampling whenevérSS < 0.6 x n. The instrumental distribution is the state transitiortriis-
tion: qu1 (2441 "I‘Y;) = f(@441 \z,,“). Figure 8.3 shows the weighted samp{eéi)‘wé“ }le as small dots (with
weights unnormalised), and ttkernel density estimatef the filtering distribution as a continuous line. Kernel
density estimation is a non-parameteric approach to estigjthe density of a random variable from a (possibly
weighted) sample of values. For details, see Silvermang)Ll38e use a Gaussian kernel with fixed width of 0.5.

The kernel density estimator takes into account both theevaf the weights, and the local density of the particles.

10
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Figure 8.2. Plot of 100 observationg and hidden states, generated from the above state-space model.

To analyse the effect of resampling, we run the SISR algwritip to timet = 100 with n = 10000 and
resampling wheneve SS < 0.6 x n, and the SIS algorithm with = 10000. Figures 8.4 and 8.5 show the image
intensity plots of the kernel density estimates based offiltee outputs, with the true state sequence overlaid. In
general, the true state value falls in the high density regiaf the density estimate in Figure 8.4, indicating good
performance of the SISR algorithm. Moreover, it is interesto notice that there is clear evidence of multimodality
and non-Gaussianity. In Figure 8.5, however, we remarkttiegparticle distributions are highly degenerate, and do
not track the correct state sequence. Hence, resampliegusred for good performance of the SIS algorithm.
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Filtering density estimate at t=9 (n = 10000)

Density
0.15
|

0.00
I
o

oo oo
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particles x_9

Figure 8.3. Filtering density estimate at= 9 from SISR algorithm withn = 10000, and ESShreshold = 6000. Weighted

n
samples{zfj) w() } shown as small dots, and kernel density estimate as continuous line.
i=1

To make this last point more clear, we look at histograms eti#ise 10 logarithm of the normalised weights at
various time steps in the SIS algorithm. Figure 8.6 showsttieaweights quickly degenerateiaisicreases; by =
5, we already observe weights on the ordet®f*°°. Recall that these weights are a measure of the adequaay of th
simulated trajectory, drawn from an instrumental distiiitn, to the target distribution. In this particular exaepl
the instrumental distribution is the state transitionriistion, which is highly variable4? = 10) compared to the
observation distributiono? = 1). Hence, draws from the state transition distribution averglow weights under
the observation distribution, and, with no resampling imelate the particles with very low weights, there is a
quickly growing accumulation of very low weights.

8.4 Sequential Importance Sampling with Resampling and MCMC m oves

Gilks and Berzuini (2001) introduce the idea of using MCMCwvemto reduce sample impoverishment, and call
their proposed algorithmesample-mover he algorithm performs sequential importance resamplitiygan MCMC
move after the resampling step that rejuvenates the [E:B’IItbt{Il a1 w,(jl}i be a weighted set of particles
that targets the distribution 1 (z1..41). Letg.+1(z1.¢+1) denote the instrumental distribution from which the par-
ticles are generated. During resampling, some particlébeireplicated (possibly many times), to produce the set

- n
{a”cﬁiﬂ, l/n}_ . LetK; 1 be ap;i1(z1..41)-invariant Markov kernel, i.ep;+1K;+1 = pi+1. The MCMC move
i=
n
is as follows: fori = 1,...,n, draw,z1 2+1 ~ K (z <1)t 1) Then{z1 b1 l/n} is a rejuvenated, weighted

set of particles that targets the distribution 1 (z1.441). If { 1441 1/n} __is:agood particle representation of
pit1(z1441), then, provided that the kernBl, ,, is fast mixing, eacrxﬁ‘:l; will tend to move to a distinct point
in a high density region of the target distribution, thus ioying the particle representation. In the words of Gilks
and Berzuini (2001), the MCMC step helps the particles tthekmoving target.

Just as in Section 8.1.1 we interpreted rejection sampbrigyportance sampling on an enlarged space, so can
importance sampling with an MCMC move be interpreted as mamee sampling on an enlarged space with in-

strumental distribution; 1 (2144 1)Kit1(@1:041, 21.04+1) @nd target distributiop 1 (z1.¢+1)Kit1 (120415 21:641),
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Kernel density estimates up to time t=100 (n = 10000)
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Figure 8.4. Image intensity plot of the kernel density estimates up te 100, with diamond symbol indicating the true state
sequence (SISR algorithm).

Kernel density estimates up to time t=100, no resampling (n = 10000)
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Figure 8.5. Image intensity plot of the kernel density estimates up to 100, with diamond symbol indicating the true state
sequence (SIS algorithm).
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=10 t=50

=75 =100

Figure 8.6. Histogram of the base 10 logarithm of the normalised weights for the filteistghiitions (SIS algorithm).

where [ pyy1(21:641) K1 (15041, 21:641) AT 1041 = Pt (21:441) by invariance ofK, ;. This explanation omits
the resampling step, but the latter does not alter the jesti€in of the algorithm. Gilks and Berzuini (2001) present
a Central Limit Theorem result in the number of particles] an explicit formulation for the asymptotic variance as
the number of particles tends to infinity, fofixed. They argue that, in the extreme case, rejuvenatioa pexfectly
mixing kernel at step, i.e.,K;(z1.¢, 21.¢) = pe(21.¢|71.¢), can reduce the asymptotic variance of estimators at later
time steps. This is similar to the idea from Section 8.3 teaampling, although it introduces extra Monte Carlo
variation at the current time step, can reduce the varianliegea times.

Chopin (2004) states that MCMC moves may lead to more stédpeitnms for the filtering problem in terms
of the asymptotic variance of estimators (although thézaktesults to support this are lacking); however, he is
not as hopeful regarding the smoothing problem. He suggeststigating the degeneracy of a given patrticle filter
algorithm by runningn, saym = 10, independent particle filters in parallel, computing théneates from each
output, and monitoring the empirical variance of thesestimates asincreases.

8.4.1 SISR with MCMC moves for state-space models

Algorithm 4 is the SISR algorithm with MCMC moves for staggase models. First, notice that except for the re-
quirement of invariance, there are no constraints on thieelud kernel; it can be a Gibbs sampling, or a Metropolis-
Hastings kernel. Second, only one MCMC step will suffice (@ burn-in period is required), since it is assumed
that the particle set at stefhas “converged”, i.e., it is a good representatiop(@f;.;|y1..). Third, notice that the
MCMC move is applied to the entire state trajectory up to tintéence, the dimension of the kernel increases with
t, thus increasing the computational cost of performing tlwwenAlso, ag increases, it is increasingly difficult
to construct a fast-mixing Markov kernel of dimensiorin practice, the MCMC move is applied only to the last
component,; with kernelK,, that is invariant with respect {41 |y1.¢41).
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Algorithm 4 The SISR algorithm with MCMC moves for state-space models
1: Sett = 1.

: Fori = 1:n, samplez(?) ~ q(z1).

1 Fori=1:n, setwﬁ’) :xpl(zg“)g(yl\w§‘>>/ql(x§'>). Normalise such tha[n: wﬁ’) =1

. Attimet + 1, do: -~

: Resample step: compuigS's =1/ 37 (wi”)2.

: If ESS < threshold, then resample: for = 1 : n, seti{’) = 2} with probabilityw”, j = 1,...,n. Finally, for
i=1:n,setz{) = 27 andw!” = 1/n.

: MCMC step: fori = 1 : n, samplez{) ~ Kf(xl

8: Fori=1:n, samplezfﬂ ~ e (T |28)

o g WN

i)

~

.). Then, fori = 1 : n, seta’) = 2{%).

9 Fori=1:n, setufﬁ x w, ’)f(gsf+1 \Iz )g(yf+1\rt+l)/qt+1(z,+, \Ic >) Normalise such thaE w,@, =1

10: The filtering and smoothing densities at time 1 may be approximated by

P(@es1]yrier) = Z%/+15 @ (we4+1),  D(Tre+1]Y1e41) Zw;HO @ (@1:641)-
i=1

11: Sett =t + 1. Go to step 4.

8.5 Smoothing density estimation

As we have seen, the SISR algorithm is prone to suffer fronpimpoverishment asgrows; hence the parti-
cle trajectories do not offer reliable approximations te #moothing density. This section presents a Monte Carlo
smoothing algorithm for state-space models that is caoigdn a forward-filtering, backward-smoothing proce-
dure, i.e., afiltering procedure such as SISR is applieddahin time, followed by a smoothing procedure applied
backward int (Godsill et al., 2004).

Godsill et al. (2004) consider the joint smoothing density

T-1 T—1

pavrlyer) = prlnr) [ p@desryir) = perlner) T pde, )
t=1 t=1
T-1

R

plarlyrr) T[] pdvne) (@i lo).

Let { (1) “)} B be a particle representation to the filtering dengity:|y1.+), that is, p(z¢|y1.1) =
S w 6 (,)(M) Then it is possible to approximatéz:| ;i 1, y1.:) by

P w® fxepa)al) )3, m(»vf)
i 1“)r”f(Tz+1\T(”)

So the idea is to run the particle filter (e.g., the SISR athor) forward in time, to obtain particle approximations

(84)

P@e|zier, yia) =

to p(z¢|yr.e), fort = 1,..., T, and then to apply the backward smoothing recursion (84) fo7'— 1tot = 1.
The draws 7, . .., , &) form an approximate realization froptz.7|y1.7).

Algorithm 5 returns one realization fropix 1.7 |y1.1) via this forward-filtering, backward-smoothing approach.
The computational complexity (nT), for filtering density approximations with particles. So for realizations,
the computational complexity i©(n?T), i.e., it is quadratic im, compared to the computational complexity of
SISR, forn realizations, which is linear im. This smoothing algorithm has the advantage that it useticiear
approximations to the filtering densities (under the assiomphat good approximations can be obtained via SISR,
for example), as opposed to resampled particle trajestarig which suffer from sample impoverishment as
increases.

Example 8.3 (A nonlinear time series model (continued)). We continue the example of the nonlinear time series
model. We carry out smoothing via Algorithm 5, implementihg SISR algorithm as before, with = 10000
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Algorithm 5 The forward-filtering, backward-smoothing algorithm feate-space models

1

: Chooset;, = z\” with probability w
: Goto step 3.
. (Z1,...,Zr) is an approximate realization froptz 1.7 |y1.7).

© ®N O U A WN

3 n . . N - .
Run a particle filter algorithm to obtain weighted particle approximati{)m§>,uv§”)} to the filtering distributions
=1
p(ai|yre) fort =1,...,7. '

: Sett =T.
. Chooseir = =% with probabilityw!!.

(i)

Sett =t — 1.
Att>1

Fori = 1 : n, computew’) (@

4y o wl? f (@ |of”). Normalise the weights.

(@)
tlt41"

particles. Figure 8.7 displays the 10000 smoothing trejées drawn fronp(z1.100|y1:100) With the true state se-

quence overlaid. Multimodality in the smoothing distrilouis is shown in Figure 8.8.

particle trajectory x_t
10 20
| |

-10

-20

Figure 8.7. 10000 smoothing trajectories drawn frrw1.100|y1:100) With dimond symbol indicating the true sequence.

Finally, since the algorithm returns entire smoothingecjries, as opposed to simply returning smoothing

marginals, it is possible to visualize characteristicshefultivariate smoothing distribution. Figure 8.9 sholes t

kernel density estimate f@r{z11.12|y1:100)-
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Kernel density estimates up to time t=100 (n = 10000)
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Figure 8.8. Image intensity plot of the kernel density estimates of smoothing densitieslimitnd symbol indicating the true
state sequence.

Figure 8.9. Kernel density estimate fQr(z11:12|y1:100)-



