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Abstract. The Gibbs sampler, the algorithm of Metropolis and similar 
iterative simulation methods are potentially very helpful for summarizing 
multivariate distributions. Used naively, however, iterative simulation 
can give misleading answers. Our methods are simple and generally 
applicable to the output of any iterative simulation; they are designed 
for researchers primarily interested in the science underlying the data 
and models they are analyzing, rather than for researchers interested in 
the probability theory underlying the iterative simulations themselves. 
Our recommended strategy is to use several independent sequences, with 
starting points sampled from an overdispersed distribution. At each step 
of the iterative simulation, we obtain, for each univariate estimand of 
interest, a distributional estimate and an estimate of how much sharper 
the distributional estimate might become if the simulations were contin­
ued indefinitely. Because our focus is on applied inference for Bayesian 
posterior distributions in real problems, which often tend toward normal­
ity after transformations and marginalization, we derive our results as 
normal-theory approximations to exact Bayesian inference, conditional 
on the observed simulations. The methods are illustrated on a random­
effects mixture model applied to experimental measurements of reaction 
times of normal and schizophrenic patients. 

Key words and phrases: Bayesian inference, convergence of stochastic 
processes, EM, ECM, Gibbs sampler, importance sampling, Metropolis 
algorithm, multiple imputation, random-effects model, SIR. 

1. INTRODUCTION 

Currently, one of the most active topics in statistical 
computation is inference from iterative simulation, es­
pecially the Metropolis algorithm and the Gibbs sam­
pler (Metropolis and Ulam, 1949; Metropolis et al., 
1953; Hastings, 1970; Geman and Geman, 1984; and 
Gelfand et al., 1990). The essential idea of iterative 
simulation is to draw values of a random variable X 

from a sequence of distributions that converge, as 
iterations continue, to the desired target distribution 
of x. For inference about x, iterative simulation is 
typically less efficient than direct simulation, which 
is simply drawing from the target distribution, but 
iterative simulation is applicable in a much wider range 
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of cases, as current statistical literature makes abun­
dantly clear. 

1.1 Objective: Applied Bayesian Inference 

Iterative simulation has tremendous potential for aid­
ing applied Bayesian inference by summarizing awk­
ward posterior distributions, but it has its pitfalls; 
although we and our colleagues have successfully applied 
iterative simulation to previously intractable posterior 
distributions, we have also encountered numerous 
difficulties, ranging from detecting coding errors to 
assessing uncertainty in how close a presumably cor­
rectly coded simulation is to convergence. In response 
to these difficulties, we have developed a set of tools 
that can be applied easily and can lead to honest infer­
ences across a broad range of problems. In particular, 
our methods apply even when the iterative simulations 
are not generated from a Markov process. Conse­
quently, we can monitor the convergence of, for exam­
ple, low-dimensional summaries of Gibbs sampler 
sequences. We do not pretend to solve all problems of 
iterative simulation. 
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Our focus is on Bayesian posterior distributions aris­
ing from relatively complicated practical models, often 
with a hierarchical structure and many parameters. 
Many such examples are currently being investigated; 
for instance, Zeger and Karim (1991) and McCullogh 
and Rossi (1992) apply the Gibbs sampler to general­
ized linear models and the multinomial probit model, 
respectively, and Gil.ks et al. (1993) review some recent 
applications of the Gibbs sampler to Bayesian models 
in medicine. Best results will be obtained for distribu­
tions whose marginals are approximately normal, and 
preliminary transformations to improve normality 
should be bmployed, just as with standard asymptotic 
approximations (e.g., take logarithms of all-positive 
quantities and logits of quantities that lie between 0 
and 1). 

1.2 What Is Difficult about Inference from 
Iterative Simulation? 

Many authors have addressed the problem of draw­
ing inferences from iterative simulation, including Rip­
ley (1987), Gelfand and Smith (1990), Geweke (1992) 
and Raftery and Lewis (1992) in the recent statistical 
literature. Practical use of iterative simulation meth­
ods can be tricky because after any finite number of 
iterations, the intermediate distribution being used to 
draw x lies between the starting and target distribu­
tions. As Gelman and Rubin (1992) demonstrate for 
the Ising lattice model, which is a standard application 
of iterative simulation (Kinderman and Snell, 1980), it 
is not generally possible to monitor convergence of an 
iterative simulation from a single sequence (i.e., one 
random walk). The basic difficulty is that the random 
walk can remain for many iterations in a region heavily 
influenced by the starting distribution. This problem 
can be especially acute when examining a lower dimen­
sional summary of the multidimensional random vari­
able that is being simulated and can happen even when 
the summary's target distribution is univariate and 
unimodal, as in the Gelman and Rubin (1992) example. 

Neither the problem nor the solution is entirely new. 
Iterative simulation is like iterative Jl!aximization; with 
maximization, one cannot use a single run to find all 
maxiina, and so general practice is to take dispersed 
starting values and run multiple iterative maximi­
zations. The same idea holds with iterative simulation 
in the real world; multiple starting points are needed 
with finite-length sequences to avoid inferences being 
unduly influenced by slow-moving realizations of the 
iterative simulation. If the parameter space of the 
simulation has disjoint regions, multiple starting 
points are needed even with theoretical sequences of 
infinite length. In general, one should look for all modes 
and create· simple approximations before doing itera­
tive simulation, because by comparing stochastic (i.e., 
simulation-based) results to modal approximations, we 
are more likely to discover limitations of both ap-

proaches, including programming errors and other mis­
takes. 

1.3 Our Approach 

Our method is composed of two major steps. First, an 
estimate of the target distribution is created, centered 
about its mode (or modes, which are typically found 
by an optimization algorithm) and "overdispersed" in 
the sense of being more variable than the target distri­
bution. The approximate distribution is then used to 
start several independent sequences of the iterative 
simulation. The second major step is to analyze the 
multiple sequences to form a distributional estimate 
of what is known about the target random variable, 
given the simulations thus far. This distributional esti­
mate, which is in the form of a Student's t distribution 
for each scalar estimand, is somewhere between its 
starting and target distributions and provides the ba­
sis for an estimate of how close the simulation process 
is to convergence - that is, how much sharper the distri­
butional estimate might become if the simulations were 
run longer. 

With multiple sequences, the target distribution of 
each estimand can be estimated in two ways. First, a 
basic distributional estimate is formed, using between­
sequence as well as within-sequence information, which 
is more variable than the target distribution, due to 
the use of overdispersed starting values. Second, a 
pooled within-sequence estimate is formed and used to 
monitor the convergence of the simulation process. 
Early on, when the simulations are far from conver­
gence, the individual sequences will be less variable 
than the target distribution or the basic distributional 
estimate, but as the individual sequences converge 
to the target distribution, the variability within each 
sequence will grow to be as large as the variability of 
the basic distributional estimate. 

Multiple sequences help us in two ways. First, by 
having several sequences, we are able to use the vari­

. ability present in the starting distribution. In contrast, 
inference from a finite sample of a single sequence 
requires extrapolation to estimate the variability that 
has not been seen. Second, having several independent 
replications allows easy estimation of the sampling 
variability of our estimators, without requiring infer­
ence about the time-series structure of the simulations. 
Our use of Student's t reference distributions is analo­
gous to their use in the analysis of linear models, where, 
in practice, they are generally conditional on a set of 
simple but insufficient summary statistics; see Pratt 
(1965) for a discussion of these ideas from a formal 
Bayesian perspective. 

1.4 Remarks 

We believe that for any iterative simulation of finite 
length, valid inference for the target distribution must 
include a distributional estimate, which reflects uncer-
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tainty in the simulation, and also an estimate of how 
much this distributional estimate may improve as iter­
ations continue. Multiple independent sequences are 
essential for routinely obtaining valid inferences from 
iterative simulations of finite length and moreover are 
ideally suited to parallel computing environments. In 
such environments, running many parallel sequences 
can be essentially as cheap in computing time as run­
ning a single sequence of the same length. Certainly, 
given the effort needed to formulate scientific models, 
design real experiments and studies, collect data, con­
duct exploratory data analyses, reformulate models 
and set up one run of an iterative simulation, the extra 
cost of running independent replications of the same 
length is trivial in most scientific contexts. 

Although we briefly review the problems of inference 
from iterative simulation, we do not discuss the vast 
and expanding variety of simulation methods them­
selves, which have been described in several recent 
review articles (e.g., Tierney, 1991; Gelman, 1992; Be­
sag and Green, 1993; and Smith and Roberts, 1993). 
In fact, one point of our presentation is that the prob­
lems of creating simulations and obtaining inferences 
from simulations are separate to some extent, so our 
routine methods of inference can be useful for a wide 
range of simulation methods. 

After presenting our suggestions in Section 2 and 
deriving our inferential methods in Section 3, we apply 
them in Section 4 to an analysis of a random-effects 
mixture model, fit to data from a psychological experi­
ment. Our final comments appear after the discussants 
to this article have presented their views. 

2. AN APPROACH TO INFERENCE FROM 
ITERATIVE SIMULATION 

Our approach to iterative simulation has two major 
parts: Creating an overdispersed approximate distribu­
tion from which to obtain multiple starting values, and 
using multiple sequences to obtain inferences about 
the target distribution. 

2.1 Creating a Starting Distribution 

We seek to begin an iterative simulation with an 
approximation to the target distribution from which to 
draw starting values for multiple iterative sequences. 
Ideally, the starting distribution should be over­
dispersed but not wildly inaccurate. We find such a 
distribution in three steps. First, we locate the high­
density regions of the (multiv1;ll"iate) target distribution 
of x to ensure that our initial values for the iterative 
simulation do not entirely miss important regions of 
the target distribution. Second, we create an over­
dispersed approximation, so that the starting distribu­
tion covers the target distribution in the same sense 
that an approximate distribution for rejection sam­
pling should cover the exact distribution. Third, we 

downweight draws from the approximate distribution 
that have a relatively low density under the target 
distribution. These three steps are useful not only for 
improving the iterative simulation but also for better 
understanding the object of the simulation - the target 
distribution itself. A variety of methods exist for at­
tacking each of these objectives; here, we present an 
approach that can often be useful in most statistical 
problems where the posterior distribution has one or 
more modes. 

First, we find the modes using either an optimization 
program or a statistical method such as EM (Dempster, 
Laird and Rubin, 1977). When a distribution is 
multimodal, it is necessary to run an iterative mode 
finder several times, starting from different points, in 
an attempt to find all modes. Often, starting values 
for the mode finder can be found by first discarding 
information in the data set to obtain inefficient but 
simpler distributions for the parameters, from which 
starting values are drawn; this process is illustrated 
for our example in Section 4.2. Searching for modes is 
also sensible and commonly done if the distribution is 
complicated enough that it may be multimodal. 

Once K modes are found, a second derivative matrix 
should be estimated at each mode. Then the high­
density regions of the target distribution can be ap­
proximated by a mixture of K multivariate normals, 
each with its own mode µk and variance matrix I:k, fit 
to the second derivative matrix at each mode. That is, 
the target density P(x) can be approximated by 

K 

.P(x) = ~ Wk(2n)-dl2 11:k1-112 
k=l 

(1) 

where d is the dimension of x, and Wk is the mass of 
the kth component of the multivariate normal mixture. 
The masses Wk can be calculated by equating the ap­
proximate density P to the exact density P at the k 
modes, so that .P(µk) = P(µk), fork = 1, ... , K. Assum­
ing the modes are well separated, this implies that for 
each k, the mass Wk is roughly proportional to II:kl 112· 
P(µk), 

Second, we obtain samples from an overdispersed 
distribution by first drawing from the normal mixture 
and then dividing each sample vector by a positive 
scalar random variable, an obvious choice being a x~ 
random deviate divided by r,. Making this choice, the 
new distribution is then a mixture of multivariate t 
distributions, with the following density function: 

K 

P(x) <x: ~ wk\I:k\- 112 
k=l 

(2) 

A Cauchy mixture (i.e., r, = 1) is a conservative choice 



460 A. GELMAN AND D. B. RUBIN 

to ensure overdispersion, but if the parameter space 
is high dimensional, most draws from a multivariate 
Cauchy might be too far from the mode to reasonably 
approximate the target distribution. For most poste­
rior distributions arising in practice, especially those 
without long-tailed underlying models, a value such 
as r, = 4, which has three finite moments for P(x), is 
probably dispersed enough. Further improvements in 
the approximate distribution can sometimes be ob­
tained by analytically or numerically integrating out 
nuisance parameters or by bounding the range of pa­
rameter values. Special efforts may be needed for 
difficult problems such as banana-shaped posterior dis­
tributions in many dimensions, which can arise in prac­
tice [e.g., logistic regressions with sparse data as in 
Clogg et al. (1991)]. 

Third, we sharpen the overdispersed approximation 
while keeping it overdispersed by downweighting re­
gions that have relatively low density under the target 
distribution. One way of improving the approximation 
in this way is to use importance resampling, also known 
as SIR (Rubin, 1987b, 1988), which proceeds as follows. 
First draw N independent samples from the multivari­
ate t mixture (2). For each drawn x, calculate the 
importance ratio, P(x)IP(x), which only needs to be 
known up to an arbitrary multiplicative constant. Now 
draw a sample of size m, without replacement, from 
the set of N, as follows. First draw one point from the 
set of N, with the probability of sampling each x 
proportional to its importance weight, P(x)IP(x). Then 
draw a second sample using the same procedure, but 
from the set of N - 1 remaining values. Repeatedly 
sample without replacement m - 2 more times. Sam­
pling without replacement proportional to the impor­
tance weights yields draws from a distribution that 
lies between P and P. (In the limit as N-+ oo, the m 
importance-resampled draws follow the target distribu­
tion, P, under mild regularity conditions.) 

We typically sample about N = 1,000 points from 
the overdispersed approximate distribution and then 
draw about m = 10 importance-weighted resamples, 
using larger samples when more than one major mode 
exists. Although it would be nice if the resultant draws, 
which we use to start the iterative simulations, were 
close to draws from the target distribution, this is 
often not necessary. In contrast to some simulation 
methods, such as rejection or importance sampling, 
practical use of Markov chain simulation does not 
require the starting distribution to be close to the 
target distribution, because .in Markov chain simula­
tion, the approximate distribution, Pt, used for taking 
draws at time (iteration) t, itself converges to the target 
distribution, P. 

The three steps presented here for creating a starting 
distribution help avoid pitfalls in a wide variety of 
problems. Finding the modes is helpful in enabling the 

iterative simulations to begin roughly centered at the 
high-density regions of the target distribution. An over­
dispersed starting distribution allows us to make con­
servative inferences from multiple sequences of finite 
length and is also the key to our method of monitoring 
convergence. Finally, adjusting the simulations from 
the starting distribution using importance sampling to 
make them more typical of the target distribution 
will generally speed the convergence of the iterative 
simulation. 

Of course, in easy problems, not all of these three 
preliminary steps will be necessary. In some other 
cases, far better starting distributions may be found 
using other methods, for instance, methods that capi­
talize on analytic and numerical integration methods, 
such as presented by Tierney and Kadane (1986) and 
Morris (1988), which are a substantial topic in their 
own right. In addition, mode-based distributions will 

· not work for every problem; for example, in the Ising 
distribution discussed in Gelman and Rubin (1992), the 
multivariate mode of the parent random variable being 
simulated projects to an extremum in the distribution 
of the scalar estimand of interest. For particularly 
difficult problems, the creation of a starting distribu­
tion may itself be an iterative process. Any such start­
ing distribution should, however, err on the side of 
over- rather than underdispersion. In any case, we 
believe that the multiple sequences provide critical 
information beyond that available in one sequence and 
that our methods, described in Section 2.2, will reveal 
much of this information. 

2.2 Prescriptive Summary of Using Components of 
Variance from Multiple Sequences 

Our approach to inference from multiple iteratively 
simulated sequences examines each scalar estimand 
of interest separately, and so henceforth we use the 
notation x to represent a scalar estimand rather than 
the whole multicomponent parent random variable be­
ing simulated. 

We proceed in seven steps. 
First, independently simulate m ~ 2 sequences, each 

of length 2n, with starting points drawn from an over­
dispersed distribution. To diminish the effect of the 
starting distribution, discard the first n iterations of 
each sequence, and focus attention on the last n. 

Second, for each scalar parameter of interest, calcu­
late 

Bin = the variance between the m sequence 
means, x;., each based on n values of x, 
Bin = E;'::1 (x. - x..)2l(m - 1); and 

W = the average of the m within-sequence 
variances, sf, each based on n - 1 
degrees of freedom, W = E;'::1 sr/m. 
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If only one sequence is simulated, B cannot be calcu­
lated. 

Third, estimate the target mean,µ= fxP(x) dx, by 
{I,, the sample mean of the mn simulated values of x, 
µ =x. 

Fourth, estimate the target variance, a2 = j(x - µ)2 • 

P(x)dx, by a weighted average of W and B, namely, 

(3) a-2 = n - 1 W + !_B, 
n n 

which overestimates a2, assuming the starting distri­
bution is appropriately overdispersed, but is unbiased 
for a2 under stationarity (i.e., if the starting distribu­
tion equals the target distribution) or in the limit n --+ 

oo. Meanwhile, for any finite Ti, W should be less than 
a2 because the individual sequences have not had time 
to range over all of the target distribution and, as a 
result, will have less variability; in the limit as n --+ 

oo, the expectation of W approaches a2• 

Fifth, estimate what is now known about x. We 
can improve upon the optimistic (i.e., overly precise) 
N(µ, 62) estimate of the target distribution by allowing 
for the sampling variability of the estimates, {I, and 62• 

The result is an approximate Student's t distribution 
for x with centerµ, scale .Jv = ,Ja-2 + Blmn and de­
grees of freedom df = 2V 2/tar(V), where 

A(V)~ ~ (n - 1)2 1 A ( 2) + (m + 1)2 2 B 2 var - -- -vars; -- --
n m mn m-1 

(4) + 2 (m + l)(n - 1) 
mn 2 

n[A(2-2) -A(2-)] · - cov s;,x;. - 2x .. cov s;,x;. , 
m 

and where the estimated variances and covariances are 
obtained from the m sample values of x;. and sr; df --+ 

oo as n --+ oo. 

Sixth, monitor convergence of the iterative simula­
tion by estimating the factor by which the scale of 
the current distribution for x might be reduced if the 
simulations were continued in the limit n--+ oo. This 
'potential scale reduction is estimated by ..Jli, = 
.J(V/W)df/(df-2), which declines to 1 as n--+ oo. R is 
the ratio of the current variance estimate, V, to the 
within-sequence variance, W, with a factor to account 
for the extra variance of the Student's t distribution. 
If the potential scale reduction is high, then we have 
reason to believe that proceeding with further simula­
tions may improve our infere11,ce about the target distri­
bution. 

Seventh, once R is near 1 for all scalar estimands of 
interest, it is typically desirable to summarize the tar­
get distribution by a set of simulations, rather than 
normal-theory approximations, in order to detect non­
normal features of the target distribution. The simu-

lated values from the last halves of the simulated 
sequences provide such draws. 

A fifty-line program is available in Statlib that imple­
ments the above steps in the S computer language. 
(To obtain the program, send an e-mail message to 
statlib@stat.cmu.edu with the line, "send itsim from 
S".) 

2.3 Previous Methods for Monitoring Convergence 
Using Multiple Sequences 

Our approach can be viewed as combining and for­
malizing some ideas from previous uses of multiple se­
quences to monitor convergence of iterative simulation 
procedures. Fosdick (1959) simulated multiple sequences, 
stopping when the difference between sequence means 
was less than a prechosen error bound, thus basically 
using B but without comparing it to W. Similarly, 
Ripley (1987) suggested examining at least three se­
quences as a check on relatively complicated single­
sequence methods involving graphics and time-series 
analysis, thereby essentially estimating W quantita­
tively and B qualitatively. Tanner and Wong (1987) 
and Gelfand and Smith (1990) simulated multiple se­
quences, monitoring convergence by qualitatively com­
paring the set of m simulated values at time t to the 
corresponding set at a later time t'; this approach can 
be thought of as a qualitative comparison of values of 
B at two time points in the sequences, without using 
W as a comparison. 

Our approach differs from previous multiple­
sequence methods by being fully quantitative in moni­
toring convergence (i.e., our method is not based on 
visual inspection of the simulations) and by incorporat­
ing the uncertainty due to finite-length sequences into 
the distributional estimates. This reflection of extra 
uncertainty is analogous to the correction for a finite 
number of imputations when using multiple imputa­
tion to summarize a distribution (Rubin, 1987a). 

2.4 Limitations of Our Method 

Multimodal target distributions can give iterative 
simulation algorithms serious problems because the 
random walks may take a long time to move from the 
region of one mode to another. Our analysis should 
reveal (but not solve) this problem when it occurs: the 
estimated potential scale reduction will not decline to 
1 when different sequences remain in the neighbor­
hoods of the different modes in which they started. In 
such cases, the iterative simulation algorithm itself 
may have to be altered in order to speed convergence, 
for example, by reparameterizing (Hills and Smith, 
1992), adding auxiliary variables (Besag and Green, 
1993) or improving the jumping step in the generalized 
Metropolis algorithm (Green and Han, 1991). 

In addition, with better analysis or understanding 
of the time-series structure of the simulations, the 
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details of our inferential method could be improved 
upon in a variety of ways; see, Liu (1991) for example. 
Here, we merely work out the details of the simplest 
approach that we believe can yield reliable inferences. 

3. DERIVATIONS FOR MULTIPLE 
SEQUENCE ANALYSIS 

3.1 Definitions 

For our derivations, the previous notation, which 
suppressed the dependence of the target distribution 
on parameters (e.g., µ and a2 in Section 2.2), will be 
modified slightly. In particular, let 0 denote the parame­
ters of the target distribution, of which µ and a2 are 
functions, so that the target distribution is P(x I 0) for 
scalar estimand x. 

The target distribution, P(x I 0), is to be estimated 
from m independent replications of the following pro­
cess: 

1. A starting point xo is drawn at random from a 
known distribution P0• 

2. A sequence (x1, •.. , Xn) is created stochastically 
by an iterative simulation algorithm, applied to 
the multivariate random variable of which x is a 
scalar function. We assume the algorithm eventu­
ally converges: £(xn) --+ P(x I 0). 

The simulations create m sequences: 

(Xmo, Xml, .. . ,Xmn). 
~ 

We use the notation (xit) for the matrix of mn simulated 
values of x. Each sequence is an independent observa­
tion of (xo, xi, . . . , Xn), the random vector produced 
by the iterative simulation algorithm that starts at the 
random variable x 0• For each t = 0, 1, ... , we label 
the mean and variance of the iterate Xt as µt and ar. 
As t--+ oo, µt and ar approachµ and a2, the mean and 
variance of the target distribution. For notational con­
,venience, we denote the set of all parameters governing 
the, iterative simulation-i.e., the joint distribution of 
(xo, X1, ••• )- by (0, <;). 

3.2 Approach to Inference 

We seek a conditional distribution for x, given the 
mn simulated values (xit), 

that is valid in the sense of reflecting the uncertainty 
about x due to finite m and n, as well as the uncertainty 
present in the target distribution itself reflected by 
nonzero variance a2• That is, we want to reflect the 
fact that P mn(x) * P(x I 0), even though we do assume 

that limn-oo P mn (x) = P(x I 0) for any m ~ I. Intervals 
for x derived from P mn(x) should ideally have approxi­
mately their nominal coverage over the target distribu­
tion, P(x). That is, if J1Pmn(x) dx = a, then we ideally 
want J1P(x) dx "" a, where I is an interval about the 
posterior mean of x, and a is a nominal coverage proba­
bility that is typically at least 50%. Usually, errors on 
the side of conservatism, j1P(x) dx > a, are more accept­
able than liberal errors, and so our approach tends to be 
conservative, preferring overly wide to overly narrow 
intervals. 

For our primary analysis, the distributional estimate 
Pmn(x) is derived as 

(5) Pmn(X) = J P(xl0, <;, (xit) )P( 0, <;I (xit) )d(0, <;), 

where the simultions (x;t) are treated as "data" and, by 
definition, 

(6) P(xl0, <;, (xit)) = P(xl0). 

The logic underlying this analysis is analogous to infer­
ence from multiple imputation (Rubin, 1987a); in that 
framework, "data" refers to the m data sets completed 
by imputation. The primary analysis makes two as­
sumptions. First, 

(7) P(xl0) = P(xlµ, a2), 

so that the target distribution is known up to a loca­
tion-scale family, which for our derivations is N(x Iµ, a2), 

Second, our primary analysis assumes that P(x I 0) = 
P 0(x) = Pix) for all t, an assumption we call strong 
stationarity. The assumption that the starting distri­
bution is equal to the target distribution is certainly 
unrealistic in practice: if we could start by sampling 
from the target distribution, we would not need itera­
tive simulation at all. Nevertheless, the ideal case sug­
gests an approach to inference that proves useful in 
practice. 

Once the primary normal-theory analysis suggests 
that Pmn(x) is essentially equal to Pmoo(x) = P(xl0), the 
target distribution P(x I 0) can be represented by ran­
dom draws from the last half of the simulated se­
quences to reflect possible deviations from the assumed 
normality. 

Before deriving Pmn(x), we motivate in Section 3.3 
the use of the simple statisticsµ and 62• The remainder 
of Section 3 derives the Student's t approximation 
to Pmn(x) and the related estimate of potential scale 
reduction, .Jli,, which assesses how close P mn(x) is to 
P(x I 0) under normality. 

3.3 Unbiased Estimation of µ and u2 under Strong 
Normal Stationarity 

The estimate µ = x .. , the average of the mn simu­
lated values, is unbiased for µ given strong stationar-
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ity, E(µ 10, c;) =µ,and would be efficient if then values 
in each sequence were exchangeable. (Although not 
necessary here, we retain c; because of its later use when 
we drop the assumption of strong normal stationarity.) 
Since µ can be expressed as the average of m indepen­
dent sequence means, the sampling variance of µ is 
unbiasedly estimated by 

(8) 

~(µ) = .!. · ( sample variance of the 
m 

m sequence means x;.) 

B 
=-· 

mn 

Unbiasedness here means that, over repeated simula­
tions, E(B /(mn)l0, c;) = var(µ 10, c;). 

Viewing the "data" (xit) as a one-way layout with m 
blocks and n observations per block, B is the usual 
between-sequence mean square and W is the pooled 
within-sequence mean square from the analysis of vari­
ance. Under strong normal stationarity, the variance 
components B and W yield an unbiased estimate of 
a2, based on applying the following identity to each 
sequence (xn, ... , X;n): 

Taking expectations of both sides under strong sta­
tionarity yields 

(10) a2 = E(n: l st j 0,e) + var(x;.10,c;), 

where s'f = Et(xit - x;.) 2 1 (n - 1). Unbiased estimates 
for the two terms E(i'f I 0, c;) and var(x;. I 0, c;) can be ex­
pressed in terms of the ANOV A mean squares, B and 
W: 

E(n : 1 W j 0, c;) = E(n : 1 s'f j 0, c;) 

and E(~B j 0,e) = var(x;.10,c;), 

, whence an unbiased estimate for a2 is, from (3), f, 2 = 
((n-1)/n)W + (1/n)B; under strong stationarity, 
E(a210, c;) = a2• 

3.4 Approximate Conservative Posterior 
Distribution for x 

For the purpose of monitoring convergence and ob­
taining standard inference statements, we approximate 
the posterior distribution Pmn(x) under strong normal 
stationarity by a Student's t distribution, 

(11) 

where the squared scale, 

(12) V = a2 + B/mn, 

incorporates the predictive variance a2 = var(x I 0), and 
also the uncertainty aboutµ, B/mn. 

The distribution (11) is intended to be "conservative" 
in four senses. First, the estimated distribution is con­
servative in that it is a Bayesian estimate conditional 
on insufficient statistics; the estimates of µ, V and df 
are based only on the means and variances of the 
simulations, ignoring any other moments and the time­
series structure. Second, the dispersion, V, is an overes­
timate, assuming the simulation distributions are 
overdispersed, and converges to a2 as n-+ oo. Third, 
even though we are assuming that the (marginal) target 
distribution of x is normal, we are summarizing what 
is known about x by a Student's t due to the finite 
number of simulations used in the estimated scale, V112• 

The fourth sense in which (11) should be conservative 
is a consequence of the first three: central confidence 
intervals, I, derived from Pmn(x) should have at least 
their nominal coverage over the target distribution, 
P(xl0), at least in expectation over repeated iteratively 
simulated "data'' matrices (xit): if I is an interval cen­
tered atµ, and J1 Pmn(x) dx = a, then we should have 
E[f 1 P(xl0) dxl0, c;] 2:: a. 

The t distribution for x is derived in several straight­
forward steps. Equations (5)-(7) and strong normal 
stationarity imply, 

(13) Pmn(X) = J N(xlµ,a 2 ) Pr(µ,o 2,c;l(xit)) d(µ,a 2,c;). 

Two approximations are used to obtain the t distribu­
tion (11) from (13). 

First, we conservatively approximate Pr(µla 2,c;; 
( Xit) ) by discarding all information in (xit) except µ. 
The sampling distribution of µ is essentially 

(14) (/21µ, a2, c;) - N(µ, var(,ulµ, a2, c;) ), 

where var(J21µ,a2,c;) = var(.ala2,c;). Combining the sam­
pling distribution (14) with a uniform prior density for 
µ yields the conditional distribution, 

(µla 2,c;,µ) - N(µ, var(.ula 2,c;) ). 

Thus, accepting Pr(µla 2, c;, (x;t)) = Pr(µla 2, c;, µ) gives 

Pmn(x) = J N(xlµ,a 2 + var(,ula 2,c;)) 

· Pr(a 2,c;I (xit) )d(a 2,c;). 

That is, Pmn(x) is, conservatively, a mixture of normals 
with common mean µ and therefore is symmetric and 
unimodal. Labeling 

V = a2 + var(.ula 2, c;), 

the density Pmn(x) may be written as 

(15) Pmn(X) = J N(xlµ, V)Pr( VI (xit) )dV. 
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In our second approximation, we adopt a Student's 
t distribution for Pmn(x),. and determine its degrees of 
freedom, df, by setting the mixing distribution for the 
variance, Pr( VI (x;t) ), equal to V·dflxt, where the sta­
tistic V = a2 + B!mn in (12) is unbiased for V, 

(16) 

Then df is determined by matching the second moment 
of V to the x2 mixing distribution, as described in 
Section 3.5. The location and squared scale of the t 
distribution are just Ii and V, respectively. As n--+ oo, 

df--+ oo, and the approximation converges to N(µ, a 2). 

3.5 The Degrees of Freedom for the Student's 
t Distribution 

We approximate the sampling distribution of VIV, 
conditional on (a2, c;), as 

VIV~ xatfdf, 

with degrees of freedom estimated by the method of 
moments, 

v2 
df= 2 /\. . 

var(Vla 2,c;) 

Many similar competing estimates for the degrees of 
freedom can be devised, either by matching a different 
set of moments or by a more sophisticated approach. 
No particular choice seemed to be dominant in our 
initial investigations, so we chose this particular esti­
mator for its simplicity and because of its previous 
use in similar problems (Satterthwaite, 1946; Rubin, 
1987a). 

Each of the terms of 

var( v1a2• c;) = (n: 1 y var( w1a2• c;) 

(17) + (mm: 1Yvar(Bla 2,c;) 

+ 2(m - l)(~ - l) cov(W,Bla 2,c;) 
mn 

can be estimated unbiasedly using multiple indepen­
dent sequences, assuming strong stationarity. The 
within-mean square, W, is just the average of m iid 
within-sequence variances sr, and so we estimate its 
sampling variance by the sample variance of the sr 
values, divided by m. The between-mean square, B, is 
the variance of m iid components, and so its sampling 
distribution is approximately proportional to a x!.-i 
distribution. Matching moments, we estimate the sam­
pling variance of B by 2B2/(m-1). 

Finally, cov( W, BI a2, c;) may be estimated using the 
following expression, which derives from the indepen­
dence of the m simulated sequences: 

cov(W,Bja 2,c;) 

=cov(_!_~s'f,-n-~(x;.-x.i I a2.e) 
m; m-1; 

= --- (m - l)cov(s? x? ja2 J:) (18) n l 
m(m - 1) " ,. ',. 

- 2(m - l)cov(sr,x;.xj.la 2,c;)j 

=: l cov(s'f ,x'f. la2, c;)- 2E (xj.la2, c;)cov(sr,x;.ja 2, c;) J 
We estimate cov(sr,xr.la 2, c;) and cov(sr,x;,la2, c;) from 
the corresponding sample covariances, and E(xi.) is of 
course estimated by Ii = x .. • 

Inserting these estimates for var(W), var(B) and 
cov(W, B) into (17) yields the estimate of var(V) in (4) 
in Section 2.2. Then, assuming an approximate uniform 
prior distribution on V yields the conservative poste­
rior distribution VIV~ dflxit• 

3.6 Conservative Estimation Given Overdispersion 

The derivation in Section 3.3 of the expectation of 
the variance estimate a2 can be generalized to show 
that given overdispersion, a2 overestimates a2. We first 
use (10) and (3), which hold without stationarity or any 
distributional assumptions, to express E(a 2) in terms 
of the statistics of the sample series, 

E(a 2 10,c;) =E(n: l sr 10,c;) + var(x;.10,c;). 

We then use the algebraic identity of the right-hand 
side of (9) and (10) to obtain 

E(a 2 10,c;)=El~~(xit-E(x;.l0,c;)) 2 j 0,c;] 

· and finally express the result in terms of the mean and 
variance of the distribution at iteration t: 

2:: a2 if at 2:: a2 for all t. 

Because a2 is an overestimate given overdispersion, 
the Student's t distribution (11) is wider than the distri­
bution that would have been obtained under strong 
stationarity. 

3. 7 Monitoring Convergence 

Rather than test the generally false hypothesis that 
the iterative simulation has "converged," we monitor 
convergence by estimating the factor by which the 
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scale of the conservative posterior distribution Pmn(x) 
will shrink as n -+ oo. The ratio of the information about 
x in the limiting normal distribution to that in the 
tdt(xjµ, V) distribution is given by Fisher (1935, §74): 

R=V-~ 
a2 df- 2· 

Equivalently, the potential scale reduction is given by 
.Jii,, which we estimate from our finite simulated se­
quences. In general (without assuming strong sta­
tionarity), no unbiased estimate of a2 is possible; 
however, we can overestimate R by inserting an under­
estimate of a2• Fortunately, many downwardly biased 
estimates of the target variance a2 are available by 
applying finite-length time-series methods to the m 
simulated sequences individually. For convenience, we 
simply use the within-sequence variance W, which 
seems to work fine in practice. [Under strong stationar­
ity and positively correlated simulations, E(Wl0, c;) < a2 

for finite n. Under overdispersion, it is possible that 
E(Wl0, c;) > a2, but in typical examples, E(Vl0, c;) ex­
ceeds a2 by an even greater factor, so that the ratio 
E((VIW)l0, c;) exceeds 1.] 

Thus, we obtain for our estimated scale reduction, 

(20) 

which is itself subject to sampling variability. To re­
flect that uncertainty,. we approximate BIW by an F 
distribution with m - 1 degrees of freedom for the 
numerator and 2W 2/~(Wl0, c;) for the denominator. 
[The estimated sampling variance, ~(Wl0, c;) = (1/m)· 
var(sr), is derived in Section 3.5.] We ignore the minor 
contribution to variability in the factor df/(df-2). The 
resulting distribution for BIW overestimates variabil­
ity, because the true joint sampling distribution of B 
and W will generally exhibit positive correlation. In 
practice, we are concerned if the · scale reduction is 
large, but not if it is small, so we report only the 
estimated potential scale reduction and its upper 
97.5% confidence limit (see the center columns of Fig­
ures 2 and 3 in Section 4), both of which we regard as 
conservative (i.e., overestimates of .Jii,). 

When the potential scale reduction is large, one (or 
both) of the following state~ents must be true: 

1. Further simulation will substantially decrease 6; 
that is, inference about x can be made more pre­
cise by allowing the simulations to converge to 
the target distribution, so that a-+ a. 

2. Further simulation will substantially increase W; 

that is, the simulated sequences have not each 
made a complete tour of the target distribution. 

In either case, the stochastic process of iterative simu­
lation, at least as represented by the last half of the 
sequences, is far from convergence to the stationary 
distribution. 

When the potential scale reduction is near 1, we 
conclude that each set of the m sets of n simulated 
values is close to the target distribution. The discus­
sion of Tables 2, 3 and 4 from our example in Section 
4 illustrates how the estimated inefficiency can be used 
to monitor convergence in practice. 

Once the simulation is done, and approximate con­
vergene is assessed, it is important to check that the 
key assumption of overdispersion has been satisfied. 
A direct way of assessing overdispersion is to see 
whether the early intervals have conservative coverage 
over later distributions, as illustrated by Figure 3 and 
Table 3 in our example in Section 4. 

4. EXAMPLE 

4.2 The Data and Model 

Psychologists at Harvard University (P. Holtzman, 
H. Gale and S. Levin) performed an experiment measur­
ing thirty reaction times for each of seventeen subjects: 
eleven non-schizophrenics and six schizophrenics. Belin 
and Rubin (1990, 1992) describe the data and several 
probability models in detail; we present the data in 
Fi~re 1 and briefly review their basic approach here. 

It is clear that the response times are higher on 
average for schizophrenics. In addition, the response 
times for at least some of the schizophrenic individuals 
are considerably more variable than the response times 
for the non-schizophrenic individuals. Current psycho­
logical theory suggests a model in which schizophren­
ics suffer from an attentional deficit on some trials, as 
well as a general motor reflex retardation; both aspects 
lead to a delay in the schizophrenics' responses, with 
motor retardation affecting all trials and attentional 
deficiency only some. 

To address the questions of scientific interest, the 
following basic model was fit. Response times for non­
schizophrenics are thought of as arising from a normal 
random-effects model, in which the responses of person 
i = 1, ... , 11 are normally distributed with distinct 
person mean a; and common variance a~bs• To reflect 
the attentional deficiency, the response times for each 
schizophrenic individual i = 12, ... , 17 are fit to a 
two-component mixture: with probability (1 - A), there 
is no delay, and the response is normally distributed 
with mean a; and variance a~b .. and with probability A, 
responses are delayed, with observations having a 
mean of a; + r and variance of a~bs• Because the reac-
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FIG. 1. (A) Log response times for eleven non-schizophrenic individuals. (B) Log response times for six schizophrenic individuals. 

tion times are all positive and their distributions are 
positively skewed, even for non-schizophrenics, the 
model was fit to the logarithms of the reaction time 
measurements. 

The comparison of the components of a = (a1, ••• , 

ai7) for schizophrenics versus non-schizophrenics ad­
dresses the magnitude of schizophrenics' motor retar­
dation. We modify the basic model of Belin and Rubin 
(1992) to incorporate a hierarchical parameter p mea­
suring motor retardation. Specifically, variation among 
individuals is modeled by having the person means a; 
follow a normal distribution with mean v + pS; and 
variance a~, where v is the overall mean response time 
of nonschizophrenics, and the observed indicator S; is 
1 if person i is schizophrenic and 0 otherwise. 

Letting Yu be the jth response of individual i, the 
model can be written in the following hierarchical form. 

adz,<p - N(v + PS;,an, 

zul(f) - Bemoulli(A.S;), 

where (f) = (log( an, p, logit(A.), r, v, log( a~bs)) and Zij is 
an unobserved indicator variable that is 1 if measure­
ment j on person i arose from the delayed component 
and 0 if it arose from the undelayed component. The 
indicator random variables zu are not necessary to 
formulate the model but allow convenient computation 
of the modes of (a, <p) using the iterative ECM algo­
rithm (Meng and Rubin, 1992) and simulation using 
the Gibbs sampler. For the Bayesian analysis, the 
parameters a~, P, A, r, v and a~bs are assigned a joint 
uniform prior distribution, except that A is restricted 
to the range (0.001, 0.999], r is restricted to be positive 
to identify the model, and a2 and a~bs are of course 
restricted to be positive. 

The three parameters of primary interest are: p, 



ITERATIVE SIMULATION USING SINGLE AND MULTIPLE SEQUENCES 467 

which measures motor reflex retardation; J, the propor­
tion of schizophrenic responses that are delayed; and 
r, the size of the delay when an attentional lapse occurs. 
Substantive analyses of this basic model are presented 
in Belin and Rubin (1992), who show that this model, 
chosen as the simplest model to include all the substan­
tive parameters of interest and reasonably fit the data, 
does not provide an entirely satisfactory fit to the 
data and suggest some extensions. Here, we focus on 
computational issues and use the data and the basic 
model for this purpose. 

4.2 Creating an Approximate Distribution 

Our model cannot be fit to the data in closed form. 
We began our exploration of the posterior distribution 
of (a, tp) by drawing fifty points at random from a 
simplified distribution for (a, tp) and using each as a 
starting point for the ECM maximizing routine to 
search for modes. In the simplified distribution, there 
were no random effects and no mixture components; 
the parameters rand logit(A.) were both set to 0, and 
each of the seventeen subject effects, a;, was indepen­
dently sampled from a normal distribution based on 
the mean and variance of the thirty observations from 
that subject. The hyperparameters log(a~), P and v were 
estimated by (closed-form) maximum likelihood condi­
tional on the drawn subject effects, and each was then 
perturbed by dividing by independent Xi random devi­
ates in an attempt to cover the modes of the parameter 
space with marginal Cauchy distributions. 

Three local maxima of (a, tp) were found: a major 
mode and two minor modes. The minor modes were 
substantively uninteresting, corresponding to near­
degenerate models witfi the mixture parameter A near 
0, and had little support in the data, with posterior 
density ratios with respect to the major mode below 
e- 20• We concluded that the minor modes could be 
ignored and, to the best of our knowledge, the target 
distribution could be considered unimodal for practical 
purposes. To put it another way, the importance ratios 
at the minor modes were so low, we simply discarded 
them in our approximation before going to the work 
of estimating associated second derivatives and form­
ing the mixture approximation. Had we included the 
minor modes, any draws from them would have had 
essentially zero importance weights and would almost 
certainly have not appeared in the importance-weighted 
resamples. 

Random samples of (a, tp) were drawn from P, the 
multivariate t approximation, with 1'/ = 4 degrees of 
freedom, centered at the major mode with scale deter­
mined by the second derivative matrix at the mode, 
which was computed by numerical differentiation. An 
alternative would have been to use the SECM algo­
rithm (Meng and Rubin, 1991). The corresponding ex­
act posterior distribution of (a, tp), P, has the indicators 
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Fm. 2. Logarithms of the largest importance ratios from the 
multivariate t approximation. 

Z;j integrated out and is thus an easily computed prod­
uct of mixture forms. The number of independent sam­
ples drawn was N = 2,000, and a histogram of the 
relative values of the 1,000 largest log importance 
weights, presented in Figure 2, shows little variation -
an indication of the adequacy of the overdispersed 
approximation as a basis for taking draws to be resam­
pled to create the starting distribution. 

4.3 Applying the Gibbs Sampler 

A set of m = 10 starting points was drawn by impor­
tance-weighted resampling (SIR), as described in Sec­
tion 2.1, and represents the starting distribution, P0• 

This distribution is intended to approximate our ideal 
starting conditions: For each scalar estimand of inter­
est, the mean is close to the target mean and the 
variance is greater than the target variance. 

The Gibbs sampler is easy to apply for our model 
because the full conditional posterior distributions -
P(tpla, z), P(al'P, z) and P(zla, tp)-have closed form and 
can be easily sampled from. We simulated ten indepen­
dent sequences of 200 iterations each (all the variables 
were updated in each iteration), and we then examined 

. the results using the method described in Section 2.2. 

4.4 Detailed Results for a Single Parameter 

For exposition, we first display detailed results for 
a single scalar estimand- r, the increase in log reaction 
time of schizophrenics due to lapse of attention. In 
fact, this parameter was one of the slower estimands 
to converge in the iterative simulation. 

Figure 3 shows the paths of three· simulated se­
quences (randomly chosen from the ten used for the 
computation) for the first fifty iterates of r. The vertical 
bars at 10, 20, 30, 40 and 50 are the conservative 95% 
posterior intervals for r based on iterations 6-10, 11-
20, 16-30, 21-40 and 26-50, respectively, of the ten 
simulated sequences (i.e., intervals from our procedure 
with m = 10 and n = 5, 10, 15, 20 and 25, respectively). 
The final vertical bar just to the right of 50 is the 
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Fm. 3. Multiple simulations and 95% posterior intervals for r. 

interval based on iterations 101-200 (i.e., n = 100). 
The intervals are Student's t intervals centered atµ, 
with scale .Jv and degrees of freedom df as discussed 
in Section 2.2. 

Clearly, the early intervals include the later intervals, 
and each is "conservative" in that it includes more than 
its nominal 95% coverage of the probability under the 
target distribution. The greater width of the early 
intervals partly reflects sampling variability due to 
finite m and n, but the main cause is that, when the 
starting distribution is overdispersed, a2 overestimates 
the target variance, a2• The later intervals rapidly ap­
proach stability and are approximately correct be­
cause, as n increases, the bias of u2 decreases to 0. 

Watching the posterior intervals for -r approach sta­
bility is comforting, but to measure their convergence, 
we need a standard of comparison. The first two rows of 
Table 1 show the estimated potential scale reduction, 
JR, and its 97.5% quantile, which together give a 
rough indication of the factor by which we expect 
the posterior intervals may shrink under continued 
simulation. (The upper quantile comes from the approx­
imate sampling distribution of JR, derived in Section 
3. 7 .) The estimated improvement factors displayed are 
based on only the first 10, 20, 30, 40 and 50 iterations 
of the ten sequences. The last row of the table shows 
the actual eventual reductions in interval width, using 
the results based on iterations 101-200 as a standard 
of comparison. Even the early estimates of potential 
reductions in interval width appear to have been rea­
sonably accurate. 

4.5 Results for Other Parameters of Interest 

Section 4.4 showed every step of our analysis for a 
single scalar estimand, -r; in practice, one will typically 
examine several estimands, but in less detail. In fact, 
as we now show, the iterative simulation process can be 

TABLE 1 
Relative eventual reductions in 
posterior interval widths for T 

2n = number of 
iterations 

10 20 30 40 

Estimated. potential reduction 3.4 1.7 1.3 1.1 
factor and its 97.5% quantile 5.3 2.4 1.6 1.3 

Actual reduction factor relative 
to 2n = 200 3.9 2.5 1.3 1.0 

50 

1.1 
1.1 

1.0 

monitored reliably without examining any time-series 
graphs like Figure 3. 

We computed several univariate estimands: seven­
teen random effects ai and their standard deviation aa, 
the shift parameters -rand P, the standard deviation 
of observations Gobs, the mixture parameter A, the ratio 
of standard deviations aalaobs and -2 log (posterior 
density). Table 2 shows the results of our multicompo­
nent analysis of the ten sequences of length 2n = 200, 
with each row of the table presenting a summary infer­
ence for a different univariate estimand. The first three 
columns summarize the posterior distribution by the 
95% central interval based on the t distribution intro­
duced in Section 2.2 and derived in Section 3.4. (The 
interval for -r corresponds to the rightmost vertical bar 
displayed in Figure 3.) The next two columns present 
the estimated potential scale reduction, JR, along with 
an upper limit derived from its approximate sampling 
distribution. The last five columns of Table 2 will be 
discussed in Section 4.6. 

Because the estimated potential scale reductions of 
Table 2 are close to 1, they suggest that-further simula­
tion will not markedly improve our estimates of the 
scalar estimands shown. More precise estimation of 
the means and variances of the target distributions, as 
would be achieved by further simulation, would not 
narrow the estimated posterior intervals much-nearly 
all the width of the intervals is due to the posterior 
variances themselves, not uncertainty due to simula­
tion variability. 

For comparison, Table 3 shows the corresponding 
results after only 2n = 20 iterations of the series. The 
posterior means of many of the estimands (e.g., A) 
are not estimated accurately, and for several of them, 
eventual scales could easily shrink by a factor of 2 or 
more. (The estimated scale reduction for -rand its upper 
limit is the same as the values in Table 1 based on 
2n = 20.) Because the simulations at 2n = 20 are so 
far from convergence, we do not bother to present the 
simulated quantiles in Table 3. From the potential 
scale reductions of Table 3, we expect that further 
simulation beyond n = 10 would sharpen the posterior 
intervals for two reasons: more degrees of freedom for 
estimation and a lower estimated posterior variance. 
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TABLE 2 
_Inference for scalar estimands based on 10 sequences, iterations 101-200 

Potential 
Normal-theory scale 

posterior interval reduction Simulated quantiles 

2.5% /i 97.5% Est. 

a1 5.66 5.73 5.80 1.00 
a2 5.82 5.89 5.95 1.00 
aa 5.64 5.71 5.78 1.00 
a4 5.64 5.71 5.77 1.00 
a5 5.51 5.58 5.65 1.00 
as 5.73 5.80 5.86 1.00 
a7 5.79 5.86 5.92 1.00 
as 5.52 5.59 5.66 1.00 
ae 5.48 5.55 5.62 1.00 
a10 5.71 5.77 5.84 1.00 
a11 5.65 5.72 5.78 1.00 
a12 5.66 5.73 5.80 1.00 
a1a 5.97 6.03 6.10 1.00 
a14 5.93 6.01 6.09 1.00 
a15 6.08 6.19 6.29 1.03 
a1s 6.11 6.19 6.27 1.01 
a17 6.00 6.07 6.14 1.01 

CT a 0.09 0.14 0.21 1.00 
p 0.17 0.32 0.47 1.01 
1 0.07 0.12 0.19 1.02 
r 0.74 0.85 0.96 1.02 

CTobs 0.18 0.19 0.20 1.01 
a.fCTobs 0.50 0.74 1.10 1.00 

-2 log(density) 727.81 747.33 766.86 1.01 

Comparison to Table 2 shows that the posterior inter­
vals using 200 iterations do indeed narrow. But, with­
out ever having seen Table 2 or any simulations beyond 
2n = 20, one can tell from the high estimated potential 
scale reductions of Table 3 that the first twenty itera­
tions of the simulated sequences do not summarize 
the target distribution as accurately as will continued 
simulation. In addition, it is reassuring to see that most 
of the posterior intervals in the first three columns of 
Table 3 wholly contain the more accurate intervals in 
Table 2. The last two columns of Table 3 give the 
probability coverage of the nominal 95% intervals 
based on 2n = 20, using the distributions summarized 
in Table 2 as references. 

4.6 Estimating the Target Distribution by the Set of 
Simulations 

Now that the estimated eventual reductions in inter­
val width are low for all twenty-four scalar estimands 
of interest, we conclude that, for each estimand, the ten 
sequences of length 100 (iterations 101-200) may be 
considered to consist of draws from the target distribu­
tion, at least under our normal-theory-based analysis. 
Consequently we might drop the normality assumption 
and consider the 10 X 100 = 1,000 values for each esti­
mand as draws from its target distribution. 

97.5% 2.5% 25% Median 75% 97.5% 

1.00 5.66 5.71 5.73 5.76 5.80 
1.00 5.82 5.86 5.89 5.91 5.95 
1.01 5.65 5.69 5.71 5.73 5.78 
1.02 5.64 5.68 5.71 5.73 5.77 
1.01 5.51 5.56 5.58 5.60 5.65 
1.00 5.73 5.77 5.80 5.82 5.86 
1.00 5.79 5.83 5.86 5.88 5.92 
1.00 5.52 5.56 5.59 5.61 5.65 
1.00 5.49 5.53 5.55 5.57 5.62 
1.01 5.71 5.75 5.77 5.80 5.84 
1.01 5.65 5.69 5.72 5.74 5.78 
1.00 5.66 5.71 5.73 5.75 5.80 
1.00 5.96 6.01 6.03 6.05 6.10 
1.01 5.93 5.98 6.01 6.04 6.09 
1.07 6.08 6.15 6.19 6.22 6.29 
1.03 6.10 6.16 6.19 6.22 6.26 
1.02 5.99 6.04 6.07 6.09 6.14 

1.00 0.10 0.12 0.14 0.16 0.21 
1.02 0.17 0.27 0.32 0.37 0.48 
1.04 0.07 0.10 0.12 0.14 0.18 
1.05 0.74 0.81 0.85 0.88 0.96 
1.02 0.18 0.18 0.19 0.19 0.20 
1.00 0.51 0.64 0.73 0.85 1.11 

1.01 729.98 739.92 746.88 753.84 768.35 

The rightmost five columns of Table 2 show the 
simulated quantiles of the twenty-four estimands of 
interest, based on the 1,000 simulated values. The 
2.5%, 50% and 97.5% quantiles agree quite well with 
the t intervals presented in the left columns of the 
table; the discrepancies between the normal-theory and 
empirical 2.5% and 97.5% points for .l suggest that 
the marginal posterior distribution of .l is not normal, 
even after the logit transformation. 

At this point we also might be willing to tentatively 
summarize the joint distribution of all twenty-two sim­
ulated parameters by the 10 X 100 array of values 
from the last half of the simulated sequences. Of course 
it is possible that some function of the parameters has 
not yet adequately converged, but then our normal­
theory methods should detect this when applied to that 
estimand and still provide a conservative distributional 
estimate. For example, this process was followed for 
<Ta/<Tobs, as seen in Tables 2 and 3. 

4. 7 Inference about Functionals of the Target 
Distribution 

Once the convergence is judged to be adequate, the 
m independently simulated sequences can also be used 
to summarize any functional If/ of the multivariate 
target distribution, using the following method: 
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TABLE 3 
Inference for scalar estimands based on 10 sequences, iterations 11-20 

Normal-theory 
posterior interval 

2.5% [1 97.5% 

a1 5.66 5.73 5.80 
a2 5.83 5.88 5.94 
aa 5.65 5.71 5.78 
a4 5.65 5.70 5.76 
as 5.52 5.59 5.65 
as 5.73 5.79 5.86 
a1 5.79 5.86 5.92 
as 5.53 5.59 5.66 
as 5.48 5.55 5.62 
a10 5.71 5.77 5.84 
au 5.66 5.72 5.78 
a12 5.61 5.73 5.84 
a1a 5.90 6.01 6.12 
au 5.94 6.02 6.11 
a1s _5.98 6.14 6.30 
al6 6.04 6.16 6.29 
a11 5.94 6.05 6.16 

Ua 0.09 0.14 0.22 
p 0.13 0.30 0.48 
,1. 0.05 0.15 0.36 

' 0.50 0.78 1.06 
Gobs 0.18 0.19 0.21 

a.laobs 0.45 0.73 1.16 

-2 log(density) 642.45 775.71 908.97 

* Relative to distributions from Table 2. 

1. Assess the convergence of the scalar functions of 
the multivariate random variable that are needed 
to calculate If/. 

2. For each simulated sequence i, calculate the sam­
ple value I/Ii based on the empirical distribution 
of the n stimulated iterates. 

3. Create an interval for If/ based on the independent 
estimates I/Ii, i = 1, ... , m. 

For example, let If/ be the posterior correlation be­
tween the parameters T and A. For If/ to be well esti­
mated from the simulations, the distributions of T, A 
and TA should have approximately ·converged to the 
target distribution; T and A have already been judged 
to have adequately converged, as evidenced by their 
estimated potential scale reductions in Table 3. 
Applying our procedure to TA yields a potential scale 
reduction factor estimated at 1.01, with a 97.5% upper 
bound of 1.02, and so we are satisfied that the se­
quences have effectively converged for the purpose of 
estimating If/. For each i = 1, ... , 10, we calculate the 
sample correlation of the 100 iterates ((T,A)ii, t = 101, 
... , 200); the results are {-0.282, -0.275, -0.284, 
-0.231, ...:0.256, -0.280, -0.374, -0.397, -0.413, 
-0.071}. To obtain a simple normal-theory posterior 
interval for If/, we transform the ten sample correlations 

Potential Coverage probability of 
scale 95% intervals* 

reduction Normal- Simulated 
Est. 97.5% theory quantiles 

1.02 1.09 0.96 0.97 
1.03 1.11 0.92 0.92 
1.06 1.17 0.95 0.96 
1.02 1.09 0.91 0.92 
1.00 1.05 0.95 0.95 
1.01 1.07 0.95 0.94 
0.98 1.01 0.93 0.94 
1.10 1.26 0.94 0.94 
1.02 1.09 0.96 0.96 
1.04 1.14 0.92 0.92 
1.13 1.30 0.93 0.93 
1.22 1.54 1.00 1.00 
1.21 1.53 1.00 1.00 
1.09 1.22 0.96 0.95 
1.50 2.01 0.99 0.99 
1.39 1.76 0.99 0.99 
1.45 1.91 0.99 0.99 

1.04 1.13 0.98 0.98 
1.18 1.44 0.98 0.98 
1.88 2.73 1.00 1.00 
1.67 2.40 1.00 1.00 
1.12 1.28 0.98 0.98 
1.04 1.13 0.98 0.98 

1.79 3.45 1.00 1.00 

to the Fisher z-scale, in which their mean is -.297 
with standard error 0.034 on nine degrees of freedom. 
Transforming back to the original scale yields an esti­
mate of - .288 for If/ with a 95% posterior interval of 
(-.357, -.218). 

For another example, let If/ be the 75% quantile of 
the posterior distribution of T. The distribution of T 

appears, from the estimated potential scale reductions 
of Table 3, to have effectively converged, and so we 

, summarize our knowledge about 1/1 by the values 1/fi 

based on iterations 101-200 of the ten simulated se­
quences, {0.906, 0.876, 0.881, 0.878, 0.876, 0.873, 0.872, 
0.885, 0.884, 0.912}, which have a mean of 0.884 with 
standard error 0.004 on nine degrees of freedom. 

4.8 An Example of Slow Convergence 

Even with the data and model of Section 4, it is 
possible for the Gibbs sampler to exhibit slow conver­
gence. To illustrate this point and how our method of 
analysis in Section 2.2 handles slow convergence, we 
sample ten new sequences for 200 steps. This time, 
however, we draw the ten starting points directly from 
the initial approximate distribution described in the 
first paragraph of Section 4.2, without searching for 
modes or using importance-weighted resampling to 
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TABLE 4 
Inference for some scalar estimands based on a new set 

of 10 sequences, iterations 101-200 

Ua 

p 
,1, 

T 

Gobs 

a.laobs 

Normal-theory 
posterior interval 

2.5% µ 97.5% 

0.09 0.15 0.25 
-0.17 0.27 0.70 

0.01 0.16 0.74 
0.70 0.84 0.98 
0.18 0.19 0.20 
0.47 0.78 1.28 

Potential 
scale 

reduction 

Est. 97.5% 

1.31 1.58 
2.43 3.63 
5.15 7.42 
1.19 1.35 
1.10 1.21 
1.25 1.48 

-2 log(density) 681.63 757.18 832.74 3.53 5.08 

eliminate relatively unlikely points. Table 4 presents 
the results; for brevity, the inferences for the compo­
nents of a are omitted. 

The high potential scale reductions clearly show that 
the simulations are far from convergence. To under­
stand better what is happening, we plot the m se­
quences of log posterior densities. Figure 4 shows the 
last halves of the ten time series, superimposed. The 
single sequence that stands alone started and remains 
in the neighborhood of one of the minor modes found 
earlier by maximization. Since the minor mode is of no 
scientific interest and has negligible support in the 
data (note its relative density), we simply discard this 
sequence, as almost certainly would have occurred with 
importance resampling. Inference from the remaining 
nine series yields essentially the same results as pre­
sented earlier in Table 2. This example thus illustrates 
the relevance of both ·parts of our procedure: (1) the 
use of an overdispersed starting distribution, which, if 
well chosen, can lead to conservative yet relatively 
efficient inferences; and (2) the analysis of multiple 
simulated sequences for inference and monitoring con­
vergence. 
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FIG. 4. Log posterior densities for the new set of ten simulated 
sequences. 

ACKNOWLEDGMENTS 

We thank John Carlin, Brad Carlin, Tom Belin, Xiao-Li 
Meng, the editors and the referees for useful comments, 
NSF for Grants SES-92-07456 and SES-88-05433 and 
a mathematical sciences postdoctoral fellowship, and 
NIMH for Grants MH-31-154 and MH-31-340. In addi­
tion, some of this work was done at AT&T Bell Labora­
tories. 

REFERENCES 

BELIN, T. R. and RUBIN, D. B. (1990). Analysis of a finite mixture 
model with variance components. Proceedings of the Social 
Statistics Section 211-215. ASA, Alexandria, Va. 

BELIN, T. R. and RuBIN, D. B. (1992). The analysis of repeated­
measures data on Schizophrenic reaction times using mixture 
models. Technical report, Dept. Statistics, Harvard Univ. 

BESAG, J. and GREEN, P. J. (1993). Spatial statistic and Bayesian 
computation. J. Roy. Statist. Soc. Ser. B 55. To appear. 

CLoGG, C. C., RuBIN, D. B., SCHENKER, N., ScHULTZ, B. and 
WIDEMAN, L. (1991). Simple Bayesian methods for the analy­
sis of logistic regression models. J. Amer. Statist. Assoc. 86 
68-78. 

DEMPSTER, A. P., LAIRD, N. M. and RuBIN, D. B. (1977). Maxi­
mum likelihood from incomplete data via the EM algorithm 
(with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38. 

FISHER, R. A. (1935). The Design of Experiments. Oliver and 
Boyd, Edinburgh. 

FosmcK, L. D. (1959). Calculation of order parameters in a binary 
alloy by the Monte Carlo method. Phys. Rev. 116 565-573. 

GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based 
approaches to calculating marginal densities. J. Amer. Sta­
tist. Assoc. 85 398-409. 

GELFAND, A. E., HILLS, S. E., RACINE-PooN, A. and SMITH, 
A. F. M. (1990). Illustration of Bayesian inference in normal 
data models using Gibbs sampling. J. Amer. Statist. Assoc. 
85 398-409. 

GELMAN, A. (1992). Iterative and non-iterative simulation algo­
rithms. In Computing Science and Statistics: Proceedings of 
the 24th Symposium on the Interface. To appear. 

GELMAN, A. and RuBIN, D. B. (1992). A single series from the 
Gibbs sampler provides a false sense of security. In Bayesian 
Statistics 4 (J.M. Bernardo, J. 0. Berger, A. P. Dawid and 
A. F. M. Smith, eds.) 625-632. Oxford Univ. Press. 

GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs 
distributions, and the Bayesian restoration of images. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 
6 721-741. 

GEWEKE, J. (1992). Evaluating the accuracy of sampling-based 
approaches to the calculation of posterior moments. In 
Bayesian Statistics 4 (J. M. Bernardo, J. 0. Berger, A. P. 
Dawid and A. F. M. Smith, eds.) 169-193. Oxford Univ. 
Press. 

GILKS, w. R., CLAYTON, D. G., SPIEGELHALTER, D. J., BEST, 
N. G., McNEIL, A. J., SHARPLES, L. D. and KIRBY, A. J. 
(1993). Modelling complexity: applications of Gibbs sampling 
in medicine. J. Roy. Statist. Soc. Ser. B 55. To appear. 

GREEN, P. J. and HAN, X. (1991). Metropolis methods, Gaussian 
proposals, and antithetic variables. Lecture Notes in Statist. 
74 142-164. Springer, New York. 

HASTINGS, W. K. (1970). Monte-Carlo sampling methods using 
Markov chains and their applications. Biometrika 57 97-109. 

HILLS, S. E. and SMITH, A. F. M. (1992). Parameterization issues 
in Bayesian inference. In Bayesian Statistics 4 (J. M. Ber­
nardo, J. 0. Berger, A. P. Dawid and A. F. M. Smith, eds.) 



472 A. GELMAN AND D. B. RUBIN 

627-633. Oxford Univ. Press. 
KINDERMAN, R. and SNELL, J. L. (1980). Markov Random Fields 

and Their Applications. Amer. Math. Soc., Providence, R.I. 
LIU, C. (1991). Qualifying paper, Dept. Statistics, Harvard Univ. 
McCULLOCH, R. and RossI, P. E. (1992). An exact likelihood 

analysis of the multinomial probit model. Technical report. 
MENG, X. L. and RUBIN, D. B. (1991). Using EM to obtain 

asymptotic variance-covariance matrices: The SEM algo­
rithm. J. Amer. Statist. Assoc. 86 899-909. 

MENG, X. L. and RUBIN, D. B. (1993). Maximum likelihood 
estimation via the ECM algorithm: A general framework. 
Biometrika. To appear. 

METROPOLIS, N. and ULAM, S. (1949). The Monte Carlo method. 
J. Amer. Statist. Assoc. 44 335-341. 

METROPOLIS, N., ROSENBLUTH, A. w., ROSENBLUTH, M. N., 
TELLER, A. H. and TELLER, E. (1953). Equation of state 
calculations by fast computing machines. J. Chem. Phys. 21 
1087-1092. 

MoRRIS, C. N. (1988). Apprxomating posterior distributions and 
posterior moments. In Bayesian Statistics 3 (J. M. Bernardo, 
M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 
327-344. Oxford Univ. Press. 

PRATT, J. W. (1965). Bayesian interpretation of standard infer­
ence statements. J. Roy. Statist. Soc. Ser. B 27 169-203. 

RAFTERY, A. E. and LEWIS, S. (1992). How many iterations in 
the Gibbs sampler? In Bayesian Statistics 4 (J.M. Bernardo, 
J. 0. Berger, A. P. Dawid and A. F. M. Smith, eds.) 763-
773. Oxford Univ. Press. 

RIPLEY, B. D. (1987). Stochastic Simulation, chap. 6. Wiley, New 
York. 

RuBIN, D. B. (1984). Bayesianly justifiable and relevant fre­
quency calculations for the applied statistician. Ann. Statist. 
12 1151-1172. 

RUBIN, D. B. (1987a). Multiple Imputation for Nonresponse in 
Surveys. Wiley, New York. 

RuBIN, D. B. (1987b). A noniterative sampling/importance resam­
pling alternative to the data augmentation algorithm for 
creating a few imputations when fractions of missing infor­
mation are modest: The SIR algorithm. Comment on "The 
calculation of posterior distributions by data augmentation," 
by M.A. Tanner and W. H. Wong. J. Amer. Statist. Assoc. 
82 543-546. 

RuBIN, D. B. (1988). Using the SIR algorithm to simulate poste­
rior distributions. In Bayesian Statistics 3 (J. M. Bernardo, 
M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 
395-402. Oxford Univ. Press. 

SATTERTHWAITE, F. E. (1946). An approximate distribution of 
estimates of variance components. Biometrics Bulletin 2 
110-114. 

SMITH, A. F. M. and ROBERTS, G. 0. (1993). Bayesian computa­
tion via the Gibbs sampler and related Markov chain Monte 
Carlo methods. J. Roy. Statist. Soc. Ser. B 55. To appear. 

TANNER, M. A. and WoNG, W. H. (1987). The calculation of 
posterior distributions by data augmentation (with discus­
sion). J. Amer. Statist. Assoc. 82 528-550. 

TIERNEY, L. (1991). Exploring posterior distributions using Mar­
kov chains. In Computing Science and Statistics: Proceed­
ings of the 23rd Symposium on the Interface (E. M. 
Kerarnidas, ed.) 563-570. Interface Foundation, Fairfax Sta­
tion, Va. 

TIERNEY, L. and KADANE, J.B. (1986). Accurate approximations 
for posterior moments and marginal densities. J. Amer. Sta­
tist. Assoc. 81 82-86. 

ZEGER, S. L. and KARIM, M. R. (1991). Generalized linear models 
with random effects: A Gibbs sampling approach. J. Amer. 
Statist. Assoc. 86 79-86. 


