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ABSTRACT
A Bayesian analysis of 47 Ursae Majoris radial velocity data confirms and refines the properties
of two previously reported planets with periods of 1079 and 2325 d. The analysis also provides
orbital constraints on an additional long-period planet with a period of ∼10 000 d. The three-
planet model is found to be 105 times more probable than the next most probable model which is
a two-planet model. The non-linear model fitting is accomplished with a new hybrid Markov
chain Monte Carlo (HMCMC) algorithm which incorporates parallel tempering, simulated
annealing and genetic crossover operations. Each of these features facilitate the detection of a
global minimum in χ2. By combining all three, the HMCMC greatly increases the probability
of realizing this goal. When applied to the Kepler problem, it acts as a powerful multiplanet
Kepler periodogram.

The measured periods are 1078 ± 2 d, 2391+100
−87 d and 14002+4018

−5095 d, and the corresponding
eccentricities are 0.032 ± 0.014, 0.098+.047

−.096 and 0.16+.09
−.16. The results favour low-eccentricity

orbits for all three. Assuming the three signals (each one consistent with a Keplerian orbit) are
caused by planets, the corresponding limits on planetary mass (M sin i) and semimajor axis
are (2.53+.07

−.06MJ , 2.10 ± 0.02 au), (0.54 ± 0.07 MJ , 3.6 ± 0.1 au) and (1.6+0.3
−0.5MJ , 11.6+2.1

−2.9 au),
respectively. Based on a three-planet model, the remaining unaccounted for noise (stellar jitter)
is 5.7 m s−1.

The velocities of model fit residuals were randomized in multiple trials and processed using
a one-planet version of the HMCMC Kepler periodogram. In this situation, periodogram peaks
are purely the result of the effective noise. The orbits corresponding to these noise-induced
periodogram peaks exhibit a well-defined strong statistical bias towards high eccentricity. We
have characterized this eccentricity bias and designed a correction filter that can be used as an
alternate prior for eccentricity to enhance the detection of planetary orbits of low or moderate
eccentricity.

Key words: methods: numerical – methods: statistical – techniques: radial velocities – stars:
individual: 47 Ursae Majoris – planetary systems.

1 IN T RO D U C T I O N

Improvements in precision radial velocity (RV) measurements and
continued monitoring are permitting the detection of lower ampli-
tude planetary signatures. One example of the fruits of this work
is the detection of a superearth in the habitable zone surrounding
Gliese 581 (Udry et al. 2007). This and other remarkable successes
on the part of the observers is motivating a significant effort to
improve the statistical tools for analysing RV data (e.g. Loredo &

�E-mail: gregory@phas.ubc.ca (PCG); debra.fischer@yale.edu (DAF)

Chernoff 2003; Loredo 2004; Cumming 2004; Ford 2005, 2006;
Gregory 2005a,b; Ford & Gregory 2007; Cumming & Dragomir
2010). Much of the recent work has highlighted a Bayesian Markov
chain Monte Carlo (MCMC) approach as a way to better understand
parameter uncertainties and degeneracies and to compute model
probabilities.

Gregory (2005a,b,c and 2007a,b,c) presented a Bayesian MCMC
algorithm that makes use of parallel tempering (PT) to efficiently
explore a large model parameter space starting from a random
location. It is able to identify any significant periodic signal
component in the data that satisfies Kepler’s laws and thus functions
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as a Kepler periodogram.1 This eliminates the need for a separate
periodogram search for trial orbital periods which typically assume
a sinusoidal model for the signal that is only correct for a circu-
lar orbit. In addition, the Bayesian MCMC algorithm provides full
marginal parameter distributions for all the orbital elements that can
be determined from RV data. The algorithm includes an innovative
two-stage adaptive control system (CS) that automates the selection
of efficient Gaussian parameter proposal distributions.

The latest version of the algorithm, Gregory (2009), incorpo-
rates a genetic crossover operation into the MCMC algorithm. The
new adaptive hybrid MCMC (HMCMC) algorithm incorporates PT,
simulated annealing and genetic crossover operations. Each of these
techniques was designed to facilitate the detection of a global min-
imum in χ 2. Combining all three in an adaptive HMCMC greatly
increases the probability of realizing this goal.

Butler & Marcy (1996) first reported a 1090 d companion to
47 UMa using data from Lick Observatory. With additional velocity
measurements over 13 yr, Fischer et al. (2002) announced a long-
period second planet, 47 UMa c, with a period of 2594 ± 90 d
and a mass of 0.76 MJ . Naef et al. (2004) reported ELODIE (the
fibre fed echelle spectrograph of Observatoire de Haute-Provence)
observations of 47 UMa and noted that the second planet was not
evident in their data. Wittenmyer, Endl & Cochran (2007) reported
that there is still substantial ambiguity as to the orbital parameters of
the proposed planetary companion 47 UMa c. They gave a period
of 7586 d for one orbital solution and 2594 d for two others. In
their latest work, Wittenmyer et al. (2009), their best-fitting two-
planet model now calls for P 2 = 9660 d. In this paper, we present a
Bayesian analysis of the latest Lick Observatory measurements and
a combined Lick plus McDonald Observatory (Wittenmyer et al.
2009) data set.

We also report on an investigation of the behavior of the Bayesian
HMCMC Kepler periodogram to noise. The noise data sets were
formed by randomly interchanging velocity measurements.

2 TH E A DA P T I V E H Y B R I D MC M C

The adaptive HMCMC is a very general Bayesian non-linear model
fitting program. After specifying the non-linear model, data and pri-
ors, Bayes theorem dictates the target joint probability distribution
for the model parameters which can be very complex. To compute
the marginals for any subset of the parameters, it is necessary to
integrate the joint probability distribution over the remaining pa-
rameters. In high dimensions, the principal tool for carrying out the
integrals is MCMC based on the Metropolis algorithm. The greater
efficiency of an MCMC stems from its ability, after an initial burn-in
period, to generate samples in parameter space in direct proportion
to the joint target probability distribution. In contrast, straight Monte
Carlo (MC) integration randomly samples the parameter space and
wastes most of its time sampling regions of very low probability.

An important feature that prevents the HMCMC from becoming
stuck in a local probability maximum is PT. Multiple MCMC chains
are run in parallel. The joint probability density distribution for the
parameters (X) of model Mi, for a particular chain, is given by

p(X|D,Mi, I , β) ∝ p(X|Mi, I ) × p(D|X, Mi, I )β . (1)

Each MCMC chain corresponding to a different β, with the value
of β ranging from 0 to 1. When the exponent β = 1, the term

1Following on from the pioneering work on Bayesian periodograms by
Jaynes (1987) and Bretthorst (1988)

on the left-hand side of the equation is the target joint probabil-
ity distribution for the model parameters, p(X|D, Mi, I ). It is the
posterior probability of a particular choice of parameter vector, X,
given the data represented by D, the model choice Mi and the prior
information I. In general, the model parameter space of interest is
a continuum so p(X|D, Mi, I ) is a probability density distribution.
The first term on the right-hand side of the equation, p(X|Mi, I ),
is the prior probability density distribution of X, prior to the con-
sideration of the current data D. The second term, p(D|X Mi, I ),
is called the likelihood and it is the probability that we would have
obtained the measured data D for this particular choice of parameter
vector X, model Mi and prior information I. At the very least, the
prior information, I, must specify the class of alternative models
(hypotheses) being considered (hypothesis space of interest) and
the relationship between the models and the data (how to compute
the likelihood). For further details of the likelihood function for this
problem see Gregory (2005b). In many situations, the log of the
likelihood is simply proportional to the familiar χ 2 statistic. If we
later acquire another data set D′ then the new prior, p(X|Mi, I ′),
is equal to our previous posterior, p(X|D, Mi, I ), i.e. I ′ = I , D.
An exponent β = 0, yields a broader joint probability density equal
to the prior. The reciprocal of β is analogous to a temperature, the
higher the temperature the broader the distribution.

For parameter estimation purposes eight chains (β =
{0.09, 0.13, 0.20, 0.29, 0.39, 0.52, 0.72, 1.0}) were employed. At an
interval of 10 iterations, a pair of adjacent chains on the tempering
ladder is chosen at random and a proposal made to swap their param-
eter states. A MC acceptance rule determines the probability for the
proposed swap to occur (e.g. Gregory 2005a, equation 12.12). This
swap allows for an exchange of information across the population
of parallel simulations. In low β (higher temperature) simulations,
radically different configurations can arise, whereas in higher β

(lower temperature) states, a configuration is given the chance to
refine itself. The lower β chains can be likened to a series of scouts
that explore the parameter terrain on different scales. The final sam-
ples are drawn from the β = 1 chain, which corresponds to the
desired target probability distribution. For β � 1, the distribution is
much flatter. The choice of β values can be checked by computing
the swap acceptance rate. When they are too far apart, the swap rate
drops to very low values.

Each parallel chain employs the Metropolis algorithm. At each
iteration a proposal to jump to a new location in parameter space is
generated from independent Gaussian proposal distributions (cen-
tred on the current parameter location), one for each parameter. In
general, the σ ’s of these Gaussian proposal distributions are differ-
ent because the parameters can be very different entities. Also if the
σ ’s are chosen too small, successive samples will be highly corre-
lated and will require many iterations to obtain an equilibrium set
of samples. If the σ ’s are too large, then proposed samples will very
rarely be accepted. The process of choosing a set of useful proposal
σ ’s when dealing with a large number of different parameters can be
very time consuming. In PT MCMC, this problem is compounded
because of the need for a separate set of Gaussian proposal σ ’s for
each chain (different tempering levels). This process is automated
by an innovative two-stage statistical CS (Gregory 2007b; Gregory
2009) in which the error signal is proportional to the difference
between the current joint parameter acceptance rate and a target
acceptance rate, typically 25 per cent (Roberts, Gelman & Gilks
1997). A schematic of the full adaptive CS is shown in Fig. 1.

The first-stage CS, which involves annealing the set of Gaussian
proposal distribution σ ’s, was described in Gregory (2005a). An
initial set of proposal σ ’s (≈10 per cent of the prior range for each
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Three planets in 47 UMa 733

Figure 1. Schematic of the operation of the adaptive HMCMC algorithm.

parameter) is used for each chain. During the major cycles, the
joint acceptance rate is measured based on the current proposal
σ ’s and compared to a target acceptance rate. During the minor
cycles, each proposal σ is separately perturbed to determine an
approximate gradient in the acceptance rate for that parameter. The
σ ’s are then jointly modified by a small increment in the direction of
this gradient. This is done for each of the parallel chains. Proposals
to swap parameter values between chains are allowed during major
cycles but not within minor cycles.

The annealing of the proposal σ ’s occurs while the MCMC is
homing in on any significant peaks in the target probability distribu-
tion. Concurrent with this, another aspect of the annealing operation
takes place whenever the Markov chain is started from a location
in parameter space that is far from the best-fitting values. This au-
tomatically arises because all the models considered incorporate
an extra additive noise (Gregory 2005b), for reasons discussed in
Section 3, whose probability distribution is Gaussian with zero mean
and with an unknown standard deviation s. When the χ 2 of the fit is
very large, the Bayesian Markov chain automatically inflates s to in-
clude anything in the data that cannot be accounted for by the model
with the current set of parameters and the known measurement er-
rors. This results in a smoothing out of the detailed structure in the
χ 2 surface and, as pointed out by Ford (2006), allows the Markov
chain to explore the large-scale structure in parameter space more
quickly. The chain begins to decrease the value of s as it settles
in near the best-fitting parameters. An example of this is shown in
Fig. 2. In the early stages, s is inflated to around 38 m s−1 and then
decays to a value of ≈4 m s−1 over the first 9000 iterations. This
is similar to simulated annealing, but does not require choosing a
cooling scheme.

Although the first-stage CS achieves the desired joint acceptance
rate, it often happens that a subset of the proposal σ ’s are too small
leading to an excessive autocorrelation in the MCMC iterations
for these parameters. Part of the second-stage CS corrects for this.

30 000 60 000 90 000

200

150

100

50

Iteration chain 1.

L
o

g
1

0
P

ri
o

r
L

ik
e

30000 60000 90000

5

10

15

20

25

30

35

Iteration

s
m
s

1

Figure 2. The upper panel is a plot of the Log10[Prior × Likelihood] versus
MCMC iteration. The lower panel is a similar plot for the extra-noise term
s. Initially s is inflated and then rapidly decays to a much lower level as the
best-fitting parameter values are approached.

The goal of the second stage is to achieve a set of proposal σ ’s
that equalizes the MCMC acceptance rates when new parameter
values are proposed separately and achieves the desired acceptance
rate when they are proposed jointly. Details of the second-stage CS
were given in Gregory (2007b).

The first stage is run only once at the beginning, but the second
stage can be executed repeatedly, whenever a significantly improved
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parameter solution emerges. Frequently, the burn-in period occurs
within the span of the first-stage CS, i.e. the significant peaks in the
joint parameter probability distribution are found, and the second
stage improves the choice of proposal σ ’s based on the highest
probability parameter set. Occasionally, a new higher (by a user-
specified threshold) target probability parameter set emerges after
the first two stages of the CS are completed. The CS has the ability
to detect this and automatically reactivate the second stage. In this
sense, the CS is adaptive. If this happens, the iteration corresponding
to the end of the CS is reset. The useful MCMC simulation data is
obtained after the CS are switched off.

The adaptive capability of the CS can be appreciated from an
examination of Fig. 1. The upper left portion of the figure depicts the
MCMC iterations from the eight parallel chains, each corresponding
to a different tempering level β as indicated on the extreme left.
One of the outputs obtained from each chain at every iteration
(shown at the far right) is the log prior + log likelihood. This
information is continuously fed to the CS which constantly updates
the most probable parameter combination regardless of which chain
the parameter set occurred in. This is passed to the ‘Peak parameter
set’ block of the CS. Its job is to decide if a significantly more
probable parameter set has emerged since the last execution of the
second-stage CS. If so, the second-stage CS is rerun using the new
more probable parameter set which is the basic adaptive feature of
the CS.

The CS also includes genetic algorithm block which is shown in
the bottom right of Fig. 1. The current parameter set can be treated
as a set of genes. In the present version, one gene consists of the
parameter set that specifies one orbit. On this basis, a three-planet
model has three genes. At any iteration, there exists within the CS
the most probable parameter set to date Xmax and the most probable
parameter set from the eight chains for the most recent iteration X cur.
At regular intervals (user specified) each gene from Xcur is swapped
for the corresponding gene in Xmax. If either substitution leads to a
higher probability it is retained and Xmax updated. The effectiveness
of this operation can be tested by comparing the number of times
the gene crossover operation gives rise to a new value of Xmax

compared to the number of new Xmax arising from the normal PT
MCMC iterations. The gene crossover operations prove to be very
effective and give rise to new Xmax values ≈3 times more often
than MCMC operations. Of course, most of these swaps lead to
very minor changes in probability but occasionally big jumps are
created.

Gene swaps from Xcur2, the parameters of the second most prob-
able current chain, to Xmax are also utilized. This gives rise to new
values of Xmax at a rate approximately half that of swaps from Xcur

to Xmax. Crossover operations at a random point in the entire pa-
rameter set did not prove as effective except in the single planet
case where there is only one gene. Further experimentation with
this concept is ongoing.

3 DATA A N D A NA LY S I S

Our initial analysis was based on data obtained at the Lick Observa-
tory and spans a period of 21.6 yr. The data are listed in Tables 1 and
2. In addition to the observation time, RV and velocity error (�RV),
the detector dewar number used is also included. We originally anal-
ysed the data ignoring possible residual velocity offsets associated
with dewar changes (Case A). To investigate how robust the results
were, we subsequently repeated the analysis incorporating the dewar
velocity offsets as additional unknown parameters (Case B). In Case

A, the data from all six dewars are used. For Case B, we excluded de-
war 1 because with only a single measurement the analysis is unable
to separate the offset from the model velocity contribution which re-
duces the time base by 235 d. Results for the two cases follow in sub-
sequent sections labelled accordingly. In Section 6, we extend the
analysis to include the Wittenmyer et al. (2009) data from the 9.2-m
Hobby-Eberly Telescope (HET) and 2.7-m Harlam J. Smith (HJS)
telescopes of the McDonald Observatory. In the rest of this section,
we describe the model fitting equations and the selection of pri-
ors for the model parameters. We also characterize a noise-induced
eccentricity bias that leads to a second choice for an eccentricity
prior.

We have investigated the 47 UMa data using models ranging from
a single planet to five planets. For a one-planet model the predicted
RV is given by

v(ti) = V + K{cos[θ (ti + χP ) + ω] + e cos ω}, (2)

and involves the six unknown parameters:

V = a constant velocity,
K = velocity semi-amplitude,
P = the orbital period,
e = the orbital eccentricity,
ω = the longitude of periastron,
χ = the fraction of an orbit, prior to the start of data taking,

that periastron occurred at. Thus, χP = the number of days prior to
ti = 0 that the star was at periastron, for an orbital period of P days.

θ (ti + χP ) = the true anomaly, the angle of the star in its orbit
relative to periastron at time ti.

We utilize this form of the equation because we obtain the depen-
dence of θ on ti by solving the conservation of angular momentum
equation

dθ

dt
− 2π[1 + e cos θ (ti + χ P )]2

P (1 − e2)3/2
= 0. (3)

Our algorithm is implemented in MATHEMATICA and it proves faster
for MATHEMATICA to solve this differential equation than solve the
equations relating the true anomaly to the mean anomaly via the
eccentric anomaly. MATHEMATICA generates an accurate interpolat-
ing function between t and θ so the differential equation does not
need to be solved separately for each ti. Evaluating the interpolating
function for each ti is very fast compared to solving the differential
equation, so the algorithm should be able to handle much larger
samples of RV data than those currently available without a signif-
icant increase in computational time. For example, an increase in
the data by a factor of 6.5 resulted in only an 18 per cent increase
in execution time.

As described in more detail in Gregory (2007a), we employed a
reparameterization of χ and ω to improve the MCMC convergence
speed motivated by the work of Ford (2006). The two new param-
eters are ψ = 2πχ + ω and φ = 2 πχ − ω. Parameter ψ is well
determined for all eccentricities. Although φ is not well determined
for low eccentricities, it is at least orthogonal to the ψ parameter.
We use a uniform prior for ψ in the interval 0 to 4 π and uniform
prior for φ in the interval −2 π to +2 π. This ensures that a prior
that is wraparound continuous in (χ , ω) maps into a wraparound
continuous distribution in (ψ , φ). The big (ψ , φ) square holds two
copies of the probability patch in (χ , ω) which does not matter.
What matters is that the prior is now wraparound continuous in
(ψ , φ).
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Three planets in 47 UMa 735

Table 1. Radial velocities (RV) for 47 UMa. The �RV column gives the RV uncertainty and the next column gives the detector dewar number.

JD 244 0000 RV �RV Dewar JD 244 0000 RV �RV Dewar JD 244 0000 RV �RV Dewar
(m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1)

6959.7372 −40.70 14.00 1 11607.9163 −17.77 4.51 18 12722.8295 −20.88 3.13 24
7194.9122 −33.96 7.49 6 11626.7707 −34.76 6.65 18 12737.7703 −10.01 2.47 24
7223.7982 −18.31 6.14 6 11627.7539 −29.07 5.87 18 12793.7298 1.53 2.41 24
7964.8927 20.40 8.19 6 11628.7275 −34.86 5.71 18 12794.7134 −5.06 2.20 24
8017.7302 −8.18 10.57 6 11629.8320 −32.06 4.48 18 12834.6981 21.08 2.83 24
8374.7707 −20.25 9.37 6 11700.6937 −2.83 4.80 18 12991.0537 57.90 3.94 24
8647.8971 62.95 11.41 8 11861.0498 36.20 5.53 18 12992.0732 55.57 4.69 24
8648.9100 51.93 11.02 8 11874.0684 39.39 5.34 18 13009.0525 53.57 2.70 24
8670.8777 74.56 11.45 8 11881.0443 32.79 4.41 18 13009.9546 51.65 2.88 24
8745.6907 71.89 8.76 8 11895.0663 33.89 4.28 18 13018.9971 55.32 4.48 24
8992.0612 23.42 11.21 8 11906.0148 34.69 3.91 18 13020.9531 39.96 5.42 24
9067.7708 4.86 7.00 8 11907.0112 37.74 4.24 18 13022.0027 46.17 5.15 24
9096.7339 −6.19 6.79 8 11909.0420 39.07 3.76 18 13044.9198 58.89 3.33 24
9122.6909 −27.90 7.91 8 11910.9537 36.96 4.13 18 13068.8447 54.81 5.38 24
9172.6855 −18.68 10.55 8 11914.0674 34.35 5.17 18 13069.8323 48.36 3.34 24
9349.9122 −32.93 9.52 8 11915.0473 41.14 3.72 18 13072.8875 45.63 2.93 24
9374.9638 −29.14 8.67 8 11916.0335 40.99 3.47 18 13078.8069 52.75 3.30 24
9411.8387 −16.88 12.81 8 11939.9703 42.47 4.72 18 13079.8275 52.69 3.18 24
9481.7197 −33.01 13.40 8 11946.9598 42.21 4.19 18 13080.7919 52.88 3.27 24
9767.9184 64.68 5.34 39 11969.9024 48.36 4.29 18 13081.8171 48.72 2.99 24
9768.9072 62.32 4.79 39 11971.8934 52.56 4.80 18 13100.8148 53.34 3.83 24
9802.7911 63.99 3.61 39 11998.7785 49.07 3.81 18 13107.7773 35.01 4.43 24
10058.0797 32.21 3.18 39 11999.8203 48.13 3.98 18 13119.7426 50.57 4.24 24
10068.9773 36.13 4.01 39 12000.8587 50.97 4.16 18 13120.6914 42.03 2.83 24
10072.0117 38.76 4.10 39 12028.7386 60.65 4.39 18 13131.6826 51.29 4.13 24
10088.9932 23.38 3.54 39 12033.7461 49.37 4.93 18 13132.7334 38.98 5.04 24
10089.9473 26.18 3.19 39 12040.7593 47.52 3.54 18 13147.6943 44.95 4.94 24
10091.9004 18.37 4.23 39 12041.7192 49.30 3.37 18 13155.7006 38.98 2.92 24
10120.9179 17.53 3.91 39 12042.6957 45.95 3.88 18 13156.7062 40.23 2.77 24
10124.9042 23.41 3.69 39 12071.7291 53.86 9.39 18 13157.6869 43.30 2.98 24
10125.8234 18.49 3.61 39 12073.7217 44.45 4.61 18 13339.0682 9.72 3.31 24
10127.8979 13.98 3.77 39 12101.6865 59.74 6.62 18 13363.0139 2.22 4.52 24
10144.8770 13.75 4.67 39 12103.6875 41.81 5.71 18 13363.9655 −9.51 4.21 24
10150.7964 12.07 3.89 39 12104.6855 47.90 5.78 18 13383.9778 −11.43 9.04 24
10172.8289 4.69 4.13 39 12105.6836 41.69 5.71 18 13385.0057 −23.57 4.17 24
10173.7627 9.36 5.29 39 12216.0355 27.62 4.56 18 13385.9946 −25.20 3.94 24
10181.7425 −2.47 3.18 39 12222.0432 28.69 4.35 18 13388.0012 −19.02 10.53 24
10187.7390 7.94 4.22 39 12278.0718 −6.78 4.79 18 13389.9276 −32.39 4.48 24
10199.7291 5.49 3.62 39 12279.0680 −2.81 4.54 18 13390.9468 −18.25 4.75 24
10203.7330 1.63 4.23 39 12283.0395 2.35 7.53 18 13391.9987 −30.29 4.56 24
10214.7308 −2.09 3.54 39 12286.0614 −4.09 3.53 18 13392.9238 −31.99 4.95 24
10422.0176 −32.32 4.05 39 12288.0176 −3.07 4.86 18 13402.9585 −13.79 4.74 24
10438.0010 −23.92 4.30 39 12306.9303 −20.54 6.38 18 13403.9527 −23.51 4.68 24
10442.0273 −26.34 3.84 39 12314.9275 −15.06 3.57 18 13404.9472 −24.04 5.42 24
10502.8535 −15.99 3.86 39 12315.9273 −12.71 2.72 18 13436.7878 −24.91 5.44 24
10504.8594 −19.78 4.24 39 12316.9996 −0.12 6.13 18 13437.8865 −40.32 5.46 24
10536.8441 −3.96 4.58 39 12348.8617 −22.34 4.03 18 13438.8413 −31.99 3.91 24
10537.8426 −6.81 3.81 39 12375.7996 −26.80 3.35 24 13439.8543 −36.26 4.13 24
10563.6734 −0.73 3.76 39 12376.7234 −28.65 3.71 24 13440.7724 −32.85 5.39 24
10579.6952 11.11 3.55 39 12380.7568 −28.60 3.90 18 13441.8656 −34.10 5.38 24
10610.7188 12.05 3.34 39 12388.7530 −34.84 3.12 24 13460.8047 −39.69 4.47 24
10793.9570 58.79 3.97 39 12389.7036 −43.22 3.76 24 13475.7043 −39.74 4.67 24
10795.0391 62.55 4.07 39 12577.0504 −37.38 3.58 24 13476.7068 −39.51 4.68 24
10978.6848 55.48 4.51 18 12599.0475 −33.96 2.53 24 13477.7253 −38.11 4.41 24
11131.0654 37.48 6.35 18 12609.0665 −38.85 3.56 24 13478.7598 −43.63 4.14 24
11175.0273 21.32 7.24 18 12631.9926 −26.01 3.61 24 13479.7748 −47.47 4.21 24
11242.8418 1.34 4.82 18 12657.0184 −41.11 2.29 24 13511.7132 −53.62 4.11 24
11303.7119 −25.20 4.20 18 12687.8597 −26.21 3.48 24 13512.6881 −40.62 4.35 24
11508.0703 −36.52 8.34 18 12688.9015 −34.23 5.04 24 13744.0283 −38.93 4.31 24
11536.0640 −43.83 4.75 18 12705.8382 −25.21 2.74 24 13744.9815 −40.34 4.30 24
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736 P. C. Gregory and D. A. Fischer

Table 2. Radial velocities (RV) for 47 UMa. The �RV column gives the RV uncertainty and the next column gives the detector dewar number.

JD 244 0000 RV �RV Dewar JD 244 0000 RV �RV Dewar JD 244 0000 RV �RV Dewar
(m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1)

13753.0361 −53.52 2.95 24 14135.8630 24.39 2.32 24 14598.7489 −40.52 3.10 24
13755.8982 −41.94 5.04 24 14165.8471 30.47 3.34 24 14622.7505 −41.29 2.42 24
13773.8466 −51.29 4.91 24 14196.8162 35.39 3.14 24 14623.7115 −34.55 2.52 24
13866.7278 −21.49 4.38 24 14219.7662 24.68 3.08 24 14784.0515 −31.13 5.10 24
13867.7226 −27.25 4.67 24 14220.7881 33.23 3.26 24 14785.0826 −34.05 4.85 24
13868.7523 −25.55 4.56 24 14253.6937 27.72 2.73 24 14845.0201 −30.72 1.74 24
13869.7295 −13.48 4.15 24 14254.7002 24.49 2.65 24 14847.9355 −26.93 3.42 24
14074.0693 34.48 3.23 24 14427.0782 −6.25 4.40 24 14848.9727 −30.86 2.74 24
14099.0854 40.26 3.15 24 14450.0617 −10.65 3.41 24 14849.9710 −27.88 3.09 24
14100.0667 32.10 3.21 24 14462.0257 −16.81 2.42 24 14850.9698 −31.85 3.06 24
14102.0466 36.94 3.38 24 14547.9127 −27.51 3.24 24 14863.9813 −27.92 4.26 24
14104.0288 36.91 4.44 24 14574.8034 −52.51 1.79 24 14864.9193 −29.72 5.10 24
14133.9656 32.61 4.66 24 14578.8416 −41.13 2.11 24 14865.9624 −19.55 5.54 24
14134.9264 25.80 2.71 24

Table 3. Prior parameter probability distributions.

Parameter Prior Lower bound Upper bound

Orbital frequency p(ln f1, ln f2, . . . ln fn|Mn, I ) = n!
[ln(fH /fL)]n 1/1.5 (d) 1/1000 (yr)

(n = number of planets)

Velocity Ki Modified Jeffreysa 0 (K0 = 1) Kmax

(
Pmin
Pi

)1/3
1√

1−e2
i

(m s−1)
(K+K0)−1

ln

[
1+ Kmax

K0

(
Pmin
Pi

)1/3 1√
1−e2

i

] Kmax = 2129

V (m s−1) Uniform −Kmax Kmax

ei Eccentricity a) Uniform 0 1
b) Ecc. noise bias correction filter 0 0.99

ωi Longitude of Uniform 0 2 π

periastron

s Extra noise (m s−1) (s+s0)−1

ln
(

1+ smax
s0

) 0 (s0 = 1) Kmax

aSince the prior lower limits for K and s include zero, we used a modified Jeffreys prior of the form

p(X|M, I ) = 1

X + X0

1

ln
(

1 + Xmax
X0

) (4)

For X � X0, p(X|M , I ) behaves like a uniform prior and for X � X0 it behaves like a Jeffreys prior. The
ln(1 + Xmax

X0
) term in the denominator ensures that the prior is normalized in the interval 0 to Xmax.

In a Bayesian analysis, we need to specify a suitable prior for each
parameter. These are tabulated in Table 3. For the current problem,
the prior given in equation (1) is the product of the individual
parameter priors. Detailed arguments for the choice of each prior
were given in Gregory (2007a).

Gregory (2007a) discussed two different strategies to search
the orbital frequency parameter space for a multiplanet model:
(i) an upper bound on f 1 ≤ f 2 ≤ . . . ≤ fn is utilized to main-
tain the identity of the frequencies, and (ii) all fi are allowed
to roam over the entire frequency range and the parameters re-
labelled afterwards. Case (ii) was found to be significantly more
successful at converging on the highest posterior probability peak
in fewer iterations during repeated blind frequency searches. In ad-
dition, case (ii) more easily permits the identification of two plan-
ets in 1:1 resonant orbits. We adopted approach (ii) in the current
analysis.

All of the models considered in this paper incorporate an extra-
noise parameter, s, that can allow for any additional noise beyond

the known measurement uncertainties.2 We assume the noise vari-
ance is finite and adopt a Gaussian distribution with a variance s2.
Thus, the combination of the known errors and extra noise has a
Gaussian distribution with variance = σ 2

i + s2, where σ i is the
standard deviation of the known noise for ith data point. For exam-
ple, suppose that the star actually has two planets and the model
assumes only one is present. In regard to the single-planet model,
the velocity variations induced by the unknown second planet acts
like an additional unknown noise term. Other factors like star spots
and chromospheric activity can also contribute to this extra veloc-
ity noise term which is often referred to as stellar jitter. Several
researchers have attempted to estimate stellar jitter for individual

2In the absence of detailed knowledge of the sampling distribution for the
extra noise, we pick a Gaussian because for any given finite noise variance
it is the distribution with the largest uncertainty as measured by the en-
tropy, i.e. the maximum entropy distribution (Jaynes 1957; Gregory 2005a,
section 8.7.4).
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Figure 3. The upper panel shows MCMC period parameter versus iteration
for a one-planet model fit to residuals (with randomized velocity values)
from a three-planet model fit. The lower panel is the same for the eccentricity
parameter.

stars based on statistical correlations with observables (e.g. Saar &
Donahue 1997; Saar, Butler & Marcy 1998; Wright 2005). In gen-
eral, nature is more complicated than our model and known noise
terms. Marginalizing s has the desirable effect of treating anything
in the data that cannot be explained by the model and known mea-
surement errors as noise, leading to conservative estimates of orbital
parameters. See sections 9.2.3 and 9.2.4 of Gregory (2005a) for a
tutorial demonstration of this point. If there is no extra noise then
the posterior probability distribution for s will peak at s = 0. The
upper limit on s was set equal to Kmax. We employed a modified
Jeffrey’s prior for s with a knee, s0 = 1 m s−1.

We used two different choices of priors for eccentricity, a uniform
prior and eccentricity noise bias correction filter that is described in
the next section.

3.1 Eccentricity bias

When searching for low-amplitude orbits, any true signal has to
compete against spurious orbital signals arising from noise. It was
observed that the majority of the probability peaks detected in low
signal-to-noise ratio residuals exhibited high eccentricities. The up-
per panel in Fig. 3 shows MCMC period parameter versus iteration
for a one-planet model fit to residuals (with randomized velocity
values) from a three-planet model fit. The lower panel is the same
for the eccentricity parameter. The HMCMC finds many probability
peaks spread over the full period range. There is no significance to
the concentration of periods around 100 and 1500 d as the location
of period concentrations changes markedly in other realizations of
the velocity randomization. The concentration of eccentricity to-
wards higher values is a regular feature. The corresponding plot
of eccentricity shows a preponderance of high-eccentricity values.
Fig. 4 shows a phase plot for one of these high-eccentricity orbits
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Figure 4. A typical high-eccentricity orbit (in this case e = 0.93) found
from an MCMC fit of a one-planet model to residuals with randomized
velocities. The upper panel shows the raw data points plotted versus two
cycles of period phase and the lower panel shows binned averages.

which provides further insight into why high-eccentricities orbits
are favoured. It is clear that for most of the orbit (e = 0.93) the
predicted shape is relatively flat providing an agreeable fit to points
that fluctuate in an uncorrelated noise-like fashion about some mean.
Only for a small portion of the orbit does the noise have to conspire
to give rise to the rapidly changing orbital velocity peak. To mimic
a circular velocity orbit, the noise points would have to appear cor-
related over a larger fraction of the orbit. For this reason, it is more
likely that noise will give rise to spurious highly eccentric orbits
than low-eccentricity orbits.

To explore this effect more quantitatively, we analysed a large
number of real data sets where the observing times were kept fixed
but the velocity residual data was randomly reorganized. In each
trial, we fit a one-planet orbit model which explored eccentricities
in the range 0 to 0.99 using the one-planet Bayesian Kepler pe-
riodogram. In the first instance the data used was the five-planet
fit residuals for 55 Cancri. The data for 55 Cancri were a mixture
of Lick and Keck Observatory data. When the residual velocities
were randomized, the error associated with a particular velocity
was shifted with its velocity because the quoted errors were very
different for the two observatories. The red curve in the left-hand
panel of Fig. 5 is the average of five different 55 Cancri random-
ized residual trials. The green curve is the average of four trials of
randomized residuals from a two-planet 47 UMa model fit, and the
blue curve the average of eight trials of randomized residuals from
a three-planet 47 UMa model fit. All three curves are very similar
and indicate a strong noise-induced eccentricity bias towards high
eccentricities.

To increase the chance of detecting and defining the parameters
of low- and moderate-eccentricity orbits, we have constructed an
eccentricity noise bias correction filter from the reciprocal of the
average of the three eccentricity bias curves just mentioned. The
lower panel of Fig. 5 shows the best-fitting polynomial (dashed
curve) to the reciprocal of the mean of the three eccentricity bias
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Figure 5. The upper panel shows the marginal probability densities for the
eccentricity parameter obtained from MCMC one-planet fits to randomized
residuals from 47 UMa two-planet model fits (green), three-planet (blue)
and 55 Cancri five-planet (red) fits. The green curve is the average of four
trials, the blue curve is the average of eight trials and the red curve is the
average of five trials. The lower panel shows the best-fitting polynomial
(dashed curve) to the reciprocal of the mean of the three eccentricity bias
curves (red points). After normalization, this yields the eccentricity noise
bias correction filter (solid black curve).

curves (red points). After normalizing the best-fitting polynomial
so that the integral is equal to unity over the search range (e = 0 to
0.99), we obtain the eccentricity noise bias correction filter (solid
black curve). This becomes our second option for a choice of prior
for eccentricity. The probability density function for this filter (solid
black curve) is given by

pdf(e) = 1.3889 − 1.5212e2 + 0.53944e3

−1.6605(e − 0.24821)8. (5)

On the basis of our understanding of the mechanism underlying
the noise-induced eccentricity bias, we expect the eccentricity prior
filter to be generally applicable to searches for low-amplitude orbital
signals in other precision RV data sets.

An obvious further question that remains to be explored is to what
extent the observed distribution of published orbital eccentricities
is influenced by such a bias.

4 R ESULTS (CASE A )

For Case A, the dewar velocity offsets with respect to our reference
dewar 24 are assumed to be zero.

4.1 Parameter estimation

In this section, we present the results of an exploration of the 47 UMa
data with the multiplanet HMCMC Kepler periodogram starting
with a one-planet model and extending to a five-planet model. The
data for 47UMa are shown in Fig. 6, panel (a). Panel (b) shows our
final best three-planet model fit compared to the data, and panel (c)
shows the residuals.
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Figure 6. Panel (a) shows the Lick Observatory observations of 47 UMa.
Panel (b) shows the final Case A best three-planet model fit compared to the
data and panel (c) shows the residuals.

The one-planet model turned up the 1080 d period which is
clearly visible by eye in the raw data. We do not show any results
for that model except to compute the marginal likelihood for model-
selection purposes which is presented in Section 4.2.

Fig. 7 shows a plot of Log10[Prior × Likelihood] (upper) and
period (lower) versus HMCMC iteration (every 200th point) for
a two-planet model. The starting periods of 4.7 and 1080 d are
shown on the left-hand side of the lower plot at a negative iteration
number. The burn-in period of approximately 70 000 iterations is
clearly discernable.

Fig. 8 shows a plot of eccentricity versus period for a sample of
the HMCMC parameter samples for the two-planet model. Since
the duration of the data set is only 7906 d, it is not surprising that
uncertainties on the parameters of the second orbit are very large.
On the basis of a two-planet model, the parameters of the second
planet are P 2 = 7952+388

−348 d and e2 = 0.43+0.05
−0.08. It is clear that e2 has

a low eccentricty tail which reaches zero for a value of P 2 ≈ 9500 d.
This agrees with the value of P 2 = 9660 d found by Wittenmyer
et al. (2009) in their best-fitting two-planet model where they fixed
e2 = 0.005, the values proposed by Fischer et al. (2002).

Fig. 9 shows plots of the three period parameters versus HMCMC
iteration for a three-planet model3 with Log10[Prior × Likelihood]

3The HMCMC runs shown here used the eccentricity prior based on the
eccentricity noise bias correction filter discussed in Section 3.1. The results
obtained using a uniform eccentricity prior are qualitatively the same.
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Figure 7. Plot of Log10[Prior × Likelihood] (upper) and period (lower)
versus MCMC iteration for a two-planet model.
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Figure 8. A plot of eccentricity versus period for the two-planet fit
(Case A).

plotted above. A new period of 2300 d has emerged and the longest
period has shifted from 7952 to ∼10 000 d, and this feature is con-
siderably broader. The starting periods of 89, 1080 and 7200 d are
shown on the left at a negative iteration number. Previous experi-
ence with the HMCMC periodogram (Gregory 2009) indicates that
it is capable of finding a global peak in a blind search of param-
eter space for a three-planet model. Fig. 10 shows the results of a
blind search starting from three very different periods of 5, 20 and
100 d. The algorithm readily finds the same set of final periods in
both cases.

Fig. 11 shows a plot of eccentricity versus period for a sample of
the HMCMC parameter samples for the three-planet model. There
is a large uncertainty in the eccentricity of the two largest periods
which extends down to very low eccentricities.

Fig. 12 shows the marginal probability distributions for the
periods, eccentricities and K values for the three orbits found. The
10th plot is s, the σ of the added white noise term. A summary
of the three-planet model parameters and their uncertainties are
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Figure 9. Plot of Log10[Prior × Likelihood] (upper) and period (lower)
versus HMCMC iteration for a three-planet fit.
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Figure 10. Plot of period versus HMCMC iteration for a three-planet fit. In
this case the start periods were 5, 20, 100 d.
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Figure 11. A plot of eccentricity versus period for the three-planet HMCMC
(Case A).

given in Table 4. The parameter value listed is the median of the
marginal probability distribution for the parameter in question, and
the error bars identify the boundaries of the 68.3 per cent credible
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Figure 12. A plot of parameter marginal distributions for a three-planet HMCMC (Case A).

Table 4. Three-planet model parameter estimates (Case A).

Parameter Planet 1 Planet 2 Planet 3

P (d) 1079.6+2.0
−1.8 2319+63

−76 13346+4030
−4940

(1079.2) (2278) (21342)
mode = 9991

K (m s−1) 50.1+1.3
−1.2 9.1+1.0

−1.0 13.7+1.3
−1.4

(50.3) (9.6) (13.2)

e 0.014+.008
−.014 0.33+.2

−.17 0.29+.21
−.21

(0.012) (0.48) (0.44)

ω (◦) 350+84
−69 222+21

−21 162+40
−50

(345) (222) (111)

a (au) 2.10+.02
−.02 3.50+.07

−.08 11.3+2.2
−2.8

(2.10) (3.46) (15.4)

M sin i (MJ) 2.63+.09
−.07 0.575+.052

−.056 1.58+.17
−.18

(2.64) (0.566) (1.69)

Periastron 11967+252
−202 11914.6+166

−131 12655+5144
−4543

passage (11 943) (11 930) (12 047)
(JD 2440 000)

region.4 The value immediately below in parenthesis is the
maximum a posteriori (MAP) value, the value at the maximum
of the joint posterior probability distribution. It is not uncommon
for the MAP value to fall close to the borders of the credible region.
In one case, the period of the third planet, the MAP value falls
outside the 68.3 per cent credible region which is one reason why
we prefer to quote median values as well. The marginal for P3 is so
asymmetric we also give the mode which is 9991 d. The semima-
jor axis and M sin i values are derived from the model parameters
assuming a stellar mass of 1.063−0.022

+0.029 M� (Takeda et al. 2007).
The quoted errors on the semimajor axis and M sin i include the
uncertainty in the stellar mass.

The Gelman & Rubin (1992) statistic is typically used to test
for convergence of the parameter distributions. In PT MCMC, new
widely separated parameter values are passed up the line to the
β = 1 simulation and are occasionally accepted. Roughly every
100 iterations the β = 1 simulation accepts a swap proposal from

4In practice, the probability density for any parameter is represented by a
finite list of values pi representing the probability in discrete intervals X. A
simple way to compute the 68.3 per cent credible region, in the case of a
marginal with a single peak, is to sort the pi values in descending order and
then sum the values until they approximate 68 per cent, keeping track of the
upper and lower boundaries of this region as the summation proceeds.
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Figure 13. A plot of eccentricity versus period for the four-planet HMCMC
(Case A).
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Figure 14. A plot of eccentricity versus period for a three-planet HMCMC
fit of the three-planet simulation.

its neighbouring simulation. The final β = 1 simulation is thus an
average of a very large number of independent β = 1 simulations.
What we have done is divide the β = 1 iterations into 12 equal time
intervals and inter-compared the 12 different essentially indepen-
dent average distributions for each parameter using a Gelman-Rubin
test. For all of the three-planet model parameters the Gelman-Rubin
statistic was ≤ 1.07.

Fig. 13 shows a plot of eccentricity versus period for a four-planet
model. A well-defined fourth period of 370.8+2.4

−2.0 d and eccentricity
of 0.57+0.22

−0.15 was detected in repeated HMCMC trials. The amplitude
was K = 5.0+1.0

−1.1 m s−1. The significance of this period is discussed
further in Sections 4.2 and 6.

Finally, a five-planet model was also attempted. In addition to
the four periods found by the four-planet model, a variety of prob-
ability peaks at other periods were observed but none were deemed
significant.

4.1.1 Simulation test

As a test of our overall methodology, we simulated data for a three-
planet model based on the MAP values from the fit to the real
data for the Case A analysis. The data were sampled at the real
observation times and had added independent Gaussian noise with
a σ =

√
(ei)2 + s2, where ei is the quoted measurement error

for the ith point and s, the extra-noise parameter, was 4.4 m s−1.
Fig. 14 shows a plot of eccentricity versus period for a sample
of the HMCMC parameter samples for the three-planet model fit
to the simulated data set. Again, the starting period values for the
HMCMC were 5, 20 and 100 d, a long way from the expected values.
Comparison with Fig. 11 indicates that the results for the actual data
and three-planet simulation are qualitatively very similar.

To test whether the fourth period in the Lick data (period =
370.82.4

−2.0 d) is a window function artefact of the sampling times,
we analysed two three-planet simulations with a four-planet model.
In both cases the HMCMC found the three periods expected from
the simulation. No well-defined fourth period was found and the
peak amplitude was K = 3 m s−1 compared with a K = 5 m s−1

for the real data set. This suggests that the fourth period is not
simply a window function artefact. However, later HMCMC fits
of a combination of Lick and Mcdonald Observatory data did not
confirm this period.

4.2 Model selection

One of the great strengths of Bayesian analysis is the built-in Oc-
cam’s razor. More complicated models contain larger numbers of
parameters and thus incur a larger Occam penalty, which is au-
tomatically incorporated in a Bayesian model-selection analysis
in a quantitative fashion (see for example Gregory 2005a, p. 45).
The analysis yields the relative probability of each of the models
explored.

To compare the posterior probabilities of the ith planet model to
the one-planet models, we need to evaluate the odds ratio, O i1 =
p(Mi | D, I )/p(M1 | D, I ), the ratio of the posterior probability of
model Mi to model M1. Application of Bayes’s theorem leads to

Oi2 = p(Mi |I )

p(M1|I )

p(D|Mi, I )

p(D|M1, I )
≡ p(Mi |I )

p(M1|I )
Bi2 (6)

where the first factor is the prior odds ratio and the second fac-
tor is called the Bayes factor, B i2. The Bayes factor is the ratio
of the marginal (global) likelihoods of the models. The marginal
likelihood for model Mi is given by

p(D|Mi, I ) =
∫

dXp(X|Mi, I ) × p(D|X, Mi, I ). (7)

Thus, Bayesian model selection relies on the ratio of marginal like-
lihoods, not maximum likelihoods. The marginal likelihood is the
weighted average of the conditional likelihood, weighted by the
prior probability distribution of the model parameters and s. This
procedure is referred to as marginalization.

The marginal likelihood can be expressed as the product of the
maximum-likelihood and Occam penalty (see Gregory & Loredo
1992 and Gregory 2005a, p. 48). The Bayes factor will favour the
more complicated model only if the maximum-likelihood ratio is
large enough to overcome this penalty. In the simple case of a sin-
gle parameter with a uniform prior of width �X, and a centrally
peaked likelihood function with characteristic width δX, the Oc-
cam factor is ≈δX/�X. If the data is useful then generally δX

� �X. For a model with m parameters, each parameter will con-
tribute a term to the overall Occam penalty. The Occam penalty
depends not only on the number of parameters but also on the prior
range of each parameter (prior to the current data set, D), as sym-
bolized in this simplified discussion by �X. If two models have
some parameters in common then the prior ranges for these param-
eters will cancel in the calculation of the Bayes factor. To make
good use of Bayesian model selection, we need to fully specify
priors that are independent of the current data D. The sensitivity
of the marginal likelihood to the prior range depends on the shape
of the prior and is much greater for a uniform prior than a Jeffreys
prior (e.g. see Gregory 2005a, p. 61). In most instances we are not
particularly interested in the Occam factor itself, but only in the
relative probabilities of the competing models as expressed by
the Bayes factors. Because the Occam factor arises automatically
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742 P. C. Gregory and D. A. Fischer

in the marginalization procedure, its effect will be present in any
model-selection calculation (Note that no Occam factors arise in pa-
rameter estimation problems. Parameter estimation can be viewed
as model selection where the competing models have the same
complexity so the Occam penalties are identical and cancel out.)

The MCMC algorithm produces samples which are in proportion
to the posterior probability distribution which is fine for parameter
estimation but one needs the proportionality constant for estimating
the model marginal likelihood. Clyde (2007) recently reviewed the
state of techniques for model selection from a statistics perspective
and Ford & Gregory (2007) have evaluated the performance of a
variety of marginal-likelihood estimators in the extrasolar planet
context.

Gregory (2007a), in the analysis of velocity data for HD 11964,
compared the results from three marginal-likelihood estimators: (a)
PT, (b) ratio estimator and (c) restricted MC (RMC). MC integration
can be very inefficient in exploring the whole prior parameter range
because it randomly samples the whole volume. The fraction of the
prior volume of parameter space containing significant probability
rapidly declines as the number of dimensions increases. For exam-
ple, if the fractional volume with significant probability is 0.1 in one
dimension then in 17 dimensions the fraction might be of the order
of 10−17. In RMC integration, this should be much less of a problem
because the volume of parameter space sampled is restricted to a
region delineated by the outer borders of the marginal distributions
of the parameters. For HD 11964, the three methods were compared
for one-, two- and three-planet models. For the one-planet model, all
three methods agreed within 15 per cent. For the two-planet model,
the three methods agreed within 28 per cent with the RMC giving
the lowest estimate. For the three-planet model, the estimates were
very different. The RMC estimate was 16 times smaller than the PT
estimate and the ratio estimator was 18 times larger than the PT es-
timate. The PT method is very compute intensive. For a three-planet
model, 40 tempering levels and 107 iterations were required. The
problem becomes more difficult for larger numbers of planets. Thus
for three or more planet models, accurately computing the marginal
likelihood is a very big challenge.

In this work, we consider only RMC marginal-likelihood es-
timates. This method is expected to underestimate the marginal
likelihood in higher dimensions, and this underestimate is expected
to become worse the larger the number of model parameters, i.e.
increasing number of planets. When we conclude, as we do, that the
RMC computed odds in favour of the three-planet model compared

to the two-planet model is ∼1017, we mean that the true odds is
≥1017.

In earlier work, we defined the outer boundary of parameter space
for RMC integration based on the 99 per cent credible region. One
problem is that if there is a significant contribution to the integral
within say the 30 per cent credible region, the volume in this region
can be such a small fraction of the total that no random sample
lands in that region. In this work, we use a nested version of RMC
integration. Multiple boundaries were constructed based on credible
regions ranging from 30 per cent to ≥ 99 per cent, as needed. We
are then able to compute the contribution to the total RMC integral
from each nested interval and sum these contributions. For example,
for the interval between the 30 and 60 per cent credible regions, we
generate random parameter samples within the 60 per cent region
and reject any sample that falls within the 30 per cent region. Using
the remaining samples, we can compute the contribution to the
RMC integral from that interval.

The left-hand panel of Fig. 15 shows the contributions from the
individual intervals for five repeats of the nested RMC evaluation for
the two-planet model. The right-hand panel shows the summation
of the individual contributions versus the volume of the credible
region. The credible region listed as 9995 per cent is defined as
follows. Let XU99 and XL99 correspond to the upper and lower
boundaries of the 99 per cent credible region, respectively, for any
of the parameters. Similarly, XU95 and XL95 are the upper and lower
boundaries of the 95 per cent credible region for the parameter. Then
XU9995 = XU99 + (XU99 − XU95) and XL9995 = XL99 + (XL99 −
XL95). Similarly, XU9984 = XU99 + (XU99 − XU84).

Table 5 gives the marginal-likelihood estimates, Bayes factors
and false alarm probabilities (FAPs) for zero-, one-, two-, three-
and four-planet models which are designated M0, . . . , M4. The
last two columns list the MAP value of extra-noise parameter, s,
and the RMS residual. For each model the RMC calculation was
repeated five times and the quoted errors give the spread in the
results, not the standard deviation. The Bayes factors that appear in
the third column are all calculated relative to Model 2. Examination
of a plot like the one shown in Fig. 15, but for the four-planet
model, indicates that RMC is probably seriously underestimating
the marginal likelihood. A better method of computing this quantity
is sorely needed.

We can readily convert the Bayes factors to a Bayesian FAP. For
example, in the context of claiming the detection of a three-planet
model the FAP is the probability that there are actually two or less
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Figure 15. Left-hand panel shows the contribution of the individual nested intervals to the RMC marginal likelihood for the two-planet model. The right-hand
panel shows the integral of these contributions versus the parameter volume of the credible region. Note that only the relative values of the units on the vertical
axes of these two plots are meaningful.
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Three planets in 47 UMa 743

Table 5. Marginal-likelihood estimates, Bayes factors and FAPs for (Case A) zero-, one-, two-, three- and four-planet
models which are designated M0, . . . , M4. The last two columns list the MAP value of extra-noise parameter, s, and
the rms residual.

Model Periods Marginal Bayes factor FAP s rms residual
(d) likelihood nominal (m s−1) (m s−1)

M0 2.63 × 10−481 10−127 34.8 35.3
M1 (1080) (7.51 ± 0.07) × 10−394 10−39 10−88 11.2 12.5
M2 (1080, 8000) (4.1 ± 0.5) × 10−355 1.0 10−39 6.1 8.1
M3 (1080, 2300, ∼10000) (4×2

×1/5) × 10−338 1017 10−17 4.4 6.5

M4 (371, 1080, 2300, ∼10000) (4×7
×1/2) × 10−338 1017 0.5 3.7 6.1

planets

FAP =
2∑

i=0

(prob. of i planets). (8)

If we assume a priori (absence of the data) that the prob of one-
planet model = prob. of two-planet model, etc., then probability of
each model is related to the Bayes factors by

p(Mi | D, I ) = Bi2∑Nmod
j=0 Bj2

, (9)

where Nmod is the total number of models considered, and of course
B22 = 1. Given the Bayes factors in Table 5 and substituting into
equation (8) gives

FAP = (B02 + B12 + B22)∑3
j=0 Bj2

≈ 10−17. (10)

For the three-planet model, we obtain a very low FAP ≈10−17. The
Bayesian FAPs for one-, two-, three- and four-planet models are
given in the fourth column of Table 5.

In the context of claiming the detection of a four-planet model,
the FAP is ≈0.5. This is very high and does not justify a claim for the
detection of a fourth planet. The fourth period is also suspiciously
close to 1 yr to be of concern.

5 R ESULTS (CASE B)

For Case B, we incorporated four additional parameters to allow
for the unknown residual velocity offsets of dewars 6, 8, 39 and 18
relative to dewar 24. These are labelled V 6, V 8, V 39 and V 18, where
the subscript denotes the detector dewar. In a Bayesian analysis,
these are treated as additional nuisance parameters which we can
marginalize. Additionally, since they are of interest to the observers
we also provide a summary of each residual offset parameter. In
the RV data processing pipeline, every effort was made to ensure
that the dewar velocity offsets were allowed for, so the residuals are
expected to be small. For the Case B analysis, we have assumed a
Gaussian prior for each Vi centred on zero with a σ = 3 km s−1.

5.1 Parameter estimation

In this section, we redo the analysis of the 47 UMa data with
the multiplanet HMCMC Kepler periodogram starting with a one-
planet model and extending to a four-planet model. The data is same
as shown in Fig. 6, panel (a), with the exception of the first point
corresponding to dewar 1.

Fig. 16 shows a plot of eccentricity versus period for a sample
of the HMCMC parameter samples for the two-planet model for
Case B. The two-planet model again favours a second period in
the range 8100–15 000 d (68 per cent credible region) with a long
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Figure 16. A plot of eccentricity versus period for the two-planet fit
(Case B).
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Figure 17. A plot of eccentricity versus period for the three-planet HMCMC
(Case B).

higher eccentricity tail extending to much longer periods. In Case
B, the time base is 235 d shorter than Case A so the lower eccen-
tricity/lower period end is less well defined, but otherwise there is
general agreement. This model was run twice using different start-
ing periods, but the two-planet HMCMC run did not favour a period
around 2240 d even when the two starting periods used were 1078
and 2240 d, respectively. This is not that surprising given the relative
sizes of the K values for planets 2 and 3 in Table 4.

Fig. 17 shows a plot of eccentricity versus period for a sample
of the HMCMC parameter samples for the three-planet model for
Case B. Again, we see the emergence of a period of ∼2250 d,
and the third longer period appears better defined (compared to
the two-planet model) and extends to much lower eccentricities.
Qualitatively, there is general agreement with the Case A results
shown in Fig. 11. The dewar residual offset velocities were V 6 =
0.07+2.7

−2.6, V 8 = 1.7+3.0
−2.3, V 39 = −3.2+2.5

−2.4 and V 18 = −1.1+2.0
−2.0 m s−1.

The four-planet HMCMC analysis again showed a clear fourth
period of 3721.9

−1.3 with an eccentricity of 0.73 ± 0.14. We did not
compute the marginal likelihood for the four-planet model, but
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744 P. C. Gregory and D. A. Fischer

based on the Case A results the FAP for a four-planet model is
expected to be very high.

5.2 Model selection (Case B)

We repeated the FAP for the three-planet model as described in
Section 4.2 for the Case B analysis which incorporates the dewar
residual offset parameters

FAP = (B02 + B12 + B22)∑3
j=0 Bj2

. (11)

The computed Bayes factors are B02 = 1.6 × 10−141, B12 = 2.0
× 10−28, B22 = 1.0 and B32 = 2.0 × 105. This gives a FAP of 5.0
× 10−6. Even though this is much greater than the value found in
Case A, it still argues strongly for favouring a three-planet model.

6 D ISCUSSION

On the basis of the model-selection results, we can conclude that
there is strong evidence for three planets although the longest period
orbital parameters are still not well defined. The results for the Lick
only analysis do not rule out low-eccentricity orbits for all three
planets. The major difference produced by including the dewar
residual offset parameters was to reduce the FAP for a three-planet
model from ∼10−17 to ∼10−5. A significant part of this reduction
might be a consequence of the reduced span of the data set by
235 d for the Case B analysis.

Our results appear to be entirely consistent with the latest analysis
of Wittenmyer et al. (2009). Their best-fitting two-planet model now
calls for P 2 = 9660 d. They note that to fit a second planet, they
fixed the parameters e2 and ω2 at the values proposed by Fischer
et al. (2002): e2 = 0.005 and ω2 = 127. In our Case A two-planet fit
(Fig. 8), in which all parameters were free, the eccentricity versus
period plot exhibits a low-eccentricity tail which occurs at a period
between 9000 and 10 000 d, directly comparable to their 9660 d
period. The ∼2300 d period in the Lick data only shows up in our
three-planet and higher models. This is probably because the longer
period signal with a K = 13.8 m s−1 dominates over the 2300 d
period signal with a K = 8.0 m s−1 (see Table 6). Wittenmyer et al.
(2009) did not report any results on fitting a three-planet model.

To test this further, we combined the Lick data with the
Wittenmyer et al. (2009) data from the 9.2-m HET and 2.7-m HJS
telescopes of the McDonald Observatory. We subtracted initial off-
set velocities of 23.3 and 25.4 m s−1 based on a comparison of plots
of the HET and HJS data sets to the Lick data. We then included a
free parameter for each telescope to allow for an unknown residual
velocity offset compared with the Lick dewar 24 in the same way
as we had done for the other Lick dewars in Case B.

Fig. 18 shows a plot of eccentricity versus period for our three-
planet HMCMC fit to the combined data set. The three starting
periods used for the HMCMC run were 10, 1078, and 6000 d. The
residual velocity offset parameters for the HET and HJS telescopes
were 1.5+1.0

−1.1 and −0.2 ± 1 m s−1, respectively. It is clear from the
figure that the same three periods appear as before, but with the extra
data the results now favour low-eccentricity orbits for all three peri-
ods. This is a particularly pleasing result as low-eccentricity orbits
are more likely to exhibit long-term stability than high-eccentricity
orbits. The preference for low-eccentricity orbits is more apparent
in the marginal distributions shown in Fig. 19.

Our final orbital parameters are summarized in Table 6 together
with the residual offset velocities and the extra-noise term s. Again,
the parameter value listed is the median of the marginal probability

Table 6. Final three-planet model parameter estimates from the HMCMC
fit of the combined Lick, HET and HJS telescope data set.

Parameter Planet 1 Planet 2 Planet 3

P (d) 1078+2
−2 2391+100

−87 14002+4018
−5095

(1078) (2430) (47 831)
mode = 11251

K (m s−1) 48.4+0.8
−0.9 8.0+1.0

−1.0 13.8+2.2
−2.9

(48.2) (8.3) (13.5)

e 0.032+.014
−.014 0.098+.0.047

−.0.096 0.16+.09
−.16

(0.038) (0.020) (0.67)

ω (◦) 334+23
−23 295+114

−160 110+132
−160

(324) (356) (110)

a (au) 2.100+.02
−.02 3.6+.1

−.1 11.6+2.1
−2.9

(2.10) (3.6) (26.3)

M sin i (MJ) 2.53+.07
−.06 0.540+.066

−.073 1.64+.29
−0.48

(2.53) (0.567) (1.86)

Periastron 11917+63
−76 12441+628

−825 11736+6783
−5051

passage (11888) (12778) (11736)
(JD 244 0000)

V6 (m s−1) 1.1+2.8
−2.9 V8 (m s−1) −0.6+2.6

−2.6
(4.0) (1.0)

V39 (m s−1) −5.0+2.8
−2.7 V18 (m s−1) −5.1+1.7

−1.6
(-0.5) (-4.6)

V HET (m s−1) 1.5+1.0
−1.1 V HJS (m s−1) −0.2+1.0

−1.0
(1.3) (0.1)

s (m s−1) 5.7+0.3
−0.3

(5.3)
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Figure 18. A plot of eccentricity versus period for a three-planet HMCMC
fit of the combined Lick, HET and HJS telescope data set.

distribution for the parameter in question and the error bars identify
the boundaries of the 68.3 per cent credible region. The value im-
mediately below in parenthesis is the MAP value, the value at the
maximum of the joint posterior probability distribution.

The final period phase plots are shown in Fig. 20. The top-left
panel shows the data and model fit versus 1078 d orbital phase
after removing the effects of the two other orbital periods. The red
and green curves are the mean HMCMC model fit +1 standard
deviation and mean model fit −1 standard deviation, respectively.
The dashed curve is the mean HMCMC fit. The other two panels
correspond to phase plot for the other two periods. In each panel,
the quoted period is the mode of the marginal distribution. The P2

and P3 phase coverage for the combined HET and HJS data (not
shown) is not sufficient to warrant a fully independent search for
these two periods.
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Figure 19. A plot of parameter marginal distributions for a three-planet HMCMC of the combined Lick, HET and HJS telescope data set. The residual offset
velocity parameters are relative to the Lick dewar 24. They are designated Vj, where j = 6, 8, 39, 18 correspond to the other Lick dewars and subscripts HET
and HJS refer to the HET and HJS telescopes (Wittenmyer et al. 2009).

HMCMC fits of a four-planet model to the combined Lick, HET
and HJS data set failed to detect a well-defined fourth period casting
doubt on the validity of the 370.8+2.4

−2.0 d period detected in the Lick
only data. Even though this period was well defined in the Lick
only data, the FAP of ≈0.5 is much too high to warrant any claim of
significance. The period is also suspiciously close to 1 yr and might
be an artefact of the data reduction.

6.1 Eccentricity bias

In Section 3.1, we showed that HMCMC periodogram peaks ex-
hibit a well-defined statistical bias towards high eccentricity in the
absence of a real periodic signal. To mimic a circular velocity orbit,
the noise points need to be correlated over a larger fraction of the
orbit than they do to mimic a highly eccentric orbit. For this reason,

it is more likely that noise will give rise to spurious highly eccentric
orbits than low-eccentricity orbits. Is there a similar or stronger bias
when there is a real periodic signal? Based on the above expla-
nation of the bias, we would expect noise to conspire to increase
the eccentricity of detected periodogram peaks associated with the
real periodic signals. Our expectation is that the importance of this
bias will be dependent on the strength of the signal and possibly on
the number of observed periods.5 For very strong signals like the
1078 d period, we would expect the bias to be very small. For very
weak signals, the bias might well be approximated by the no real
periodic signal eccentricity bias which we quantified earlier. As we
have seen, in the case of the 47 UMa ∼2300 d period, the Lick

5This will be the subject of a future investigation.
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Figure 20. The top-left panel shows the data and model fit versus 1078 d
orbital phase after removing the effects of the two other orbital periods. The
red and green curves are the mean HMCMC model fit +1 standard deviation
and mean model fit −1 standard deviation, respectively. The dashed curve
is the mean HMCMC fit. The other two panels correspond to phase plot for
the other two periods.
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Figure 21. A plot of eccentricity versus period for the three-planet HMCMC
fit of the three-planet simulation.

data alone favour an eccentricity of ≈0.3, even when we include the
eccentricity bias filter. When we added more data, the eccentricity
was noticeably reduced. What if we simulated a Lick only data
set for a three-planet model based on the MAP three-planet model
parameters for the combined Lick, HET and HJS analysis. Would
the HMCMC analysis of the simulated data favour higher eccen-
tricities, possibly indicating that there is some additional eccentric-
ity bias operating. To test for this, we carried out this simulation
but modified the MAP parameter values so all three eccentrici-
ties were identically zero and P 3 = 10 000 d. Also, no residual
offsets were included for this test so the analysis corresponds to
Case A.

Fig. 21 shows a plot of eccentricity versus period for the simu-
lation. The starting period values for the HMCMC were 5, 20 and
100 d, a long way from the expected values. Again, all three simu-
lated periods were detected and the preferred eccentricities are all
close to zero but with significant tails extending to higher eccen-
tricity. Based on this test, there does not appear to be any clear
additional eccentricity bias operating. The fact that the real Lick
data alone favour (in Case A and Case B) somewhat larger ec-
centricities for P2 and P3 suggests there may be something else
present in the real data, possiblly some low-level systematic effect
or other real signals. In this regard, the eccentricity of the longer
period was considerably higher in the two-planet models than when

allowance was made for an additional period in the three-planet
models.

7 C O N C L U S I O N S

In this paper, we have demonstrated that a Bayesian adaptive
HMCMC analysis of a challenging data set has helped clarify the
number of planets present in 47UMa. HMCMC integrates the ad-
vantages of PT, simulated annealing and the genetic algorithm.
Each of these techniques was designed to facilitate the detection
of a global minimum in χ 2. Combining all three in an adaptive
HMCMC greatly increases the probability of realizing this goal.
The adaptive Bayesian HMCMC is very general and can be applied
to many different non-linear modelling problems. It has been imple-
mented in GRIDMATHEMATICA on an 8 core PC. The increase in a speed
for the parallel implementation is a factor of 6.6. When applied to the
Kepler problem, it corresponds to a multiplanet Kepler periodogram
which is ideally suited for detecting signals that are consistent with
Kepler’s laws. However, it is more than a periodogram because it
also provides full marginal posterior distributions for all the orbital
parameters that can be extracted from RV data. The execution time
for a one-planet blind fit (seven parameters) is 106 iterations per
hour. The program scales linearly with the number of parameters
being fit.

The 47UMa data has been analysed using one-, two-, three-,
four- and five-planet models. On the basis of the model-selection
results, we can conclude there is strong evidence for three plan-
ets based on an FAP of 5.0 × 10−6, however, the longest period
orbital parameters are still not well defined. The measured pe-
riods (based on the combined data set) are 1078 ± 2, 2391+100

−87

and 14002+4018
−5095d, and the corresponding eccentricities are 0.032 ±

0.014, 0.098+.047
−.096 and 0.16+.09

−.16. The results favour low-eccentricity
orbits for all three. Note that the longer time base of the full Lick
data set favours a value for P3 at the lower end of the 68 per cent
credible region of ∼10 000 d. Assuming the three signals (each one
consistent with a Keplerian orbit) are caused by planets, the cor-
responding limits on planetary mass (M sin i) and semimajor axis
are (2.53+.07

−.06MJ , 2.10 ± 0.02 au), (0.54 ± 0.07MJ , 3.6 ± 0.1 au),
and (1.6+0.3

−0.5MJ , 11.6+2.1
−2.9 au), respectively. Based on our three-planet

model results, the remaining unaccounted for noise (stellar jitter) is
5.7 m s−1.

A four-planet model fit to the Lick data yielded a well-defined
fourth period of 370.8+2.4

−2.0 d and eccentricity of 0.57+0.22
−0.15, but the

combined data set did not yield a well-defined fourth period. Even
though this period was well defined in the Lick only data, the FAP
of ≈0.5 is much too high to warrant any claim of significance. The
period is also suspiciously close to 1 yr and might be an artefact of
the data reduction.

The velocities of model fit residuals were randomized in multiple
trials and processed using a one-planet version of the HMCMC Ke-
pler periodogram. In this situation, periodogram probability peaks
are purely the result of the effective noise. The orbits correspond-
ing to these noise-induced periodogram peaks exhibit a well-defined
statistical bias towards high eccentricity. We have characterized this
eccentricity bias and designed a correction filter that can be used
as an alternate prior for eccentricity to enhance the detection of
planetary orbits of low or moderate eccentricity. On the basis of our
understanding of the mechanism underlying the eccentricity bias,
we expect the eccentricity prior filter to be generally applicable to
searches for low-amplitude orbital signals in other precision RV
data sets.
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