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Abstract

Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant
computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting
models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method
and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning
for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce
or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test
for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We
emphasize that sampling is a method for doing integrals; this guides our thinking about howMCMC output is best used.
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1. When Do You Need MCMC?

Markov Chain Monte Carlo (MCMC) methods are methods
for sampling probability distribution functions or probability
density functions (pdfs). These pdfs may be either probability
mass functions on a discrete space or probability densities on a
continuous space, though we will concentrate on the latter in this
article. MCMC methods do not require that you have a full
analytic description of the properly normalized pdf for sampling
to proceed; they only require that you be able to compute ratios
of the pdf at pairs of locations. This makes MCMC methods
ideal for sampling posterior pdfs in probabilistic inferences.

In a probabilistic inference, the posterior pdf p Dq( ∣ ), or pdf
for the parameters q given the data D, is constructed from the
likelihood p D q( ∣ ), or pdf for the data given the parameters, and
the prior pdf p q( ) for the parameters by what is often known as
the “Bayes rule,”

p D
Z

p D p
1

. 1q q q=( ∣ ) ( ∣ ) ( ) ( )

In these contexts, the constant Z, sometimes written as p D( ), is
known by the names “evidence,” “marginal likelihood,” “Bayes
integral,” and “prior predictive probability” and is usually
extremely hard to calculate.7 That is, you often know the function

p Dq( ∣ ) up to a constant factor; you can compute ratios of the pdf
at pairs of points, but not the precise value at any individual point.
In addition to this normalization-insensitive property of MCMC,

in its simplest forms it can be run without computing any
derivatives or integrals of the function, and (as we will show below
in Section 3) in its simplest forms it is extremely easy to implement.
For all these reasons, MCMC is ideal for sampling posterior pdfs
in the real situations in which scientists find themselves.
Say you are in this situation: You have a huge blob of data D

(think of this as a vector or list or heterogeneous but ordered
collection of observations). You also have a model sophisticated
enough—a probabilistic, generative model, if you will8—that,
given a setting of a huge blob of parameters (again, think of this
as a vector or list or heterogeneous but ordered collection of
values) q, you can compute a pdf for data (or likelihood9)
p D q( ∣ ). Furthermore, say also that you can write down some
kind of informative or vague prior pdf p q( ) for the parameter
blob q. If all these things are true, then—even if you cannot
compute anything else—in principle a trivial-to-implement
MCMC can give you a fair sampling of the posterior pdf. That
is, you can run MCMC(for a very long time—see Section 5 for
how long), and you will be left with a set of K parameter-blob
settings kq such that the full set k k

K
1q ={ } constitutes a fair

sampling from the posterior pdf p Dq( ∣ ). We will give some
sense of what “fair” means in this context below.
All that said, and adhering to the traditions of the Data

Analysis Recipes project,10 we are compelled to note at the
outset that MCMC is in fact overused. Because MCMC
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7 The factor Z is often difficult to compute, because the likelihood (or the
prior) can have extremely complex structure, with multiple arbitrarily compact
modes, arbitrarily positioned in the (presumably high-dimensional) parameter
space q. Elsewhere, we discuss the computation of this object (Hou et al. 2014),
and so have many others before us. We also have (unpublished) philosophical
arguments against calculating this Z if you can possibly avoid it, but these are
outside the scope of this article. The point is that MCMC methods will not
require that you know Z.

8 Briefly, a “model” for us is a likelihood function (a pdf for the data given
model parameters) and a prior pdf over the parameters. Because, under this
definition, the model can always generate (by sampling, say) parameters and
parameters can generate (again by sampling, say) data, the model is effectively
(or actually, if you are a true subjective Bayesian) a probability distribution
(pdf) over all possible data.
9 Technically, p D q( ∣ ) is only properly a likelihood function when we are
thinking of the data D as being fixed and the parameters q as being permitted
to vary.
10 Every entry in the Data Analysis Recipes series begins with a rant in which
we argue that most uses of the methods in question are not appropriate!
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provably (under assumptions,11 some of which will be
discussed) samples the full posterior pdf in all of parameter
space, many investigators use MCMCbecause (they believe) it
will sample all of the parameter space (q-space). That is, they
are using MCMC because they want to search the parameter
space for good models. This is not a good reason to use
MCMC! Another bad use case is the following: Because
MCMC samples the parameter representatively, it spends most
of its time near very good models, models that (within the
confines of the prior pdf) do a good job of explaining the data.
For this reason, many investigators are using MCMC because it
effectively optimizes the posterior pdf or, for certain choices of
prior pdf, optimizes the likelihood.12 This is another bad
reason!

Both of these reasons for using MCMC—that it is a
parameter space search algorithm, and that it is a simple-to-
code effective optimizer—are not good reasons. MCMC is a
sampler. If you are trying to find the optimum of the likelihood
or the posterior pdf, you should use an optimizer, not a sampler.
If you want to make sure you search all of the parameter space,
you should use a search algorithm, not a sampler. MCMCis
good at one thing, and one thing only: sampling ill-normalized
(or otherwise hard to sample) pdfs.

In what follows, we are going to provide a kind of “user
manual” or advice document or folklore capture regarding the
use of MCMC for data analysis. This will not be a detailed
description of multiple MCMC methods (indeed, we will only
explain one method in detail), and it will not be about the
mathematical properties or structure of the method or
methods.13 Think of this article as a getting-started document
for a new user of MCMC methods. It concentrates on
conceptual points and questions we get asked frequently by
users, with a concentration on how an MCMC project is
diagnosed and tested, and how its outputs are used responsibly.
Most of what we say will be applicable to any MCMC method;
in that sense the discussion is general. And all in the language
—more or less—of an astrophysicist.

The first couple of sections will describe what a sampling is
and how the simplest MCMC method, the Metropolis–Hastings
algorithm, can provide one. The next few sections will provide
ideas about how to initialize, tune, and operate MCMC
methods for good performance. The last few sections will

provide advice for making decisions among the myriad MCMC
method implementations, how to implement a good likelihood
function and prior pdf function for inference, and how to
troubleshoot standard kinds of problems that arise in operating
MCMCmethods on real problems. We will leave parenthetical
and philosophical matters to the footnotes.

2. What Is a Sampling?

Heuristically, a sampling k k
K

1q ={ } from some pdf p q( ) is a set
of K values kq that are draws from the pdf. Heuristically, if an
enormous (large K ) sampling could be displayed in a finely
binned q-space histogram, the histogram would look—up to a
total normalization—just like the original function p q( ).
We do not know all the relevant mathematics (measure

theory), but for our purposes here a pdf is any single-valued
(scalar) function that is non-negative everywhere (the entire
domain of q) and obeys a normalization condition

p0 for all 2 q q( ) ( )

p1 d , 3ò q q= ( ) ( )

where, implicitly, the integral is over the full domain of q.
Importantly, although p q( ) is single valued, q can be a
multielement vector or list or blob; it can be arbitrarily large
and complicated. In data-analysis contexts, q will often be the
full blob of free parameters in the model. Implicitly, the integral
in Equation (3) is high-dimensional; it has as many dimensions
as there are elements or entries or components of q. Also, if
there are elements or entries or components of q that are
discrete (that is, take on only integer values or equivalent), then
along those dimensions the integral becomes a discrete sum.
The latter is a detail to which we return below (briefly, in
Section 9).
Given this pdf p q( ), we can define expectation values

Ep qq [ ]( ) for q or for any quantity that can be expressed as a
function g q( ) of q:

E p d 4p òq q q qºq [ ] ( ) ( )( )

E g g p d , 5p òq q q qºq [ ( )] ( ) ( ) ( )( )

where again the integrals are implicitly definite integrals over
the entire domain of q (all the parts of q space in which p q( ) is
finite) and the integrals are multidimensional if q is multi-
dimensional. These expectation values are the mean values of q
and g q( ) under the pdf. A good sampling—and really this is the
definition of a good sampling—makes the sampling approx-
imation to these integrals accurate. With a good sampling

k k
K

1q ={ } the integrals get replaced with sums over samples kq :

E
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That is, a sampling is good when any expectation value of
interest is accurately computed via the sampling approx-
imation. The word “accurately” here translates into some kinds
of theorems about limiting behavior; the general idea is that the
sampling approximation becomes exact as K goes to infinity.

11 The assumptions include things like the algorithm is run “long enough,”
where this phrase is undefined (since the convergence requirements are set by
precision requirements on particular integrals), and the density that is being
sampled has some connectedness properties: there are not distant islands of
finite density separated by regions of zero (or exceedingly low) density.
12 Of course, a committed Bayesian would argue that any time you are
optimizing a posterior pdf or optimizing a likelihood, you should be sampling a
posterior pdf. That is, for some, the fact that when someone “wants” to
optimize, it is actually useful that they choose the “wrong” tool, because that
“wrong” tool gives them back something far more useful than the output of any
optimizer! However, it is true that when the data are extremely informative
(that is, the posterior is very narrow), there is not much difference between
optimizing the posterior and sampling it, nor between optimizing the likelihood
and optimizing the posterior. That is, all inference methods sort of converge as
the data become very informative. That can be an important point when you are
working on a problem where the posterior is very narrow.
13 For a description of various different sampling methods, given from the
point of view of an astrophysicist, see the review by Sharma (2017). We say a
bit about different MCMC methods in Section 10, but our discussion is limited
relative to Sharma’s review. For even more depth, there are relevant book-
length treatments of MCMC; our favorite is Brooks et al. (2011). There are also
good books on Bayesian data analysis from a computing perspective more
generally that include discussion of MCMC as a part of that; see, for example,
Kruschke (2015), Andreon & Weaver (2015), and Hilbe et al. (2017).
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The size K of the sampling you need in practice will depend on
the expectations you want to compute and the accuracies
you need.

As we noted above (Section 1), in the context of MCMC, we
are often using some badly normalized function f q( ). This
function is just the pdf p q( ) multiplied by some unknown and
hard-to-compute scalar. In this case, for our purposes, the
conditions on f q( ) are that it be non-negative everywhere and
have finite integral Z:

f0 for all 8 q q( ) ( )

Z f d . 9ò q q= ( ) ( )

And recall that we do not actually know the value of Z, but we
do know that it is finite.

When the sampling k k
K

1q ={ } is of one of these badly
normalized functions f q( )—as it usually will be—the sam-
pling-approximation expectation values are the expectation
values under the properly normalized corresponding pdf, even
though you might never learn that normalization. When we run
MCMC sampling on f ,q( ) a function that differs from a pdf p q( )
by some unknown normalization constant, then the sampling
permits computation of the following kinds of quantities:

E g
g f d

f d
10p

ò
ò

q
q q q
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That is, the sampling can be constructed (as we will show
below in Section 3) from evaluations of f q( ) directly, and it
permits you to compute expectation values without ever
requiring you to integrate either the numerator integral or the
denominator integral, both of which are generally intractable.14

The “correctness” of a sampling is defined (above in
Section 2) in terms of its use in performing integrals or
approximate computation of integrals. In a deep sense, the only
thing a sampling is good for is computing integrals. There are
many uses of the MCMC sampling, some of them good and
some of them bad. Most of the good or sensible uses will
somehow involve integration.

For example, one magical property of a sampling (in a
D-dimensional space) is that a histogram (a D-dimensional
histogram) of the samples (divided, if you like, by the number
of samples in each bin and the bin width15) looks very much
like the pdf from which the samples were drawn. This is a way
to “reconstruct” the pdf from the sampling: make a histogram
from the samples. Even in this case, the sampling is being used
to do integrals; the (possibly odd) idea is that the approximate
or effective value of the pdf in each bin of the histogram is an
average over the bin. That average is obtained by performing
an integral.

Integrals are also involved in finding the mean, median, and
any quantiles of a pdf. They are not involved in finding the
mode of a pdf. For this reason (and others), in what follows,
when we talk about what to report about the outcome of your
MCMC sampling, we will advise in favor of mean, median,
and quantiles, and we will advise against mode.
Finally—and perhaps most importantly—a magical property

of a sampling (in a D-dimensional space) is that if some of your
D dimensions are totally uninteresting (nuisance parameters, if
you will) and some of your D dimensions are of great interest,
the sampling in the full D-space is trivially converted into a
sampling in the subspace of interest: you just drop from each kq
vector (or blob or list) the dimensions of no interest! That is,
the projection of the sampling to the subspace of interest
produces a sampling of the marginalized pdf, marginalizing
(or projecting) out the nuisance parameters.16 That is extremely
important for inference, where there are always parameters with
very different levels of importance to the scientific conclusions.
This point generalizes from a subspace to any function of the
parameters; we will return to this again below (Section 8).
Although the discussion in this article is general, the most

common use of MCMC sampling (for us, anyway) is in
probabilistic inference. For this reason, we will often refer to
the function f q( ) colloquially as “the posterior pdf”17 even
though it is implicitly ill normalized and might not be a
posterior pdf in any sense. We will also occasionally assume—
just because it is true in inference—that the function f q( ) is the
product of two functions, one called “the prior pdf” and one
called “the likelihood.” Again, this usage is colloquial and is
only strictly correct in inference contexts with proper inputs.
That the function f q( ) can be thought of as a product of a prior
pdf and a likelihood is only necessary for what follows in the
context of advanced sampling techniques like tempering or
nested sampling, both mentioned briefly below (Section 10).

Problem 1. Look up (or choose) definitions for the mean,
variance, skewness, and kurtosis of a distribution. Also look up
or compute the analytic values of these four statistics for a top-hat
(uniform) distribution. Write a computer program that uses some
standard package (such as numpy18) to generate K random
numbers x from a uniform distribution in the interval 0<x<1.
Now use those K numbers to compute a sampling estimate of the
mean, variance, skewness, and kurtosis (four estimates; look up
definitions as needed). Make four plots of these four estimates as
a function of 1/K or perhaps Klog2 , for K=4n for n=1 up to
n=10 (that is, K=4, K=16, and so on up to K=1,048,576).
Overplot the analytic answers. What can you conclude?

3. Metropolis–Hastings MCMC

The simplest algorithm for MCMC is the Metropolis–
Hastings algorithm (M–H MCMC).19 It is so simple that we

14 As we will see, the intractability comes from various directions, but one is
that the dimension of q gets large in most realistic situations. Another is that the
support of p q( ) tends to be, in normal inference situations, far smaller than the
full domain of q. That is, the pdf is at or very close to zero over all but some
tiny and very hard-to-find part of the space.
15 We are referring here to the point that if you want a histogram of samples to
look just like the posterior pdf from which the samples are drawn, the
histogram (thought of as a step function) must integrate to unity.

16 This point about marginalization is, once again, a use of the sampling to
perform an integral; the marginalized pdf is obtained from the full pdf by an
integration. The sampling performs this integration automatically.
17 We will also sometimes refer to expectations under f q( ) as posterior means,
to medians as median-of-posterior values, and so on.
18 There is not a full citation for this package, but there is van der Walt
et al. (2011).
19 There are many claims that this algorithm is incorrectly named, with claims
that it should be credited to Enrico Fermi or Stan Ulam. We do not have any
opinions on this matter, but we encourage the reader to follow this up. The
original paper is Metropolis et al. (1953), and there are a few sketchy historical
notes in Geyer (2011).
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recommend that any reader of this document who has not
previously implemented the algorithm take a break at the end of
this section and implement it forthwith, in a short piece of
computer code, in the context of some simple problems.20

The M–HMCMC algorithm requires two inputs. The first is a
handle to the function f q( ) that is the function to be sampled,
such that the algorithm can evaluate f q( ) for any value of the
parameters q. In data-analysis contexts, this function would be the
prior p q( ) times the likelihood p D q( ∣ ) evaluated at the observed
data D. The second input is a handle to a proposal pdf function
q q q¢( ∣ ) that can deliver samples, such that the algorithm can draw
a new position q¢ in the parameter space given an “old” position q.
This second function must meet a symmetry requirement (detailed
balance) we discuss further below. It permits us to random walk
around the parameter space in a fair way.

The algorithm21 is the following: We have generated some
set of samples, the most recent of which is kq , To generate the
next sample k 1q + , do the following:

1. Draw a proposal q¢ from the proposal pdf q kq q¢( ∣ ).
2. Draw a random number 0<r<1 from the uniform

distribution.
3. If f f rkq q¢ >( ) ( ) , then ;k 1q q¬ ¢+ otherwise, k 1q ¬+ kq .

That is, at each step, either a new proposed position in the
parameter space gets accepted into the list of samples, or else
the previous sample in the parameter space gets repeated. The
algorithm can be iterated a large number K times to produce K
samples.

Why does this algorithm work? The answer is not absolutely
trivial,22 but there are two components to the argument: The
first is that the Markov process delivers a unique stationary
distribution. The second is that the stationary distribution is
proportional to the density function f q( ).

This algorithm—and indeed any MCMC algorithm—

produces a biased random walk through parameter space. It
is a random walk for the same reason that it is “Markov”: the
step it makes to position k 1q + depends only on the state of the
sampler at position kq (and no previous state). It is a biased
random walk, biased by the acceptance algorithm involving the
ratios of function values; this acceptance rule biases the random
walk such that the amount of time spent in the neighborhood of
location q is proportional to f q( ). Because of this local
(Markov) property, the nearby samples are not independent; the
algorithm only produces fair samples in the limit of arbitrary
run time, and two samples are only independent when they are
sufficiently separated in the chain (more on this below in
Section 5).

The principal user-settable knob in M–H MCMC is
the proposal pdf q q q¢( ∣ ). A typical choice is a multivariate
Gaussian distribution for q¢ centered on q with some simple
(diagonal, perhaps) variance tensor. We will discuss the choice

and tuning of this proposal distribution below (Sections 6
and 9).
Importantly—for the algorithm given above to work

correctly—the proposal pdf must satisfy a “detailed-balance”
condition;23 it must have the property that

q q , 12q q q q¢ = ¢( ∣ ) ( ∣ ) ( )

that is, it must be just as easy to go one way in the parameter
space as the other. You can break this property, if you like, and
then adjust the acceptance condition accordingly (which is truly
the Metropolis–Hastings algorithm), but we do not recommend
this except under the supervision of a trained professional.24

The reason is this: it is one thing to draw samples from q x x¢( ∣ );
it is another thing to correctly write down q x x¢( ∣ ). If you violate
detailed balance in q x x¢( ∣ ), then you have to be able to both
draw from and write down q x x¢( ∣ ), and you are subject to a set
of new possible bugs for your code. If the detailed-balance
condition frightens you (as it frightens us), then just stick with
pdfs that are symmetric in q¢ and q, like the Gaussian, or a
centered uniform distribution, and forget about it.
In what follows, when we discuss tuning of the proposal pdf,

we will often cycle through the parameter-blob components
and propose changes in only one dimension or element or
component at a time. That is, at step k 1+ you might only
propose a one-dimensional move in the ith dimension, not in all
D dimensions of the parameter space. That will not change
anything significant; but if you are implementing this right
now, you might want to do that. It will help us tune the
proposal pdf (Section 6) and diagnose problems (Section 9).
One note to make here is that you must propose in the same

coordinates (parameterization or transformation of parameters)
as that in which your priors are specified, or else multiply in a
(possibly nasty) Jacobian. That is, if your prior is “flat in q” but
you find it easier to run your sampler by proposing steps in ln q,
if you do not modify your acceptance probability by the
Jacobian, your real prior will not be flat in q. These thinkos can
get subtle; the best way to avoid them is to write your code and
your likelihood function and your prior pdf function and your
proposal distribution all in precisely the same parameterization.
We will return to this point below in our comments on testing
(Section 9). The point is that if you do change coordinates
between the statement of your priors and the specific variables
you step in, you have to introduce Jacobian factors.
As we discuss briefly below (Section 10), there are many

MCMC methods more advanced than M–H. However, they all
share characteristics with M–H (initialization, tuning, judging
convergence), such that it is very valuable to understand M–H
well before using anything more advanced. Furthermore, a
scientist new to MCMC benefits enormously from building,
tuning, and using her or his own MCMC software. One piece
of advice we give then, to the new user of MCMC, is to code
up, tune, and use a M–H MCMC sampler for a scientific
project. A huge amount is learned in doing this, and it is very
often the case that the home-built M–H MCMC does every-
thing needed; you often do not need any more advanced tool.

20 We request this in a trivial case below in Problem 2 and the following
problems in this section. We make the same request in a less trivial context in
our model-fitting screed (Hogg et al. 2010a, Problems 6 and 7), where we ask
the reader to implement MCMC for a useful mixture model.
21 Technically this is the Metropolis algorithm rather than the Metropolis–
Hastings algorithm. The difference is that in the Metropolis–Hastings
algorithm, we permit the proposal distribution to disobey detailed balance
but correct the accept–reject step to recover detailed balance.
22 There is a very mathematical discussion in Geyer (2011) that we do not fully
understand. There is a more heuristic answer on Wikipedia that we are
happier with!

23 This detailed-balance condition in Equation (12) requires implicitly that the
function q q q¢( ∣ ) is also properly normalized, that is, that it integrates (over q¢)
to unity for any setting of q. That is an extremely technical point, but it stands
as a reminder that you do not want to mess with detailed balance casually!
24 Actually, our own favorite method, emcee, has a proposal pdf that does
violate detailed balance in this way and has a compensated acceptance
probability. Read Foreman-Mackey et al. (2013) for more details.
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Only after you have concluded that your home-built M–H
MCMC sampler is not suited to your project (or not developed
into a properly versatile software package) should you
download and start to use any professionally developed
alternative. That is, even if—in the end—you want to leave
the sampling code to the experts and run an industrial-strength
code, it is still valuable to build your own, given the simplicity
of the algorithm, and given the intuition you gain by doing it
(at least once) yourself.25

Because many problems involve a huge amount of dynamic
range in the density function f q( ), and we like to avoid
underflows and overflows (in, say, ratios computed for accept–
reject steps), it is often advisable to work in the (natural)
logarithm of the density rather than the density. When working
in logarithmic density, the accept–reject step would change
from a comparison of a random deviate with a ratio of
probabilities to comparison of the log of a random deviate with
a difference of log probabilities. In other words, the accept–
reject step becomes

1. If f f rln ln lnkq q¢ - >( ) ( ) , then ;k 1q q¬ ¢+ otherwise,
k k1q q¬+ .

This protects you from underflow but exposes you to some
(negative) infinities, if you end up taking the logarithm of a
zero. It is important to write your code to be infinity-safe.26

Problem 2. In your scientific programming language of choice,
write a very simple M–H MCMC sampler. Sample in a single
parameter x and give the sampler as its density function p(x) a
Gaussian density with mean 2 and variance 2. (Note that
variance is the square of the standard deviation.) Make the
proposal distribution q x x¢( ∣ ) a Gaussian pdf for x′ with mean x
and variance 1. Initialize the sampler with x=0 and run the
sampler for more than 104 steps. Plot the results as a histogram,
with the true density overplotted sensibly. The resulting plot
should look something like Figure 1.

Problem 3. Redo Problem 2, but now with an input density that
is uniform on 3<x<7 and zero everywhere else. The plot
should look like Figure 2. What change did you have to make
to the initialization, and why?

Problem 4. Redo Problem 2, but now with an input density that
is a function of two variables (x, y). For the density function use
two different functions. (a) The first density function is a
covariant two-dimensional Gaussian density with variance
tensor

V 2.0 1.2
1.2 2.0

. 13=
⎡
⎣⎢

⎤
⎦⎥ ( )

(b) The second density function is a rectangular top-hat
function that is uniform on the joint constraint 3<x<7 and
1<y<9 and zero everywhere else. For the proposal
distribution q x y x y, ,¢ ¢( ∣ ) use a two-dimensional Gaussian
density with mean at [x, y] and variance tensor set to the

two-dimensional identity matrix. Plot the two one-dimensional
histograms and also a two-dimensional scatterplot for each
sampling. Figure 3 shows the expected results for the Gaussian.
Make a similar plot for the top hat.

Problem 5. Redo Problem 4(a), but with different values for the
variance of the proposal distribution q x x¢( ∣ ). What happens
when you go to very extreme values (e.g., 10−1 or 102)?

Problem 6. Why, in all of the previous problems, did we give
the proposal distributions q x x¢( ∣ ) a mean of x? What would be
bad if we hadn’t done that? Redo Problem 4(a) with a proposal
q x x¢( ∣ ) with a stupidly shifted mean of x 2+ and see what
happens. Bonus points: modify the acceptance–rejection
criterion to deal with the messed-up q x x¢( ∣ ) and show that
everything works once again.

4. Likelihoods and Priors

MCMC is used to obtain samples kq from a pdf p q( ), given a
badly normalized all-positive function f q( ) that is different
from the pdf by an unknown factor Z. In the context of data

Figure 1. Solution to Problem 2: MCMC samples from a Gaussian (black) and
the true distribution (blue).

Figure 2. Solution to Problem 3: MCMC samples from a uniform distribution
(black) and the true distribution (blue).

25 We also make this point in a previous piece (Hogg et al. 2010a); the
ambitious reader will find in that piece a solid example project for using
MCMC in a real context.
26 Most code will be infinity-safe if written in the form in this paragraph.
However, there can be issues if both f q¢( ) and f kq( ) are negative infinity; in
(present-day) Python this will return an NaN rather than an infinity or zero.
That’s a problem and is a case that should get caught (probably way before the
accept–reject step!).
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analysis, MCMC is usually being used to obtain samples kq that
are parameter values q for a probabilistic model of some data.
That is, MCMC is sampling a pdf for the parameters.

Ideally, if you are using MCMC for inference, your code
should input to the MCMC function or routine a probability
function that is a product of a prior times a likelihood. As we
noted above—in terms of implementation—it is usually advisable
to work in the logarithm of the density function, so the function
input to the MCMC code would be called something like ln_f
(). This function ln_f() internally would compute and return
the sum of a log-prior pdf ln_prior() and a log-likelihood
function ln_likelihood().

If you are using “flat” (improper) priors, the ln_prior()
function can just return a zero no matter what the parameters. If
it is flat with bounds (that is, proper), the ln_prior() should
check the bounds and return -Inf values when the parameter
vector is out of bounds. The pseudo-code for the ln_f()
function should look something like this:

_ , :
_

_ :

_ , .
14

def ln f pars data
x ln prior pars

if not is finite x
return Inf

return x ln likelihood data pars

=

-
+

( )
( )
( )

( )
( )

This pseudo-code ensures that you only compute the likelihood
when the parameters are within the prior bounds; it assumes
implicitly that the prior pdf is easier to compute than the
likelihood. If you find yourself in the opposite regime, adjust
accordingly. Of course, the above pseudo-code presumes that
when you perform the accept–reject step of the MCMC

Figure 3. Solution to Problem 4(a): MCMC samples from a two-dimensional Gaussian (scatterplot) and the one-dimensional marginalized distributions (histograms).

Figure 4. Solution to Problem 9: the black histogram shows the MCMC
samples, and the blue curve is the analytic target density.
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method, the programming language handles properly the -Inf
values.27

MCMC cannot sample a likelihood (which is a probability
for the data given parameters).28 Despite this, in many cases,
data analysts believe they are sampling the likelihood. This is
because (we presume) they have put a likelihood function (or
log-likelihood function) in as the input to the MCMC code,
where the probability function (or log-probability function)
should go. Then is it the likelihood that is being sampled? No,
not really; it is a posterior probability that is directly
proportional to the likelihood function. That is, it is a posterior
probability for some implicit (and improper) “flat” priors.

It should be outside of the scope of this document to note
here that it is a good idea to have proper priors.29 Proper priors
obey the integral constraint (9), with Z finite. It is not a
requirement that priors be proper for the posterior to be proper,
so many investigators and projects violate this rule. This is
outside the current scope, except for the following point: it is a
great functional test of your sampler and your data-analysis
setup to take the likelihood function to a very small power
(much less than 1) or multiply the log-likelihood by a very
small number (much less than 1) and check that the sampler
samples, properly and correctly, the prior pdf. This test is only
possible if the prior pdf is proper.

Problem 7. Run your M–H MCMC sampler from Problem 2,
but now with a density function that is precisely unity
everywhere (that is, at any input value of x it returns unity)—
that is, an improper function (as discussed in Section 4). Run it
for longer and longer and plot the chain value x as a function of
time step. What happens?

Problem 8. For a real-world inference problem, read enough of
Hogg et al. (2010a) to understand and execute Exercise6 in
that document.

Problem 9. Modify the sampler you wrote in Problem 2 to take
steps not in x but in xln . That is, replace the Gaussian proposal
distribution q x x¢( ∣ ) with a Gaussian distribution in xln
q x xln ln¢( ∣ ), but make no other changes. By doing this, you
are no longer sampling the Gaussian p(x) that you were in
Problem 2. What about your answers changes? What distribu-
tion are you sampling now? Compute the analytic function that
you have sampled from—this will no longer be the same p(x)—
and overplot it on your histogram. The solution to this problem
is shown in Figure 4.

5. Autocorrelation and Convergence

A key question for an MCMC operator—the key question in
some sense—is how long to run to be sure of having reliable

results. It is disappointing and annoying to many that there is
no extremely simple and reliable answer to this question.30

The reason that there is no simple answer is that you cannot
really ever know that you have sampled the full posterior pdf,
and the reason for that is that if you could know that, you
would also be able to solve the famously difficult discrete
optimization problem.31 Qualitatively, you can consider the
scenario where you have two modes—two separated regions of
substantial total probability—in the posterior pdf that are both
important but separated by a large region of low probability. If
you are using a simple sampler, you could sample one of these
modes very well, but the sampler will take effectively infinite
time to find the other mode. In most real problems, the situation
is much worse, with an unknown number of modes, and
knowing that you have a complete and representative sampling
is effectively impossible.
In this context, it is simply not fair to require an MCMC run

to have fully and completely sampled the posterior pdf, at least
not in any provable sense. The question of whether a sampling
is definitely converged to a representative sampling of the
posterior pdf is actually outside the domain of science, because
the domain of science is the domain of questions answerable by
scientists. That is, unless you have some bounds on the support
and smoothness of the posterior pdf, you can never know that
you have correctly sampled the posterior pdf, despite many
statements in the literature to the contrary.32 The upshot of this
is that we do not and cannot require any kind of absolute
convergence; indeed, it would be impossible even to test for it.
In this pragmatic situation—the real world, as it is called—

we have to rely on heuristics. Heuristically, you have sampled
long enough when you can see that the (or each) walker has
traversed the high-probability parts of the parameter space
many times in the length of the chain. Or, equivalently, you
have sampled long enough when the first half of the chain
shows very much the same posterior pdf morphology as the
second half of the chain, or indeed as any substantial subset.
Or, relatedly, you have sampled long enough when different
walkers initialized differently and run with different random
number seeds create posterior inferences that are substantially
the same.
The above heuristics can be made more precise in terms of

the amount of deviation one expects between the means and
variances, say, of two disjoint subsets of the chain. The premier
tool for making this heuristic precise, however, is to look at the
“integrated autocorrelation time” of the chain. In general,

27 If you are working in a language that does not have an Inf or does not
evaluate comparisons correctly when the Inf appears, you might have to write
some case code and have your ln_f function return a value and some kind of
flag that indicates “zero probability” or f 0q =( ) .
28 Well, technically, MCMC can be used to sample a likelihood function, but
the samples would be samples of possible data, not possible parameters. The
purist might say that even this is not sampling a likelihood function, because
you should only call it a “likelihood function” in contexts in which you are
treating the data as fixed (at the true data values) and the parameters as variable.
In this context, the likelihood function is not a pdf for anything, so it cannot be
sampled.
29 This point—that you should be using proper priors—is just basic Bayesian
good practice, often violated but never for good reasons.

30 There is very good coverage of most of the points in this section, and more,
in a set of lecture notes by Patrick Lam, available at http://patricklam.org/
teaching/convergence_print.pdf.
31 Famously, there is “no free lunch” (Wolpert & Macready 1997): you cannot
find the global optimum of a general optimization problem without exhaustive
search of all possibilities. This is very closely related—somehow—to the
difficulty of sampling.
32 For example, you can (almost) never say that your chains are definitely
converged, or that you have the posterior pdf correct to some given level of
accuracy. The reason is related to the above-mentioned “no free lunch” theorem
of discrete optimization (see footnote 31): in most problems there is no way
you could have searched your parameter space finely enough to know this.
There are some exceptions of course. In one kind of exception, your problem is
convex or Gaussian, and you can analytically show that there is exactly one
mode in the density and where it is. Of course, in these cases you rarely need
MCMC to solve your problems! In another kind of exception, you can say
something about the finite width or shape of the modes of the likelihood
function (and prior pdf). For example, sometimes the Cramér–Rao bound tells
you that modes of the density must be smoother than some finite amount. Then
an exhaustive search of parameter space followed by MCMC can in principle
have provable properties. But, as we say, these situations are rare.
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when one has a sequence , , ,1 2 3q q q ¼( ) generated by a Markov
process in the q space, nearby points in the sequence will be
similar, but sufficiently distant points will not “know about”
one another; the autocorrelation function measures this.

More formally, as discussed in Section 2, the goal of MCMC
sampling is to compute integrals of the form given in
Equation (5) using the Monte Carlo approximation in
Equation (7). The Monte Carlo error introduced by this
approximation is proportional to Nintt , where τint is the
integrated autocorrelation time and N is the total number of
samples of p q( ). In other words, τint is the number of steps
required for the chain to produce an independent sample.

A sampler with a smaller integrated autocorrelation time is
better; you have to do fewer f q( ) calls per independent sample,
and you have to run less time to get accurate sampling-based
integral estimates. A sampler that takes an independent sample
every time would have an autocorrelation time of unity, which
is the best possible value; this optimal sampling is only
possible for problems where the sampling is analytic (for
example, if the posterior is perfectly Gaussian with known
mean and variance). In general, the best sampler will be
different for different problems, and we will (in Section 10)
tune the samplers we have to do the best on the problems we
have; this tuning will also be problem specific. There are many
heuristic bases on which different samplers might be compared
or tuned, but fundamentally it is lower autocorrelation time that
separates good samplers from bad ones and is the ultimate basis
on which we compare performance.33

We will not go into details about how to estimate τint, but it
is notoriously difficult: it is a two-point statistic, and two-point
statistics are much harder to estimate than one-point statistics.34

If you are not a hard-core user of MCMC, and if all you want is
heuristic indicators of convergence, then what you should take
from this section is that the autocorrelation time is involved in
variance estimates, but that it is hard to estimate. If you want to
think about autocorrelation estimation, more detailed references
can be found elsewhere.35

Besides estimating the integrated autocorrelation time,
another simple and sensible test of convergence is the
Gelman–Rubin diagnostic,36 which compares the variance
(in one parameter, or your most important parameter, or all
parameters) within a chain to the variance across chains. This
requires running multiple chains, looking at the empirical
variance of the parameter away from its mean within each
individual chain, and comparing it to the variance in the mean
of that parameter across chains, inflated to be a mean per-
sample variance. What Gelman and Rubin do with these
variances specifically is sensible, but the important question of
convergence is whether, as the chains get longer, these two

variances asymptotically reach stable values, and whether those
two values agree. The Gelman–Rubin diagnostic is related to
the autocorrelation time, in that it will only deliver success
when the chains are much longer than an autocorrelation time.
Finally, one last point about convergence: since all

convergence tests are fundamentally heuristic, it is useful to
just make the heuristic visualization of the samples kq as a
function of k, in the order they were generated. The chain is
likely to be converged only if the random-walk process crossed
the domain of q fully many times during the MCMC run. Often
some parameter directions are much worse than others; it is
worth looking at the chain in all parameter directions.

Problem 10. Redo Problem 2, but now look at convergence:
Plot the x chain as a function of time step. Also split the chain
into four contiguous segments (the first, second, third, and
fourth quarters of the chain). In each of these four, compute the
empirical mean and empirical variance of x. What do you
conclude about convergence from these heuristics?

Problem 11. Write a piece of code that computes the empirical
autocorrelation function. You will probably want to speed this
computation up by using a fast Fourier transform.37 Run this on
the chain you obtained from Problem 2. Plot the autocorrelation
function you find at short lags (Δ<100). This plot should
resemble Figure 5.

Problem 12. Write a piece of code that estimates the integrated
autocorrelation time for a chain of samples using an estimate of
the autocorrelation function and a given “window” size M (see
Sokal 1997). Plot the estimated τ as a function of M for several
contiguous segments of the chain and overplot the sample
function based on the full chain. What can you conclude from this
plot? Implement an iterative procedure for automatically choosing
M.38 Overplot this estimate on the plot of τ(M), and the result
should look like Figure 6.

6. Tuning

Most MCMC methods make use of something like a
“proposal distribution,” which determines what kinds of steps
the walker can take as it random-walks through the parameter
space. This is the function we called q q q¢( ∣ ) in Section 3. The
user generally has a lot of control over what this proposal
distribution might be and how to choose the parameters. For
example, in a D-dimensional parameter space, a zero-mean but
anisotropic Gaussian (normal distribution) is often used to draw
offsets for the walker to take from point to point. Even within
this choice (which is of one function among many possibi-
lities), there are D D 1 2+( ) parameters in the D×D
symmetric, positive-definite covariance matrix to set “by
hand.” How to choose this function and set these parameters?
The key idea here is that if the proposal distribution is too

narrow—it proposes steps too small—almost all steps will be
accepted (recall the acceptance–rejection step from Section 3),
but it will take a long time to move anywhere because of
timidity. If the proposal distribution is too wide—it proposes
steps too large—the moves will cover parameter space easily,

33 We sometimes see MCMC methods compared according to burn-in times,
which, for one thing, depends strongly on initialization and, for another,
depends strongly on tuning and dynamics. Similarly, we often see comparisons
in terms of acceptance ratio. In principle, the only question is how precise are
one’s inferences given a certain amount of computation. This is set by the
autocorrelation time and (pretty much) nothing else, for reasonably converged
chains. In the real world, of course, one must add to the CPU time the
investigator time spent tuning the method (and thinking about initialization),
but there is never (to our knowledge) a condition in which burn-in time is the
dominant consideration in choosing an MCMC method.
34 See all of cosmology!
35 A canonical reference is a set of lecture notes by Alan Sokal (Sokal 1997).
Another good reference is a blog post by one of us (D.F.M.) that can be found
at http://dfm.io/posts/autocorr.
36 Gelman & Rubin (1992).

37 The calculation of the autocorrelation function can be seen as a convolution,
and it can, therefore, be computed using the fast Fourier transform in

N Nlog( ) operations instead of N 2( ) for a naive implementation.
38 The recipe given on page 16 of Sokal’s notes (Sokal 1997) might be helpful.
Note that the definition of τ that we adopt is twice the value used by Sokal.
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but almost no steps will be accepted; it will tend to jump to
much lower probability regions. There is a Goldilocks step size
(proposal distribution root variance) that is “just right.” In one
dimension this might be easy to find, but, as we say, in large
numbers of dimensions, there is a lot of freedom in choosing
the parameters of the distribution.

In terms of long-term computational efficiency, the only
scalar that makes sense to optimize, when choosing proposal
distribution (or, loosely speaking, step size), is the autocorrela-
tion time, described above (Section 5). The optimal step size is
the step size that makes for the shortest autocorrelation time.
This is easy to state but hard to use in practice; being a second-
order statistic of the MCMC chain, the autocorrelation time is a
hard thing to measure without a lot of data, so it is hard to
quickly estimate it and adjust, much less put it into some kind
of optimization loop. When tuning, we usually use proxies
for this.

The simplest heuristic proxy statistic for tuning is the
acceptance fraction. If you are accepting almost all proposed
steps, your step sizes are too small on average. If you are
accepting almost none, your step sizes are too large. The
Goldilocks value is between a half and about a quarter, with an
argument floating around that it should be 0.234 for best
performance in high-dimensional problems39 (though you
could never tune it precisely enough to warrant that third digit
of accuracy). In the burn-in phase (discussed in Section 7) of an
MCMC run, it makes sense to track the acceptance ratio and
adjust the proposal distribution variance as you get acceptance
ratios that are far from the Goldilocks ratio. This process can be
automated easily; such automation is part of many projects that
use MCMC.

A very common—and very useful—kind of proposal
distribution is one that cycles through parameters, taking a
random step in just one parameter at a time.40 This kind of
proposal distribution can be valuable, in part because it reduces
the (almost impossible) D-dimensional tuning problem to D
one-dimensional problems: in this form of proposal distribu-
tion, it is possible to track a separate acceptance fraction for
every parameter. Code can be built that uses the burn-in phase

to tune all D proposal variances such that each of them,
individually, obtains acceptance at the same Goldilocks ratio.
One note to make here—because it is relevant to tuning—is

that tuning can only take place during the burn-in phase (that is,
some part of your chain you will discard later); you cannot tune
while you run your final MCMC run. Why not? Because tuning
the proposal distribution based on the past history of the chain
violates the “Markov” property that each step depends only on
the state at the previous step. Violating the Markov property
can be very bad: when you violate it, you lose all the provable
properties of MCMCon which all our righteous power is
based.
Another proxy for autocorrelation time useful for tuning is

the Expected Squared Jump Distance.41 This is the mean
squared distance the walker moves, per step. It is maximized
when the acceptance ratio is reasonable and the step size is
large; it is large when the exploration of the space is fast. This
proxy is easy to measure and use for tuning, and it is more
directly related to autocorrelation time than the acceptance
ratio. We recommend using it for tuning, though we have never
used it ourselves. Like the acceptance fraction, it can also be
used to tune in the case that the proposal distribution loops over
parameters. Once again, the user gets (in this case) D one-
dimensional tunings.
When sampling gets very slow, there are various tricks and

tips to work through. The huge bag of possible tricks is so large
that it goes way beyond the scope of this introductory article. In
our experience, it is valuable to make friends with at least one
statistician, one applied mathematician, and one computer
scientist. Between them, they ought to span the relevant
literature.

Problem 13. Run the MCMC sampling of Problem 4 with the
covariant Gaussian density. Give the proposal density q x x¢( ∣ ) a
diagonal variance tensor that is Q times the two-dimensional
identity matrix. Assess the acceptance fraction as a function of
Q. Find (very roughly) the value of Q that gives an acceptance
fraction of about 0.25. Do not try to optimize precisely; just

Figure 5. Solution to Problem 11: the autocorrelation function of the chain
from Problem 2. Figure 6. Solution to Problem 12: estimates of the integrated autocorrelation

time of different segments of the MCMC chain from Problem 2 (black lines)
and for the full chain (orange line) as a function of window size M. The
“optimized” value computed using an iterative procedure is overplotted as a
dashed line, and its value is listed in the title.

39 The argument and assumptions underlying the 0.234 fraction (and higher
acceptance fractions at lower numbers of dimensions) are laid out in Gelman
et al. (1996b).
40 This has a lot to do with Gibbs sampling, which is discussed in Section 10. 41 See Pasarica & Gelman (2010).
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evaluate the acceptance fraction on a logarithmic grid of Q with
values of Q separated by factors of 2. The solution to this
problem is shown in the left panel of Figure 7.

Problem 14. Redo Problem 13, but instead of trying to reach a
certain acceptance fraction, try to minimize the autocorrelation
time. You will need one of the autocorrelation-time estimators
you might have built in a previous problem. (This, by the way,
is the right thing to do, but often expensive.) What do you get
as the best value of Q in this case? Again, just evaluate on a
coarse logarithmic grid. The solution to this problem is shown
in the right panel of Figure 7.

Problem 15. In Problem 13 you varied only the parameter Q,
but really there are three free parameters (two variances and a
covariance). If the problem was D-dimensional, how many
tuning parameters would there be, in principle?

Problem 16. The Rosenbrock density is used as a demonstration
case for many samplers (see, e.g., Goodman & Weare 2010).
Test your sampler on this density:

f , exp
100 1
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. 151 2

2 1
2 2

1
2

q q
q q q
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- + -⎛
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⎞
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Tune the Gaussian proposal distribution in your M–H MCMC
sampler to sample this density efficiently. What autocorrelation
time do you get? Compare to what emcee42 gets.

7. Initialization and Burn-in

Just as most (though not all) MCMC methods require a
choice of proposal distribution, most (though not all) require a
choice about initialization: the walker needs (or walkers need)
to be started somewhere in the parameter space. In many use
cases for MCMC, the investigator wants to use MCMC to

obtain uncertainty information about or propagate uncertainty
into parameter estimates. In these cases, it makes sense to
initialize the walker or walkers at sensible parameter estimates,
found by optimizing a likelihood or a posterior pdf in advance
of sampling. In extremely high dimensions (large numbers of
parameters), this can be a bad idea, since the optimal
parameters are not necessarily near typical posterior samples,43

but in low dimensions (few to tens) this is often sensible.
Ideally, you will initialize the walker not at a completely

irrelevant point, nor at the optimum of the posterior pdf, but at
a typical or pretty good place in the posterior pdf. That would
minimize burn-in! But, in general, being at the optimum or
anywhere near a good place is usually better than a mindless
initialization.
As to burn-in: if you have started your sampler in a nontypical

place—or if you are concerned that you might have started your
sampler in a nontypical place—then you should discard the
beginning of your MCMC run before you do your inferences. This
discarded part is called the “burn-in.” Some practitioners insist that
burn-in cannot exist:44 so long as the initial point is a conceivable
sample, you are fine! Ensemble methods (like emcee,45 and
mentioned below in Section 10) require a burn-in phase and
discard, because the whole point is that the ensemble must grow
(or shrink) to fill the posterior pdf volume, and you cannot initialize
the ensemble sensibly if you do not know that volume a priori.
If you suspect, or if it is even possible, that your problem is

badly multimodal, then you will have to start at multiple points

Figure 7. Solutions to Problems 13 and 14: two methods of tuning the M–H proposal parameters. Left: acceptance fraction as a function of proposal scale for the
distribution from Problem 4(a). Right: integrated autocorrelation time for each parameter (indicated by the different colors) as a function of proposal scale parameter.

42 Available at http://dfm.io/emcee.

43 When the dimensionality of the parameter space gets very large, almost all
samples will be very far from the optimum of the posterior pdf. One way to
think about this is to think of a random Gaussian draw in D dimensions: a
typical draw will be D standard deviations Euclidean distance from the
maximum of the Gaussian. That’s a long way when D=100 or 1000! Another
way to think about it is that there are a lot of ways to move away from the point
you care about, but very few ways to move close to it. The upshot is that even
with an enormous sampling, if you are in large dimensions, not a single sample
will be very near the optimum.
44 Geyer (2011) takes this view.
45 See Foreman-Mackey et al. (2013).
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in parameter space and compare the resulting chains. By “badly
multimodal” we mean that there are peaks in the posterior pdf that
are connected by low-enough valleys that it is very unlikely or
takes a long time for a walker to traverse from one peak to the next.
If this might be an issue, then the best diagnosis is to start many
chains in parallel with different initializations and check that they
lead to identical (or very similar) posterior inferences (same pdf
location and shape and statistics).

Of course, if you find out the worst—if you find out that
different initializations lead to different posterior inferences—
you are in trouble: there is no trivial way to combine together
the samplings you get of different modes! You can either wait a
very long time so that you see a single walker in a single
MCMC run traverse from mode to mode enough times to make
a representative sampling (dozens or hundreds of times,
ideally), or you can use a high-end sampler (like nested
sampling; see Section 10) that is designed for such problems. In
principle, there are methods that involve splitting the space into
two spaces, sampling them separately, and then combining the
chains according to their relative evidence afterward. That’s a
research project beyond the scope of this article.

Of course, there are some kinds of multimodalities that might
not be a problem. For example, you can have two solutions to a
problem that differ only in the labeling of the components—say,
the Gaussians making up a mixture of Gaussians—that make up

the model. One solution has the K Gaussian components in one
order, and the other in another order, but they are identical
Gaussians in all other respects. Because these two solutions
make the same predictions for any data and only differ in their
irrelevant, latent, internal “naming” of components, they are not
really different solutions. This suggests that when you ask
whether the outputs of two MCMC chains are consistent with
one another, you should do so in the realm of the parameters you
care about, not irrelevant parameters that do not have an impact
on any present or future data.
But it is worth remembering that—just as MCMC is not a

good optimizer (generically, samples will not lie close to the
maximum of the posterior pdf)—it is also not a good search
algorithm. There is no sense in which (standard) MCMC
methods are efficient at searching, or engineered to search, all of
parameter space. If you really need to check all of parameter
space, you should put MCMC aside and do an exhaustive search
(which will in general take an enormous amount of time).

Problem 17. Redo Problem 2, but with different starting
positions. What happens as you make the starting position
extremely far from the origin? What is the scaling—as you
move the initialization further away, how much longer does it
take for the sampler to reach reasonable density?

Figure 8. Solution to Problem 20: MCMC samples from the Rosenbrock density (Equation (15)), with the mean shown with blue lines and the 0.16, 0.5, and 0.84
quantiles shown as vertical dashed lines.
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Problem 18. Check the scaling you found in Problem 17 with a
higher-dimensional Gaussian (try, for example, a 10d Gaussian).
The same or worse?

Problem 19. Import (or write) an optimizer, and upgrade the
code you wrote for Problem 17 to begin by optimizing p xln ( )
and only then start the MCMC sampler from that optimum. Use
a sensible optimizer. Compare the scaling you found in
Problem 17 to the same scaling for the optimizer. To make this
test fair, do not use the awesome math you know about
Gaussians to help you here; pretend that p(x) is an unknown
function with unknown derivatives.

8. Results, Error Bars, and Figures

For a committed probabilistic scientist—frequentist or
Bayesian—there is no single “answer”; there are only pdfs.
In a paper or in an email or in a conversation we might say
what “the answer is,” but even if we say it with an error bar, we
have departed the probabilistic program. There are many
principled ways to depart the program; in another forum, we
hope to say more about the economic explanation of how we
can make hard decisions in the context of probabilistic
reasoning.46 But without going into that economic model, it
is fair to say that a substantial problem with being a committed
probabilist is that when we publish, we are not permitted (not
now, at least) to publish a probability distribution over
publications. We have to publish one single, deterministic
text; we have to make a decision about what to write in the title,
the abstract, the tables, figures, and results section. Given an
MCMC sampling of the posterior pdf, what do we report as our
results?

One thing we can keep in mind to guide us in this is what we
said above (in Section 2), which is that samplings are good for
doing integrals. We should endeavor to use as our “results”
outputs from the MCMCthat are based on integrals computed
with the sampling. This includes expectations, medians,
quantiles, one-dimensional histograms, and multidimensional
histograms. This does not include the “best” sample or a mode
or optimum. The latter things are not necessarily illegitimate
outputs of the MCMC, but they do not make best use of the fact
that the sampling is a tool for integration, and we do not
recommend them.

Imagine that you are in the simplest case: you have a model
with a small number of parameters (say, three-ish), and only
one of them is of great interest. What are your options for the
“measurement” of this parameter? The only simple integral-
based options are the posterior mean or posterior median value
for the parameter.

For example, imagine that by MCMC you have generated
K samples kq of a parameter vector q. Now you have a scalar
function g q( ) that takes the parameter vector and returns a
scalar value,47 which could be as simple as a single
component of the parameter vector (one parameter from the
list), or something more complex. The mean-of-sampling

value gá ñ is just

g
K

g
1

, 16
k

K

k
1

å qá ñ ¬
=

( ) ( )

and the median-of-sampling value is just the [K/2]th value of
g kq( ) when the g kq( ) have been ordered (sorted) from lowest to
highest. These are both produced by integrals; the first is the
value returned by the expectation integral estimate; the second
is the value past which half of the integrated pdf lies.
What are your best options for the “uncertainty” or “limits” on

this parameter? The only simple integral-based options are either
variances or posterior quantiles. We usually use quantiles. That
is, the “1σ” error bar can be taken to be the half-size of the
central (or smallest) interval of the parameter that contains 68%
of the posterior samples. In our own work, we usually create a
68% interval or region by excluding the top and bottom 16% of
the posterior samples. Some more aggressive investigators find
the smallest interval that contains 68% (or 95%) of the samples.
Both are legitimate, and they are nearly identical for distributions
that are nearly symmetric around the mean. The “2σ” error bar
would be the same but for the 95% interval (excluding the top
and bottom 2.5%). Again, these limits can be estimated48 by
ordering the g kq( ) values and finding the q values such that some
fraction (0.68 or 0.95) of the samples lie between them. Again,
to form these limits, g q( ) must be a scalar function (so sorting is
well defined). Because of the danger of having them confused
with frequentist uncertainties, Bayesians usually call these
regions “credible” rather than “confidence” regions.49

One amusing thing is that if you choose the 68% interval
sensibly but use as the “measurement” the posterior mean, you
can get pathological situations (from large skewness) in which
the posterior mean measurement is actually outside the 1σ
confidence interval. For this reason (and others), we usually
recommend as a default behavior—in the one-dimensional case
—to choose the median of sampling as the measurement value,
the 16% quantile as the lower 1σ error bar, and the 84%
quantile as the upper 1σ error bar. This has pathologies in
higher dimensions (as we are about to see), but it is pretty safe
for one-dimensional answers.
The conservative scientist would show not just 68%

error bars but also 95% ones (to help readers visualize the
skew of the posterior pdf). The very conservative scientist
would also show a histogram of the posterior samples, with
the relevant quantiles (2.5%, 16%, 50%, 84%, and 97.5%)
indicated.
As we mentioned above, scientists often like to report the

“best sample,” that is, the sample with the highest posterior pdf
or f q( ) value. This is not usually a good idea. For one thing,
MCMC is a sampling algorithm, not an optimization algorithm:

46 The idea is that you can make principled decisions by optimizing the
expected utility under the posterior, given the data. This is a great idea! Of
course, we also have very deep, fundamental reasons that you cannot know
your utility precisely. The big issue is that your only sensible utility involves an
integral out to the “long term,” and the long term (by definition) includes
outcomes that are outside your present-day quantitative model.
47 For the median-of-sampling value, g q( ) needs to return a scalar, but
technically, for the mean of sampling, g q( ) can be a vector or something high-
dimensional.

48 One amusing thing about samplings, which are so beloved of us
probabilistic (Bayesian) reasoners, is that anything we do with a sampling,
like estimate an integral or a quantile, is just an old-school frequentist estimator
—a frequentist estimator of a Bayesian quantity, to be sure, but a frequentist
estimator nonetheless.
49 We do not like this terminology, because there is nothing about the words
“confidence” and “credible” that properly distinguish the difference between
these very different things. Confidence regions say what regions of
parameter space make data like the observed data; credible regions say
what regions of parameter space are probable given the data. The latter
require priors for their construction and are the intervals produced
by MCMC.

12

The Astrophysical Journal Supplement Series, 236:11 (18pp), 2018 May Hogg & Foreman-Mackey



there are no guarantees that it will find the optimum of the
posterior pdf in reasonable time.50 Second, the closeness of the
best sample to the posterior mode is a strong function of sample
size, and with very bad scaling.51 Third, if you just want an
optimum, use an optimizer! That is, we strongly advise against
reporting, as “the” measurement or “the result,” the parameter
value or values for the best sample. Giving some posterior
samples is a good idea (we return to this below).

If you feel drawn to give the best sample, instead give the
parameter values found by optimizing the posterior pdf, starting
at the best sample as an initialization (and sacrifice your
probabilism52). This optimal-posterior parameter value is
called the “maximum a posteriori” or “MAP” value for the
parameters: it is like a maximum-likelihood value but
regularized by the prior. It is an estimator with some good
(and some bad) properties, but it is not the point of MCMC and
therefore outside the scope of this article.

The parameter space q is usually multidimensional, and
usually it is more than one of those parameters that is of
interest. In this case, the mean or median of sampling can be
produced for each dimension. Because the sampling projected
onto any dimension is a marginalization of the posterior pdf,
any such one-dimensional mean or median is the mean or
median of the marginalized posterior pdf.

There is one oddity to note here, as it catches many
investigators by surprise: even if the model is good and the
posterior pdf is unimodal and well behaved, the median (or
even mean) of the posterior pdf for each of the parameters,
when taken together as a “best-fit” parameter vector θ*, will
not itself necessarily be a good fit to the data! If there is
substantial “curvature” to the pdf in the parameter space, the
mean or median of sampling does not necessarily lie at a high-
probability location of parameter space. This may seem
counterintuitive, but it is easy to see in the case of a “banana-
shaped” posterior pdf. This all relates to the fact that MCMC
is not an optimizer but a sampler. It is important, when
reporting the output of an MCMC run by giving means or
medians of the posterior pdf, to remind the reader or user of
that output that it does not necessarily represent (collectively)
a good fit to the data; these outputs only give information that
is useful one parameter at a time.

In principle, the only output from the sampling that safely
gives both probabilistic information about the result of the
inference and good-fitting models is a few—randomly chosen

—example samples. We strongly recommend this;53 in
particular, this is a better thing to do than to give the “best
sample,” which is not even guaranteed to be near the bulk of
the posterior pdf or the samples therefrom.
If you do return posterior samples to your audience, how

many should you return? There are only heuristic answers to
this, but a guideline is that if you only care about a single (one-
dimensional) parameter, you do not need many samples; a
dozen suffices to give you a reasonable posterior pdf mean and
variance.54 If you care about K parameters or dimensions of the
parameter space, in general the need for samples grows
exponentially (or perhaps even factorially!) with the number of
dimensions. So if you have a 10-dimensional space, expect to
be publishing your samples in an electronic table on the web!
If you do publish sufficient numbers of posterior samples,

you might find users who want to make serious use of them.55

Of course, figures are always better than tables, at least in the
printed form of scientific publications. There are several figures
that are useful and should be made every time you run MCMC;
we will describe a few here.

1. Trace plots.—The first set of plots are the “trace plots”—
the parameter values as a function of step number. These
plots can be used to select burn-in lengths, indicate
problems with the model or sampler, and qualitatively
judge convergence. This being said, it is important to
remember that good-looking trace plots do not guarantee
converged sampling and, even if the traces look okay, the
convergence diagnostics discussed in Section 5 might
identify problems.

2. Posterior predictive plots.—Another useful plot is the
predictive distribution for the model in data space. For
this plot, you take some K random samples from your
chain, plot the prediction that each sample makes for the
data, and overplot the observed data. This plot gives a
qualitative sense of how well the model fits the data, and
it can identify problems with sampling or convergence.

3. Corner plots or scatterplot matrices.—In a D-dimen-
sional parameter space, we recommend plotting all D
one-dimensional sample histograms and all D-choose-2
two-dimensional histograms (scatterplots) to show the
low-level covariances and nonlinearities. If you are
clever, all these plots can be arranged into a lovely and
informative triangle.56 These two-dimensional plots do
not in any sense contain all the information in the
sampling, but they are remarkable for locating expected
and unexpected parameter relationships and often

50 The sampler samples the pdf fairly. The tallest peak in the posterior is not
guaranteed to be—and in general is not—also the peak with the greatest
posterior “mass.” That is, the samples in a fair sampling will not necessarily
come predominantly from the tallest peak in the posterior pdf. They will come
from the peak with the greatest total integral of the likelihood over the prior.
These issues might sound “academic,” but when the number of parameters gets
large (greater than, say, 10), many normal intuitions one might have (if any)
about what is reasonably likely in a pdf are regularly violated. See also
footnote 43.
51 If you have a K-point sampling in a D-dimensional parameter space, there is
some best sample k

bestq( ). Now imagine that you want to find a point betterq( ) that
is 10 times closer to the true optimum. In the limit that K is large you have to
take (on average) a factor of 10D more samples! Any reasonable optimizer is
far, far better than this (in terms of compute time).
52 We choose not to count the number of papers out there that claim to
be “Bayesian” but then deliver the optimum of a posterior PDF. That
sacrifices not only probabilism but also all the useful things you get from
delivering a posterior, like protection from overfitting and nonapproximate
uncertainty propagation. You certainly do not need to be a Bayesian—you
can do most of the same science as a frequentist—but if you are using
MCMC, you probably are doing so because you want the benefits of
Bayesianism.

53 And we do it ourselves. For examples, you can look at Lang & Hogg (2012)
and Foreman-Mackey et al. (2014).
54 This point is made well by MacKay (2003).
55 We have been pushing this approach in our own work; our hierarchical
inferences (Hogg et al. 2010b; Foreman-Mackey et al. 2014) make use of
importance samplings, starting at posterior samplings from interim prior pdfs.
We have used this technology for computational convenience, but it is a
framework for building subsequent analyses on the posterior samplings
provided by other investigators. One key—if you want your posterior
samplings to be useful—is that you must release (along with your posterior
sampling) the value of the prior pdf at the locations of the samples. That is, you
must “decorate” the samples (augment them) with prior pdf values or calls, or
else release an executable version of your prior pdf, into which all your samples
can be put as inputs. In principle it is enough to release a description of your
prior pdf, but in practice it is rarely correct or specific enough for another
investigator to duplicate exactly. So just augment your samples!
56 Our favorite package these days is our own corner.py. Find it on the
internet.
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invaluable for suggesting reparameterizations and trans-
formations that simplify your problem.

Problem 20. Execute Problem 16, or—if you are lazy—just
install and use emcee to do the hard work. Now plot the x and y
histograms of a 10,000-point sampling of this distribution (you
might have to sample more than 10,000 and thin the chain), and
also plot the two-dimensional scatterplot of x, y samples.
Overplot on all three plots an indicator of the means and
medians of the samples along the x and y directions. Overplot
on all three plots the (above-)recommended quantiles of the
samples. Comment on the results. A partial solution to this
problem is shown in Figure 8.

9. Troubleshooting and Advice

When issues arise with MCMC sampling, they are some-
times difficult to diagnose: is it the MCMC code, the priors, the
likelihood function, the initialization, the tuning, or some-
thing else?

Functional testing.—In addition to a full set of unit tests for
every part of your code (yeah right57), we recommend building
some end-to-end functional tests that permit you to perform
MCMCruns with output that must meet certain expectations.
The simplest kind of functional test is to sample a known
distribution and check that the sampling has the moments you
expect (to within tolerances). For example, you can sample a
D-dimensional Gaussian distribution with known nontrivial
covariance and check that the empirical covariance comes out
as expected. This is an easy test to fail, so a success builds
confidence in any MCMC code.

Another important functional test is to sample the prior pdf.
This tests the sampler, tests that your priors really are what you
think they are (and there are so many ways for them not to be58),
and tests that your prior pdfs are proper (functions that can be
normalized). This test is most effective as a true end-to-end test
of your model if you structure your code such that the log-
probability function ln_f input to the MCMC scheme is set up
as a sum of a log-likelihood function ln_likelihood and a
log-prior function ln_prior. The sampler can be switched to
sampling the prior by a simple replacement of the ln_like-
lihood function with a trivial function that always returns zero.

MCMC should run well in this flat-likelihood case (priors
are usually easy to sample), and the output sample histograms
should look like what you expect given the prior pdfs you
coded. If the walkers run off to positive or negative infinity and
nothing seems to converge, your priors are probably not proper.
If the priors do not look as you expect, you have either a bug in
your code or else a thinko about how your priors ought to look.
Either way, diagnosis is in order.

Likelihood issues.—Sometimes there can be problems with
the likelihood function itself. For example, when you recall the
likelihood function with the same parameters, do you get
exactly the same answer? If you do not, your likelihood

function effectively depends on some random numbers; maybe
it includes within it an integral performed by the Monte Carlo
method? In general, you want to write your likelihood function
such that, even if it includes a numerical or stochastic integral,
it is designed to produce precisely the same value when it
returns to the same point in parameter space. One way to make
this happen is to choose the random numbers (those used for
any internal integration inside the likelihood function) in
advance and reuse them on every likelihood call. This provides
the same integral according to the same approximation, but it
both speeds up the code (no regeneration of random numbers)
and makes the likelihood function single valued. Even better is
to replace internal Monte Carlo integrals with deterministic
numerical (or even better analytic) integrals.
If things are giving trouble and you suspect the likelihood

function, another important test is to visualize slices through
parameter space. When you call the likelihood function on a
grid in each parameter (with the others fixed, say, to reasonable
values), you should see a likelihood value that is a smooth
function of each parameter, or at least as smooth as you expect.
Things like numerical integration, truncated expansions, or
adaptive approximations inside likelihood functions can make
the function noisy or jagged at small scales in parameter space.
These problems hurt optimizers more than samplers (although
Hamiltonian methods depend strongly on good derivatives; see
Section 10), but they usually point to code issues. In general,
plotting the likelihood function as a function of parameters
along slices in parameter space often reveals bugs or thinkos.
Low acceptance fraction.—If you find that you are getting

low acceptance fraction (in standard M–H MCMC or other
varieties for which there is such a concept), you can simply
reduce the sizes of the steps you consider to increase the
fraction that are accepted. This means decreasing the variance
of the proposal distribution, or whatever parameter or
parameters control the width of that distribution. If reducing
the variance of the proposal distribution does not increase the
acceptance fraction, then you have a bug. You must find that
bug by auditing your code or else returning to the functional
tests listed above.
Similarly for high acceptance fraction: if you are finding a

high acceptance fraction, then increasing the variance of the
proposal distribution must decrease the acceptance fraction. If it
does not, then you have a bug.
Sticky chains.—If you are concerned about acceptance

fraction or convergence, it makes sense to plot parameter
values as a function of “step number” or iteration number. That
is, plot the ordered chain in each parameter dimension. These
plots will have long horizontal patches if the chain is getting
stuck; a converged chain will show the walker traversing the
parameter space in every dimension fully many times over the
length of the run. Not a few times; many times. If you are using
an ensemble sampler,59 make plots showing all M walkers,
each a different color. A converged run for an ensemble
sampler will show every single walker traversing the parameter
space in every dimension many times.
Initialization dependence.—If you initialize your MCMC

runs in different places in parameter space, do you get the same
(or very similar) final parameter samplings, in mean and
variance? If you do not, then your posterior pdf is badly

57 If you are not unit testing, you are probably making some very big mistakes.
It makes sense to put in unit tests for every part of your code, especially the
parts of your code that are relied on for correctness in multiple locations, like
your MCMC sampler.
58 It is easy to think you have flat priors when in practice your sampler has flat
priors in the logarithms of the parameters or inverses of the parameters. Also, it
is easy to have improper priors when you think they are proper, because limits
are not working, or you were wrong about the convergence of some integral.
Sometimes the prior pdf in practice has different edges than you think because
there is some censoring happening that you have not considered. And then, of
course, it is possible for your sampler itself to be buggy.

59 Such as emcee (Foreman-Mackey et al. 2013); one nice thing about the
ensemble sampler is that it gives you great diagnostic information
automatically.
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multimodal; trivial MCMC methods probably will not fix your
problem. Not to put too fine a point on it: if your results are
initialization dependent, then your MCMC runs are not
converged.

You have to either go to a method that tries to explore the
posterior more liberally, such as nested sampling or simulated
tempering, or else split your “model” up into several
submodels, each of which contains different posterior modes.
In general, this problem is hard to fix; as we mentioned above,
it is provably impossible to explore all of parameter space if the
posterior pdf is complex in morphology. We do not have very
useful advice here, except to spend time learning about the
multiple modes in the posterior pdf and what each “means” or
corresponds to, and to do your best to express in your results
the multiple optima. One of the miracles of MCMC is that if
you can fairly sample as complex posterior pdf, the fraction of
samples in each mode tends to the relative total integrated
posterior probability inside each mode, as the sampling
converges.

Ensemble samplers react to multiple modes by obtaining
very low acceptance ratio,60 because the samplers in the
different modes are not easily able to “help one another” move
efficiently. Again, if the acceptance ratio is low and there
appear to be multiple modes, it is likely that the sampling will
also be initialization dependent, and it is very unlikely that your
sampling is going to be converged.

Bad initialization.—If you initialize your sampler in a
disallowed region of parameter space—that is, a part of the
space with f 0q =( ) (so your ln_f() function returns -Inf)
—it might have a very hard time random-walking out of that
location. At initialization time, it is important to test that the
initialization is permitted. For ensemble methods, it is
important to test that all the walkers in the ensemble are
initialized to permitted values.

Parameterization problems.—It helps to think carefully
about how to parameterize. For example, if there is an angle f
in your problem, and your prior requires it to be between 0 and
2π, and the posterior mode is very near 0, a little bit of
probability leaking below 0 plus the prior cutoffs plus mod-
2πsymmetry makes an intrinsically unimodal problem multi-
modal! In these cases, we usually advise reparameterization
from a (say) amplitude A and angle f to two vector components
a A cosfº and b A sinfº . Of course, this reparameteriza-
tion changes significantly the form of the prior pdf (the
transformation brings in a Jacobian); it has to be adjusted
with care.

To be explicit, imagine that you have parameters A and f
and priors p(A) and p f( ). Now imagine that instead (and very
sensibly) you want to sample in parameters x A cos fº ( ) and
y A sin fº ( ). What is the proper prior to apply to x, y? It is not

just p(A)p(f) with A x y2 2= + and y xarctan ,f = ( )!
That’s close, though! There is a correction factor, which is
the absolute value of the determinant of the Jacobian matrix
d A d x y, ,f∣∣ ( ) ( )∣∣. That is, it is the determinant of the full
derivative of one set of parameters with respect to the other.
Keep your units straight!61 In this particular case, the Jacobian

is equal to 1/A, such that

p x y
A

p A p,
1

, 17f=( ) ( ) ( ) ( )

where A x y2 2= + and y xarctan ,f = ( ).62
For another example, sometimes there is almost an exact

degeneracy between two parameters, say a and b. Then it
makes sense to switch to parameters a+b and a− b, or some
other linear combinations where correlations or near degen-
eracies are likely to be reduced. Again, such transformations
require also prior transformations, which must be made with
care. There are some affine-invariant samplers63 that are
invariant to such transformations, but if you are not using
such a sampler, it is worth getting out ahead of these problems.
They can be found by performing an exploratory sampling,
making a triangle plot as described above, and looking for
narrow diagonal lines in the two-dimensional scatterplots.
For another example, sometimes some parameters are

continuous, and some are integer (or discrete). In this case, it
is sufficient, in the context of M–H MCMC, to make custom
proposal distributions for the integer parameters that make
sure only integers are proposed (provided that care is taken to
make sure that detailed balance is preserved). An example is to
have a proposal that has some probability of incrementing the
parameter up and an equal (that is, the same) probability of
incrementing it down. Some samplers implicitly or explicitly
assume that all parameters are continuous;64 these should be
avoided when some parameters are integer. If you really want
to use such samplers when some parameters are discrete, you
have to put a round() or int() operation into the likelihood
and prior functions. This makes for a stepwise-constant
posterior pdf. It is a hack, but it works in most circumstances.
For yet another example, there might be constraints such that

all acceptable models lie on a nontrivial, nonlinear subspace of
your parameter space. Here almost no arbitrary steps in
parameter space could lead to an acceptance, since if you move
arbitrarily, you are very unlikely to hit the subspace! Your best
move here is to reparameterize so there are only models on that
subspace. We are not claiming that that reparameterization is
always easy to find; the mathematics of Lagrange multipliers
can be useful here.
Model checking.—All models are wrong, but some are

useful. That’s not a quote from Box, but it is close.65 The point
(for our purposes) is that if you check your model hard enough
—that is, you take enough data—you will certainly rule it
out.66 “Model checking” is an enormous subject that goes way

60 Although maybe this is not fundamental; see kombine at https://github.
com/bfarr/kombine.
61 See Hogg (2012) for advice on how to check and test these transformations
using dimensional analysis.

62 Exercise to the reader: do the same but with x A cos fº ( ) and y º
A sin f( ).

63 Note how much we like to cite emcee (Foreman-Mackey et al. 2013)!
64 Once again, Foreman-Mackey et al. (2013).
65 The real quotation is a parenthetical sentence: “Remember that all models
are wrong; the practical question is how wrong do they have to be to not be
useful” (Box & Draper 1987, p. 74). It is amazing how rarely this is ever
quoted correctly; or maybe there is another source for this quotation?
66 Physicists sometimes forget this and believe that various physical theories,
such as quantum electrodynamics or the cold dark matter cosmological model,
are strictly True with a capital T. First of all, there is no way to know that for
sure, and second of all, even if they are true, they do not precisely explain any
observation, which is also affected by various kinds of auxiliary effects and
noises for which there is (and can be, for deep reasons, to be discussed in other
documents in this series) no extremely precise model. So in detail, any model
of any specific observation must be wrong, even in the (exceedingly unlikely)
event that the fundamental model is correct.
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beyond the scope of this article, for which reason we will not
say much about it here except to make two points:

The first—and most important—point about model checking
is that you always learn a huge amount by checking the model.
What this entails is looking at the distribution of residuals or
the quality of the predictions of the model when compared
to the data. There are methods (like the chi-squared statistic and
the Bayesian evidence integral) that check the absolute quality
of the model in a scalar way. These are usually uninformative,
because (as we noted) all models are wrong, and eventually the
data will be good enough to return a bad statistic here.67

Much more informative are methods (like plotting residuals of
the data away from the model in the space of the data) that look
at what parts of the data the model “explains well” and what
parts of the data the model “explains badly.” These kinds of
experiments usually reveal inadequacies of the model in a rich
way, or confirm that certain assumptions are bad. Cross-
validation68 is a framework for constructing valuable tests of
this form, as is posterior predictive checking.69 Indeed, making
posterior predictions of new data, and testing the model by
taking completely new data and comparing to those predictions,
is the strongest test of any model. Each sample from the MCMC
chain provides a prediction for future data; the distribution over
these sample predictions is the posterior prediction for new data.
Importantly, you want to find ways to compare your model to
your data in the space of the data. Do not just look at the
parameter space of your model. Look at the data. It is the data
that really exist, especially when all models are wrong!

There are model-checking methods (like varying the prior or
assumptions in the likelihood function and rerunning MCMC)
that test the sensitivity of results to assumptions. Not only are
these very valuable for testing the model, but they are also
essential for writing any paper about your results: the reader
always wants to know the sensitivity of results to assump-
tions.70 Once again, it is important to find ways to display the
results of such tests in the space of the data. All we will say
here about these kinds of rich model tests is that you should do
them and report the results.

The second—and less important—point about model check-
ing is that the ur-Bayesian thing to be doing is computing a
Bayesian evidence integral. However, it is usually inadvisable:
The integral is expensive to compute. Most MCMC methods
are cleverly designed to avoid computing this integral (as we
note above in Section 1), so it usually adds expense to the
project. At the end of the day, it returns only a single, scalar
number, with no guidance about how to use it (and indeed there
are only heuristics to reach for). If your model is wrong, the
richer tests of visualization of residuals or sensitivity to
assumptions are much more likely to lead to insight about what
changes to make or what new directions to explore.71

10. More Sophisticated Sampling Methods

As we have discussed above (Section 3), MCMC methods
are proven to be correct “in the limit,” that is, when an infinite
number of samples have been taken. When the function f q( )
has challenging properties, the results can approach this limit
very slowly (or not at all72). For this reason, in the finite
duration of a scientific project, most users of MCMC have one
of two (related) problems: either (1)it is taking too long—it is
taking too many steps or executing too many calls of the
function f q( ) to get independent samples—or (2)it is not
exploring the full parameter space, i.e., there are local optima
(or bad local geometry around those optima) “trapping” the
algorithm.
There is no general, problem-independent solution for either

of these problems. Indeed, there are many different strategies
that work well or badly for different functions f q( ). In this
section, we will try to guide the reader toward methods that
might help in different circumstances. We will not give a full
description of all the MCMC algorithms out there, but just
provide some field notes and pointers to references. New
MCMC methods are being developed all the time, so a reader
with a serious problem would do well to consult with the
applied mathematics or statistics literature.73 The different
methods to which we refer here are (in general) very different
in their difficulty of implementation. We will not help with that
either, except to say that there are more and more open-source
or distributed packages every year. We will try to name some
current implementations in the notes, but any list compiled
today will be incomplete tomorrow.74 The spaces of MCMC
methods and MCMC method implementations are both
growing rapidly, in part because MCMC has become such a
core technology in the empirical sciences.
All we are going to do here is give a cursory mention to

some methods we know about, with some keywords that can be
used to search more deeply. There is no sense in which this list
is comprehensive; these are just methods (or method classes)
that are likely to be useful to projects similar to projects we
ourselves have executed.
Ensembles.—As we discussed (Section 6), one of the critical

challenges in the use of MCMC is tuning the proposal pdf
q q q¢( ∣ ). In problems in which all of the parameters (all of the
components or entries of q) are somehow “equivalent,” or the
parameters can be seen as components of a vector in a vector
space, there are ensemble methods that make use of not just one
random-walker but instead many walkers to automatically
generate a properly tuned proposal distribution. These methods
make use of the distribution of a set of independent walkers in
the parameter space (q-space) to gauge the typical step sizes

67 Sometimes Bayesians like to complain that the chi-squared statistic is a
measure of the size of your data! That’s true when your model is wrong (that is,
always); see footnote 66.
68 Cross-validation is an incredibly valuable set of techniques that all
astronomers should know. it is not clear what to cite here, but one possibility
is Geisser (1993).
69 The posterior predictive check is one of the Bayesian equivalents of a
goodness-of-fit test (Gelman et al. 1996a).
70 And be sure not to forget that there are (at least) as many assumptions
encoded in your likelihood function as there are in your prior pdfs, probably far
more. No data analysis is protected from subjectivity.
71 There is a growing idea that Bayesian inference—and inference in general
—is about much more than inferring parameter values: it is about under-
standing and elaborating models (e.g., Gabry et al. 2017).

72 You can get essentially infinite autocorrelation times if the function has
isolated regions of finite density separated by large seas of zero or near-zero
density. One disturbing thing about these situations is that any empirical
measure of autocorrelation time will give a finite answer, but the density will
not be properly sampled, ever. This problem is related to a problem that any
simple empirical measure of the autocorrelation time will be an underestimate.
In principle, you can find these badly multimodal cases with multiple restarts of
the chain and (things like) the Gelman–Rubin diagnostic (Gelman &
Rubin 1992).
73 Your best interface to these literatures is often a colleague in another
department, like applied mathematics, statistics, or computer science. Break
down those walls!
74 One checkpoint in this literature is the compilation volume by Brooks et al.
(2011), but much has been developed and changed even since that was written.
For less in-depth but more current—and more astrophysically relevant—
coverage, see also the review by Sharma (2017).
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and directions at which new proposals should be made,
obviating or greatly reducing the tuning requirements. This
tuning improvement comes at the cost of a burn-in phase at the
beginning of any run—a phase that lasts a few autocorrelation
times—in which the ensemble expands or shrinks to fill the
posterior volume. We are coauthors on one of these methods,
emcee,75 which is popular in the physical sciences, but there
are others.76 It is worthy of note that ensemble methods
have particular peculiarities about initialization and conv-
ergence diagnostics that are worth understanding before use.77

Because ensemble methods are updating independent MCMC
chains, they are often easy to parallelize to make use of
multiple cores.

Gibbs—Neither M–H MCMC nor most ensemble methods
are good at going to very large numbers of parameters.78 Even
dozens of parameters can be enough to drive autocorrelation
times extremely large. With larger numbers of parameters, new
methods need to be considered. Gibbs sampling is worth
considering when the number of parameters is large, and the
different parameters have different “scopes” in the problem.

In many problems that have large numbers of parameters, the
parameters—the components or entries of the blob q—are not
equivalent at all. Some are global parameters, which touch or
have an effect on every subpart of the data blob D, while others
are local parameters, which only touch a small subset of the
data. Or, in another use case, some parameters are linear
parameters that—at fixed values of the other parameters—will
have a Gaussian likelihood or posterior pdf. In these problems,
there are some directions in parameter space that are hard to
move in (they require complete recalculation of the full
nonlinear function f q( )) and other directions that are very easy
to move in (they require only partial recalculations or the
sampling could even be analytic and exact). For problems with
these structures, Gibbs samplers are ideal, and there are good
implementations.79

A trivial kind of Gibbs sampling was mentioned above
(Section 3) in the discussion of M–H MCMC: even when
running vanilla M–H MCMC, it is often useful to update only
one parameter at a time, that is, do only axis-aligned moves in
the q-space, cycling through axes as you go from step to step.
This helps with tuning and diagnosis, but it also permits a good
implementation to capitalize on simpler calculations for the
simpler parameter directions.80

Gibbs sampling can also be very good for exploiting
multiprocessing: global parameter updates might require a serial

recalculation of the full likelihood, but local parameter updates
can be done in parallel, with each local parameter working on its
local bit of data all at the same time. This kind of structure is
common in hierarchical inference, where local parameters touch
only individual objects in some population, say, and global
parameters are parameters of that population as a whole.
Parallelization is built into some Gibbs implementations.81

Hamiltonian.—At the time of writing, the premier
approaches for problems with large numbers of parameters
are Hamiltonian methods.82 These methods perform very well
at large dimensions but require (for speed) analytic derivatives
of the function f q( ) with respect to the parameters.
In many cases of interest, the function f q( ) can be

analytically differentiated, such that it is possible to quickly
execute a gradient df dq evaluation. Indeed, in the modern
world of computing, there are even auto-differentiation systems
that deliver automatically code that produces the gradient of
any function you can write.83 There are a class of MCMC
methods that make use of gradient information to effectively
inform the proposal distribution and thus speed sampling.
The reason these methods are “Hamiltonian” is that they use a

kind of Hamiltonian dynamics to improve the sampling: they
augment the position of the walker in parameter space with a
fictitious momentum in parameter space and use the derivatives in
the accept–reject step. The momentum helps the sampler move
through the space on a more efficient variant of the random walk.
The ergodicity property of (relevant) dynamical systems ensures
good sampling (in the infinite-time limit, of course); the
connection to dynamics is that the negative logarithm of f q( )
becomes the potential for the dynamical system. At the present
day, these samplers are essentially the only good options when the
number of parameters gets very large.
Importance.—Sometimes it is possible to sample efficiently

from a distribution that is close to the target function f q( ) you
care about, even when the target f q( ) itself is hard to sample
efficiently with MCMC. An example is a problem that has a
simple (Gaussian, say) likelihood function times a nontrivial
prior: it is easy to sample from a Gaussian likelihood times a
Gaussian prior, even without MCMC, but it might be hard to
do the same sampling under a more complex prior. Importance
sampling is a direct sampling method (not really an
MCMCmethod at all): you take a sampling from the
approximate function (which by assumption was easy) and
then reweight the sampling (or do a subsequent rejection of
samples) using the ratio of the true function to the approximate
function as a weight or probability. We use this quite a bit in
our hierarchical inferences,84 as well as in problems where the
dimensionality is low.85

Two of the significant technical details for importance
sampling are the following: the approximate function must have
the same (or greater) support as the true function, and the method

75 Foreman-Mackey et al. (2013).
76 A few ensemble methods that are being used in astronomy: Differential
Evolution MCMC (Ter Braak 2006; Nelson et al. 2014) and kombine (B. Farr
& W. M. Farr 2018, in preparation).
77 For example, we find empirically that it is better to initialize the ensemble in
a ball that is smaller than the full posterior pdf width, not larger. For another
example, the ensemble produces a set of chains that can be used to compute the
Gelman–Rubin diagnostic (Gelman & Rubin 1992), but this is not a
conservative test if the initialization was made in a small ball.
78 See the excellent rant “Ensemble Methods Are Doomed to Fail in High
Dimensions” at http://andrewgelman.com/2017/03/15/ensemble-methods-
doomed-fail-high-dimensions/.
79 For example, Stan (http://mc-stan.org).
80 The point is that sometimes there are some parameters that only affect a very
small number of data points, or parameters that change the model or the
likelihood function and prior values in a very simple-to-compute way. If such
simple parameters exist, it makes sense to write your likelihood and prior code
to capitalize on these simplicities. This is not always trivial, because it may
involve caching parts of the calculation and so on. Details would be beyond our
scope.

81 For example, JAGS (http://mcmc-jags.sourceforge.net/) automatically
parallelizes Gibbs problems.
82 For a review of the theory behind these methods, see Neal (2011).
83 The idea is that for (almost) any function you can write, a robot can write
the function that is the derivative of that function, using simple differentiation
rules and the magic of the chain rule. Differentiation is a typographic operation
on computer functions! The idea is not to take numerical (small difference)
derivatives of the code; there is almost no way that finite-difference
differentiation could help your sampling in the long run.
84 For example, we use importance sampling to convert individual-planet
exoplanet inferences (all performed with dumb priors) into a full-population
consistent hierarchical model in Hogg et al. (2010b). See also footnote 55.
85 See, e.g., Price-Whelan et al. (2017).
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degrades in efficiency as the two functions diverge. If the ratio of
the true function to the approximate function is to be used as a
probability for rejection of samples, then the true function must
be greater than or equal to the approximate function everywhere!

Tempering.—A huge problem for MCMC samplers—which
make local moves based on local positioning in the parameter
space—is that there can be multiple modes in the function
f q( ), separated by valleys of zero or near-zero density. A
vanilla MCMC method cannot easily cross such valleys with
local moves. The idea behind simulated tempering and related
methods is to “smooth out” the function f q( ) or reduce its
dynamic range, to make the peaks less tall and the valleys less
deep, to permit the MCMC random walk to cross the valleys.
The standard method is to introduce a “temperature” variable
and, while sampling, take the likelihood function to the power
of the inverse temperature (or, if working in the logarithm,
multiply the log-likelihood by the inverse temperature). When
the temperature is high, this reduces the influence of the
likelihood function relative to the prior pdf and (assuming that
the prior pdf is easy to sample) makes movement in the
parameter space easier. As with Hamiltonian methods, the
sense in which this system makes use of a “temperature” is that
the logarithm of f q( ) can be related to a potential, in a physical
analogy. At each step, when the temperature has moved away
from unity, the distribution being sampled is not exactly f q( ),
but the results can be transformed into a fair sampling.

Nested.—Similar to tempering-like methods are a class of
methods called “nested” samplers,86 which also smoothly change
the target distribution away from f q( ). In the nested case,
instead of increasing the temperature, the samplings are of a
censored version of the prior, censored by the value of the
likelihood function. When the likelihood censoring is strong,
only the most high-likelihood parts of the prior get sampled;
when the likelihood censoring is weak, almost all of the prior
gets sampled. The idea behind nested sampling—like tempering
—is that it is designed to be a good method for exploring the full
parameter space or searching for all of the modes of the posterior
pdf. It is also designed such that it produces not just a sampling
but also an estimate of the integral Z of the likelihood times the
prior (the Bayes factor or fully marginalized likelihood).

Reversible jump.—Finally, there are some extreme problems
in which it is not just hard to sample in the parameter space, but
the parameter space itself is not of fixed dimension.

For example, in the case in which you are modeling an
astronomical image with a collection of stars and you do not
know how many stars to use, the number of stars itself is a
parameter, so the number of parameters is itself a function of
the parameters.87 In these cases you can only use certain kinds
of samplers (though M–H MCMC is one you can choose), and,
in addition, you need to make special kinds of proposals that
permit the system to jump from one parameter space to another
that has different dimensionality. In these cases, the concept of
detailed balance becomes nontrivial, but there are criteria for
creating reversible-jump proposals between the parameter
spaces. These methods are best built and operated under the
supervision of a trained professional.
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