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On The Rationale of Maximum=Entropy  Methods 

EDWIN T. JAYNES 

Invited Paper 

Abstmct-We discuss the relations between maximumentropy (MAX- 
ENT) and other methods  of  spectral  analysis such as the Schpster, 
Blackman-Tukey, mpximum4ike4ihood, Bayesian, and Autorepsive 
(AR, ARM4 or ARIMA) models, emphrsizing that they are not in  con- 
flict, but  rather are appropriate in different problema We conclude 
0lat: 

1) ‘‘Olthodox” sompring theory  methods  are useful in  problems 
where we have a known model (sampling distribution)  for the properties 
of the noise, but no appreciable  prior  infcmnation about  the quantities 

2) M A X E N T  is optimal in problems  where we  have prior  information 
about multiplicities, but  no noise. 

3) The fuU  Bayyesinn solution indudes  both of  these as special cases 
and is needed  in  problems  where we have both prior  information and 
noise. 

4) AR models are in one sense a special case of MAXENT, but in  an- 
other sense they  are  ubiquitous in all  spectral  analysis  problems with 
discrete  time series 

5) Empirical methods such as Blackman-Tukey, which do  not invoke 
even a likelihood function,  are useful in  the preliminary,  exploratory 
phase of a  problem where our knowledge is sufficient to permit  intuitive 
judgments about how to organize a  calculation  (smoothing,  decimation, 
windows, prewhitening, padding  with zeroes, etc.) but insufficient to 
set  up  a  quantitative  model which would do  the proper  thin@ for us 
automatically  and  optimally. 

being estimated. 

T 
I. INTRODUCTION 

HIS PAPER concerns  what is in  one sense a small detail 
in  the  context of the vast amount of work done  on spec- 
tral analysis. But in another sense, we are  concerned  with 

the general principles  underlying all scientific inference, in 
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which context spectral analysis is only  one specialized applica- 
tion.  Our aim is to clarify some  currently puzzling questions 
about  rationale  and  method. 

There  are  many  different spectral analysis problems,  corre- 
sponding to different kinds of prior information  about  the 
phenomenon being observed, different kinds of data, different 
kinds of perturbing noise, and different objectives. It is, there- 
fore, quite meaningless to pass judgment  on  the merits of any 
proposed method unless one specifies clearly: “In what class 
of problems is this  method  intended to be used?” 

Most  of the  current confusion on these questions is, in the 
writer’s opinion,  the direct  result of failure to define the  prob- 
lem  explicitly enough. Today, programming and  running  a 
computer is much easier than  actually  thinking  about a prob- 
lem, so one may program an algorithm appropriate to  one kind 
of problem,  and  then feed it  the  data of an entirely different 
problem. If the result is unsatisfactory,  there is an  undertand- 
able tendency  to blame the algorithm  and the  method  that 
produced it,  rather  than  the  faulty application. 

The maximum-entropy (MAXENT) method is particularly 
vulnerable in  this respect, because its rationale is so different 
from  that of “orthodox” statistics that  it seems new and my$ 
terious to  many  (although historically it  dates back to Boltz- 
mann, 1877). To compound  the  confusion,  the MAXENT 
spectral estimate is, for  one particular  kind of data, identical 
in analytical form with that of an AR model, as found by 
Burg [ 11. 

If that were not enough,  any MAXENT solution also defines 
a  particular  model for which the predictive distribution using 
the maximum-likelihood  estimates of the parameters, is iden- 
tical with the MAXENT distribution. This is essentially the 
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Pitman-Koopman theorem used  backwards; given any  data, 
the MAXENT distribution,  having  exponential  form, in effect 
creates  a  model  for  which  those  data  would  have  been suffi- 
cient  statistics.  This  can give one  a deeper  understanding  of 
the  terms  “information”  and “sufficiency” in statistics,  but 
only  after  some deep thought. As a  result,  almost  every  con- 
ceivable  opinion about  the  relation  between maximum entropy, 
maximum  likelihood,  and  autoregression  can  be  found  ex- 
pressed in  the  current  literature. 

Therefore,  we first point out a class of  problems  in  which 
MAXENT is demonstrably  optimal,  in  the  sense  of  a  simple 
combinatorial  theorem.  Secondly, we stress that  the analytical 
form of the MAXENT distribution is determined  jointly  by 
the  “hypothesis  space”  representing  our  prior  information 
about  the  phenomenon,  and  by  the  kind of data we  have. To 
change either will result in a  different  analytical  form  of  our 
spectral  estimate,  that  of Burg being  only the  first discovered. 

11. ENTROPY -DISCUSSION 

For  many decades  it  has  been  recognized, or conjectured, 
that  the  notion  of  entropy defines  a  kind  of  measure on  the 
space of probability  distributions,  such  that  those of high 
entropy are in  some  sense  favored  over  others.  The  basis  for 
this was stated first in a  variety  of  intuitive  forms:  that dis- 
tributions of  higher entropy  represent  more  “disorder,”  that 
they are “smoother,”  “more  probable,” “less predictable,’,’ 
that  they “assume less” according to  Shannon’s interpretation 
of entropy as an  information measure, etc. 

While each  of  these intuitions  doubtless expresses an  element 
of truth,  none seems  explicit  enough to  lend itself t o  a  “hard,” 
quantitative  demonstration of the kind  we  are  accustomed to 
having in other  areas of applied  mathematics.  Accordingly, 
many  approaching  this field are  disconcerted  by  what .they 
Sense as a  kind of vagueness, the  underlying  theory lacking 
solid content. 

This  has not prevented the useful exploitation of this  prop- 
erty of entropy.  The MAXENT principle, stated  most  briefly, 
is: when we make  inferences  based on  incomplete  information, 
we should  draw them  from  that  probability  distribution  that 
has the maximum  entropy  permitted  by  the  information  we 
do  have. 

Essentially all of the known results of Statistical  Mechanics, 
equilibrium  and  nonequilibrium, are derivable  consequences  of 
this principle. In image reconstruction and  spectral analysis, 
MAXENT takes  into  account cogent information  about multi- 
plicities that  orthodox  statistics, because of its failure to  admit 
prior probabilities, misses. 

But  while the pragmatic  usefulness  of MAXENT is well estab- 
lished in  a  variety  of  applications,  this  leaves  an  unanswered 
question in  the minds of many.  Granted  that the  distribution 
of maximum  entropy  has  a  favored  status, in exactly  what 
sense, and  how  strongly,  are  distributions of lower  entropy 
ruled  out?  Just  what are we accomplishing  when  we  maximize 
entropy? 

We shall try  to explain  this  here,  not in  terms of the most 
general information  theory  rationale originally  advanced [SI, 
but  in  terms of an  entropy  concentration  property  that is free 
of all  vagueness, at  the cost  of  somewhat  restricted  application. 

Probably most information  theorists have  considered  it ob- 
vious that,  in  some sense, the possible  distributions  are  concen- 
trated  strongly  near the  one of maximum  entropy; i.e., that 
distributions  with  appreciably  lower  entropy  than the maximum 
permitted  by  our  data are  atypical  of  those  allowed by  the 
data. 

Schrodinger [ 121,  noting this concentration  property quali- 
tatively, saw it as the reason  why,  in  various  problems, the 
Darwin-Fowler  method  and the Boltzmann  “method of  the 
most  probable  distribution”  lead to  the same  result in the limit 
N + 00, where N is a  suitable  “size”  parameter  (in  Statistical 
Mechanics, the  number of particles in a system; in Communi- 
cation  Theory the number  of  symbols  in  a  message; in Statis- 
tical Inference,  the  number of trials  of  a  random  experiment, 
etc.).  A  general  proof of this  limiting  form is given by Van 
Campenhout  and  Cover [ 141. 

But  these  results,  pertaining  only to  the limiting  distribution, 
leave  us in the same unstatisfactory  state as did the original 
limit theorem of Jacob  Bernoulli  (1713): {as N + 00, the ob- 
servable  frequency f = r/N of successes  converges in probability 
to  p } .  This said nothing  about  how large N must  be for  a 
given accuracy.  For  applications  one needed the  more  explicit 
deMoivre-Laplace theorem:  {Asymptotically, f - N ( p ,  0) 

where u2 = l\rl p(  1 - p ) } .  
Similarily, in our  present  problem  it would be desirable to  

have  a quantitative  demonstration of this  entropy  concentration 
phenomenon  for  finite N ,  so that  one  can see  just  how the 
limit is approached.  This is so particularly  because  there  are 
still some  who,  apparently  unaware or unconvinced  of the 
reality of the  phenomenon,  reject  the Principle  of  Maximum 
Entropy as a  method of inference. 

This  problem was discussed at  the MIT Maximum Entropy 
Formalism  Conference of  May 1978,  in  connection  with  some 
alternative  solutions  that  had  been  proposed  for  maximumen- 
tropy problems. The result was a  lengthy  but awkward  and 
unsatisfactory  analysis [ 71 in  which real insight into  the prob- 
lem  had not  yet  been achieved. We give here  a  simpler,  more 
accurate,  and  more  general  treatment  of  entropy  concentration. 

The general  Principle  of  Maximum Entropy  is  applicable to  
any  problem  of  inference  with  a  well-defied  hypothesis  space 
and  noiseless but  incomplete  data,  whether or  not  it involves 
a  repetitive  situation  such as a  random  experiment.  However, 
we consider  below  only the special  applications  where  we  use 
entropy  as  a  criterion  for  estimating  frequencies  in  a  random 
experiment  about which incomplete  information is available. 
As will be  shown  elsewhere, this  same  concentration  theorem 
establishes the  fundamental  status of entropy as a  criterion 
for  testing  hypotheses  about  systematic  effects  in  experiments 
where  frequency  data  are available. 

111. ENTROPY CONCENTRATION THEOREM 
A  random  experiment has  n  possible  results  at  each  trial; 

thus  in N trials there  are # conceivable outcomes  (we  use  the 
word  “result”  for  a  single  trial,  while  “outcome”  refers to  the 
experiment as a  whole;  thus  one  outcome consists  of  an  enum- 
eration of N results, including their  order).  Each  outcome 
yields  a  set of sample  numbers {Ni} and  frequencies { fi = N f /  
N ,  1 < i < n}, with  an  entropy 

This  encompasses  many different scenarios, for  example: 
I )  Generalized Loaded Dice: A  die  with  n  faces is tossed 

N times, the  ith face turning up  Ni times. 
2 )  Statistical Mechanics:  A  system contains N molecules, 

Ni of which  are in  the  ith  quantum  state. 
3) Communication: We receive  a message  of N symbols, 

chosen from  an  alphabet  of  n  letters, the  ith  letter occurring 
Ni times. 
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4)  Image  Reconstruction: N elements of luminance  are dis- 
tributed over n pixels to form a  scene, the  ith pixel receiving a 
fraction fi = N J N  of the  total luminance. 
5) Time Series: Nature generates N realizations of a time 

series Y E  bo, y1, * . * , YT} of which n different sequences 
{ Y(’) * . Y @ ) }  are possible. The  ith sequence Y(’? = - - * 

y~ } is realized Ni times. ( 4 
Consider the subclass C of all possible outcomes  that could 

be observed in N trials, compatible with  m  linearly independent 
constraints (m < n) of the  form 

n 

i=l 
Ajifi=dj,  1 G j G m .  

The  conceptual  interpretation is that m different “physical 
quantities” have been  measured, the  matrix Aji defines their 
“nature,”  and D = { d l  * - * dm} is our  data set. For example, 
in image reconstruction Aji might be the digitized point-spread 
function of our telescope, and D the resulting  blurred image, 
from which we  wish to estimate  the fi representing the most 
plausible true scene. The data D tell us that  the  actual  outcome 
must  have  been in class C, but  do  not  determine  the frequen- 
cies ( f i} .  We examine  the  combinatorial basis for using-and 
the consequences of failing to use-the entropy  (1) as a  crite- 
rion  for estimating the Vi}. 

A  certain fraction F of the  outcomes  in class C will yield an 
entropy in the range 

where H,, is determined  by  the well-known algorithm re- 
called in Appendix I. Their concentration  near  this  upper 
bound (i.e., the  functional  relation  connecting F and A H )  is 
given by  the 

Concentration Theorem: Asymptotically, 2NAH is distributed 
over class C as chi-squared with k = n - m - 1 degrees of free- 
dom,  independently of the  nature of the constraints. That is, 
denoting  the critical chi-squared for k degrees of freedom  at 
the lOOP percent significance level by &), A H  is given in 
terms of the  upper  tail arFa (1 - F )  by 

2NAH = d( 1 - F ) .  (4) 

The proof is relegated to Appendix 11, since it consists of little 
more  than repeating mutatis  mutandis Karl Pearson’s original 
derivation of the chi-squared distribution,  taking  note of the 
reduction of dimensionality due to constraints. Note  that  the 
theorem is combinatorial, expressing only a counting of the 
possibilities; it does not become  a statement of probabilities 
unless one assigns equal  probability to each outcome in class C. 

IV. EXAMPLE-IAADED DICE 
Consider the case n = 6, N = 1000. Can we estimate  the six 

frequencies on  the basis of no information  except  that  there 
are  6  faces and it was tossed 1000 times? On orthodox statis- 
tical theory  the  problem is hopelessly ill-posed and we have no 
basis for making any  estimate  at all. 

Yet intuition is strong, even when  a rational  justification  for 
it is not  apparent. Almost everybody, when  faced  with this 
problem, will suggest hesitatingly the  uniform  distribution fi = 
$. Pressed for  the reason, he will probably say something like: 
“Well, I didn’t see any reason to think  any  face was more 
likely than any other.” 

It would  appear, from  such a  reply, that he is invoking that 
infamous “Principle of Insufficient  Reason” and we know with 

what  withering  scorn that is regarded by  orthodox statistical 
theory.  Our  unfortunate guesser would get  a stem lecturing- 
but  he would get an even sterner  one if he gave any  other 
answer. Even the most devout  Orthodoxian still  has  a little 
inner voice calling for  that  ‘uniform  distribution. 

Now let us consider this problem from  the  standpoint of the 
entropy  concentration  theorem. With no constraints  other 
than  normalization 2 fi = 1,  the  entropy reaches its maximum 
value HmX = 10&6 = 1.79176 just  for  that  uniform distribu- 
tion. Applying the  concentration  theorem, we have 6 - 1 = 5 
degrees of freedom. Entering the chi-squared tables at the 
conventional  5-percent significance level, we find G(0.05) = 
11.07. Thus  95 percent of all possible outcomes have entropy 
in the range 2NAH = 1 1.07,  or 

1.786 < H G 1.792. ( 5 )  

Likewise, g(0.005) = 16.75, and so 99.5  percent of all possible 
outcomes have entropy  in  the interval 

1.783 G H G 1.792. ( 6 )  

It is, therefore,  pretty clear which estimate we shall wish to 
make.  Without invoking either empirical evidence, or  any 
probability  model of Bernoulli  trials we know, as an elemen- 
tary  combinatorial  theorem,  that  the vast majority of all possi- 
ble outcomes have frequencies close to uniform. 

Once  aware of this, therefore, unless we had additional evi- 
dence of systematic influences that are keeping the frequencies 
away from uniformity-and  indicating in what specific way 
they  depart  from uniformity-it would seem highly irrational 
to make  any  other  estimate  than  the  uniform one. The  entropy 
concentration  theorem provides a quantitative  justification  for 
that  intuitive predilection that we  all feel for  the  uniform 
distribution. 

In fact, this  rationale was  well understood by Jacob Bernoulli 
and Laplace, although  they did not use the logarithmic form 
that we now call “entropy.”  They calculated  multiplicities, 
such as 

W =  N !  
N1!N* ! * * * N n !  

but  today we prefer to invoke  the Stirling approximation to 
derive 

the  Shannon  entropy  form.  Intuitively,  then,  distributions of 
higher entropy have higher multiplicity-i.e., they can  be real- 
ized by Nature in  more ways-and that provides a clear justifi- 
cation for  thinking  that  they are more likely to be observed. 
As Max Planck put  it,  Nature will appear to have a  “strong 
preference” for  situations of higher entropy. When N becomes 
very large, like Avogadro’s number,  this relative preference 
(W,/W1) - exp [N(H2 - H I )  J becomes so overwhelming that 
exceptions to it are never seen; and we call it the Second Law 
of Thermodynamics. 

Rut the  multiplicity of a parameter 0 is not a frequency in 
any  random  experiment;  and so with the rise of the  “ortho- 
dox” view which  sought to restrict  the meaning of the word 
“probability” to  frequencies,  this  principle of reasoning was 
lost to statistics. As long  as one considered only problems 
where the multiplicities of the parameters  estimated did not 
vary greatly, this did little  harm.  But  today,  in image recon- 
struction  and  spectrum analysis, the multiplicities of different 
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scenes or  different  spectra  constitute  highly  cogent  informa- 
tion  that  one  needs  for  any  rational  predictions. As we shall 
see below, it is just  the failure to  take  this  information  into 
account  that  leads to  such  anomalies as spurious  sidelobes. 

New Evidence: Now suppose we do acquire  evidence  for 
some  systematic  influence causing the  distribution to  depart 
from  uniformity. We learn  that  in  the  1000  tosses  the average 
number of spots  up was not 3.5, as we would  have  predicted 
from  the uniform distribution,  but 

6 

1-1 

which is a special case of (2). Given this  constraint  and  nothing 
else (Le., not making use of any  additional  information  that 
you  or I might get from  inspection of the  die  or  from  past 
experience  with  dice  in  general),  what  estimates  should we 
now  make of the  frequencies vi} with  which the  various  faces 
appeared? This is a kind of caricature of a class of real  prob- 
lems  that arises constantly  in  physical  applications. 

The  distribution  which  has  maximum  entropy  subject 
to  the  constraint  (9) is found  by  the  method of Appendix I 
with n = 6, m = 1, Ai1 = i. The  numerical  results,  derived in 
more  detail  before [7]  are: vi = e-k‘(Ze-Ai)-’,  1 < i < 6) 
with X = -0.37105,  or 

vl * * f 6 )  

= {0.0543,0.0788, 0.1142,0.1654,0.2398,0.3475}. (10) 

This distribution  has  entropy 

H ,  = 1.61358  (11) 

far  below the range (6), indicating  that  the new constraint is 
very strong,  confining us to  an extremely small subclass  of all 
the 6N outcomes  conceivable a priori. 

Again  applying  the  concentration  theorem, we have 6 - 1 - 
1 = 4 degrees of freedom;  the chi-squared tables tell us that 
95  percent of all possible  outcomes allowed by the  constraint 
(9) have entropy in a  range of width A H  = ( 2 N ) - ’  xi(0.05) = 
0.00474; or, to sufficient  accuracy, 

1.609 4 H <  1.614. (12) 

Thus on  the  “null  hypothesis”  which  supposes  that  no  further 
systematic  influence is operative  in  the  experiment  other  than 
the  one  taken  into  account (Le., which assigns equal  probabil- 
ity  to all outcomes  in  the new class C), there is less than a 5-  
percent  chance  that  the  frequency  distribution  has  entropy 
outside  the interval (1 2). 

A  remarkable  feature is that  the  “95-percent  concentration 
range” 

4.74 
N 

H m a x -   - Q H < H m ,  

is valid asymptotically  for  any  experiment  with  four degrees of 
freedom,  although  the value of H,, may  vary widely with 
other details. 

More interesting  numerical  results  are  found  at  more  extreme 
sisnificance levels. Thus in an  experiment  with  1000  trials  and 
four degrees of freedom,  99.99  percent of all outcomes allowed 
by the  constraints have entropy  in  a range of width A H =  
(2N)-’ ~ ~ ( 0 . 0 0 0 1 )  = 0.012.  In  the above  example  this is 

1.602 < H <  1.614  (14) 

and  only  one in 10’  of the  possible  outcomes  has  entropy 
outside 

Thus given incomplete  information,  the  distribution  of  maxi- 
mum entropy is not  only  the  one  that  can be  realized  in  the 
greatest  number of ways;  in  fact,  for large N the  overwhelming 
majority of all possible  distributions  compatible  with  our 
information have entropy  very  close to  the maximum. 

Note  that  the  width of this  region of concentration goes 
down  like N-’ ; and  not  like N-’P as one might have guessed. 
Thus in  20 000 tosses agreeing with  (9),  95  percent of the pos- 
sible outcomes have entropy  in  the  tiny interval AH = 0.00024, 
and  only  one  in 10’ has H < Hmax - 0.001. As N + -, any 
frequency  distribution  other  than  the  one of maximum  entropy 
thus  becomes  highly  atypical of those  allowed  by  the  con- 
straints.  This is the  asymptotic  optimality  property. 

In view of this result, we can  now  appreciate  the  prophetic 
wisdom in  the  remark  of Burg [ 11 that “. . . a reasonable goal 
is to find  a single function, f l f ) ,  which will be  representative 
of the class  of  all possible  spectra.”  This is precisely what  he 
did accomplish;  and  indeed  in  a  deeper sense than  he may  have 
realized at  the  time. 

Even more  interesting  numbers  are  readily  found.  Rowlinson 
[ 111 rejected  the  principle of maximum  entropy for  this  prob- 
lem,  and  proposed as an  alternative  solution  in place of (10) 
the  binomial  distribution 

which also satisfies the  constraint  (9) if p = 0.7.  But the dis- 
tribution  (16)  has  entropy H’ = 1.4136 = H,, - 0.200,  far 
below  the limit (1 5) .  We now have 2 N A H  = 400 = x i (  1 - F); 
or  from (A 1 2) 

1 - F =  2.94 X lo-”.  (17) 

This indicates  that  in  1000 tosses, less than  one in lom  of  the 
outcomes  compatible  with  the  constraint  (9)  have  entropy as 
low as HI. 

But  the  concentration  theorem is valid only  asymptotically, 
because of the  approximation  (A8)  made  in  its  derivation;  and 
even for N = 1000 we might  distrust  its  numerical  accuracy that 
far out in the tail of the  distribution. However, we can  check 
the  magnitude of (1 7)  by  direct counting, 

The  number of ways W in  which  a  specific  set of sample 
numbers {N1 * * * N 6 )  can  be  realized is given by the  multi- 
nomial  coefficient  (AS).  The  asymptotic  formula  (A7)  for  the 
ratio W/W‘ (which is free  from  any  errors that  might result 
from the  aforementioned  approximation)  says  that,  for every 
way in which  the  binomial  distribution  (16)  can  be realized, 
there  are  about  exp ( N A H )  = exp  (200),  or  more  than  10“ 
ways, in which  the  maximumentropy  distribution  (10)  can be 
realized (about ways for every microsecond  in  the age  of 
the universe). While this result  does not  take  into  account  the 
volume  element  factors (r’-’ dr) of the f d l  concentration 
theorem,  it  does  indicate  that (1 7)  did  not mislead us. 

Even if we come  down to N = 50, we find  the following. The 
sample  numbers  which agree most closely with ( lo), ( 16) while 
summing  to Z N k  = 50 are N k  = {3,4 ,6 ,8 ,12 ,17}  and 
{Ni} = {0, 1, 7,  16,  18,8}, respectively. With such small 
numbers, we no  longer  need  asymptotic  formulas;  for every 
way in  which Rowlinson’s binomial  distribution {NL} can  be 
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realized, there are exactly W / W ’ = ( 7 !  16! 18!)/(3!  4!  6! 12! 
17!) = 38 220 ways  in  which the  maximumentropy distribu- 
tion { N k }  can be realized. 

Such numbers give a rather clear answer to our  query,  “Just 
what are we accomplishing  when we max@ize entropy?” If 
noiseless data  do  not fully determine a distribution vi}, it is 
prudent t o  adopt  for purposes of inference  that  distribution 
which has maxutimum entropy subject t o  the data  we d o  have. 
It is prudent,  not  for  any vague, mystical reason;  but  for  the 
very clear and pragmatic  reason that  the MAXENT predictions 
are the most reliable ones that can be  made on  the given infor- 
mation.  It is a combinatorial  theorem  that to choose any  other 
estimate would amount  to ignoring the vast majority of all the 
possibilities allowed by the  data,  and  concentrating  our  atten- 
tion  on a small and  unrepresentative subclass of them. 

Such  a small subclass could exhibit  almost  any  kind of  wild 
anomaly,  that would not be seen in practice in millions of 
repetitions of the  experiment.  In  the case N =  1000  and  four 
degrees of freedom,  the  person who  chooses any  distribution 
with entropy 0.2 units less than H, is picking out  some sub- 
class containing less than  one  in 1 O#of the  outcomes allowed 
by his data.  In  these  tiny subclasses, lom different  kinds of 
anomalies  might  be hidden;  the particular one  he would pre- 
dict  would  be determined  not  by his data,  but by  which par- 
ticular subclass he  happened  to get.  Yet in all probability  not 
one of these  anomalies would ever be seen in  many lifetimes of 
observation. 

Entropy maximization is a  kind of insurance  policy that 
protects us against predicting spurious details  (such as sidelobes) 
for which there is no evidence in  the  data. 

V. TIME  SERIES 
In  the preceding example  each toss of the  die could  be con- 

sidered  a separate  “trial” because the available information 
took  the  form of constraints  on  quantities  that involved only 
sums gi of properties gi of individual  trials; and  not  mutual 
properties hii of different trials. Entropy  maximization  then 
led to independent probabilities for  different trials,  indicating 
that  in  the majority of all possible outcomes allowed by  the 
constraints, successive trials  are uncorrelated. 

This  result is, again, hardly  surprising  intuitively although 
perhaps not  quite so obvious; MAXENT tells us that if our 
data give no evidence for  correlations of different trials, then 
we should not assume any  such  correlations to exist. To  do 
so would lower the  entropy of the  joint  distribution  for N 
tosses-which would, again, amount  to choosing arbitrarily  a 
very small subclass of all outcomes allowed by  the  data. 

However, in analysis of a discrete time series b o  . . y ~ }  it 
is typical  that we have some information  about  mutual,prop- 
erties h(y i ,  y i )  at different times  in addition to properties of 
the  form g ( y i ) .  In general, systematic  effects  that  tend to 
make successive values y i  correlated will then manifest them- 
selves, and the  maximumentropy  distribution taking into 
account this  more  detailed information will exhibit these 
correlations. In  this case, the  entire  times series b o  * - * y ~ }  
must be  considered  a single “trial” and  the  combinatorial 
arguments  refer to a  collection of many  different realizations 
of it. 

This  corresponds, in  the original statistical  mechanics appli- 
cations, to  the  transition  from  the  Boltzmann “molecular” 
point of view to  the Gibbs  “global” point of view. The  com- 
binatorial arguments are then  at a more  abstract level, but 
the MAXENT algorithm still applies, leading to distributions 

that are analogs of the Gibbs  “canonical  ensemble” and “grand 
canonical ensemble.” 

A real-time series is of finite  length T,  and  the individual yi 
can be recorded only to finite accuracy f e  over a finite range 
lyil < M; thus  the  number n of different realizations is  finite, 
of the  order of (M/e)=. Indeed,  any real problem of inference 
is concerned with  finite  sets; it is hard to  believe, for example, 
that we will ever need to consider  a larger set  than G!, where 
G loBo is the  number of atoms in the  known universe. Thus 
the paradoxes of infinite  set  theory  are never relevant in real 
problems, and  in case of doubt we can always retreat  to  the 
safety of a finite set,  where such pathology as nonconglomer- 
ability cannot  occur. 

Nevertheless, infinite limits of f i t e  sets are usually well- 
behaved, and if we are  concerned  with a  huge  dense  set it may 
be  a  convenient mathematical  approximation to  consider the 
limit of a continuous set,  where  analytical methods can  be 
used. 

At  this  point we need  a compact  notation,  that  keeps  the 
number of different  symbols to  a  minimum. We denote various 
physical quantities  by { A ,  B, . . .} and  adopt  the conventions: 

A E the  true value, known  or  unknown; 
A’ E a  numerical  value of A given to us in the  statement of 

2 E any  estimate of A that we make, usually the mean value 
a problem; i.e., the  “data”; 

over a MAXENT distribution. 

The MAXENT problem for  our  time series then  takes  the 
form: fmd the probability  density p(y0 * * * y ~ )  which has 
maximum  entropy 

H = - b y 0  * a I~YTP(YO . . * Y T )  log P ( Y O  . . - Y T )  (18) 

subject to constraints  that represent all our  information  about 
the  time series. If these constraints  take  the  form of mean 
values of m different quantities A k ,  our data  set D = { A  ‘1 * * 

A ; }  imposes the  constraints 

l < k < m  (19) 

and this is, but  for  notation,  the  problem  that was formulated 
and solved by Gibbs. It is a continuous analog of (1)  and  (2). 

Constraints of the  form  (19)  appear general enough (with a 
little ingenuity in defining the  functions A k )  to deal  with al- 
most any real problem yet  thought of. The algorithm  proceeds 
as before;  define  the  partition  function analogous to   (Al)  

Z(X1 . . X,) = dy  I (20) 

and the  maximum-entropy  distribution is, analogous to (A4), 
p ( y )  = z-1e-h.A (21) 

where we have passed to the  compact  notation dy  dyo * - 
dY T 

m 

k =1 
X ’ A  XkAk(YO * . . y ~ )  (22) 

and the Lagrange multipliers hk are still determined by (A3). 
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The maximum entropy  attained is a  function of the  data 
(compare  (A2)) 

H , , , = S ( A ;  * * * A h ) = l o g Z + A * A ’  (23) 

and if this  function were known,  the Lagrange multipliers 
would be given by hk = asla& That is, log z(A)  and s(A’) 
are  equivalent representations, each containing full informa- 
tion  about  the  distribution, and  differing  by the Legendre 
transformation (23). 

VI. EXAMPLE: THE BURG PROBLEM 
Our  information consists of measured values R ;  of  the 

autocovariance 

for m + 1 lags, where m < T. Put,  for  formal reasons, R-k = 
R;, although  these  quantities are  real in  most  applications. 
If we have no  other  information,  then  the  probability  density 
that has maximum  entropy while yielding the  correct  auto- 
covariance will contain  the Lagrange multipliers {hm * * * 

The  quantities A k ( y 0  * - y ~ )  in the general  formalism  may 
be defined  with  any  coefficients we please, and the scalar 
product A . A and final  conclusion will, of course, be indepen- 
dent of our choice. The  choice 

A0 * * Am}. 

will be convenient, making the Lagrange multipliers Ak inde- 
pendent of T. 

The  maximum-entropy  distribution is then 

P(Y0 * ’ * YT) = Z-l  exp [-x hkAk(Y0 * * Y T ) I  (26) 

which is a Gibbsian  generalized  canonical  ensemble. But  in 
this case, the  exponent is a  quadratic  form  in  the y i ;  from 
(24) and ( 2 5 )  we have 

P ( Y O  * * * Y T )  a exp [- 3 ( Y ~ A Y ) I  (27) 

where y is the  column  vector ( y o  * * * y ~ ) ,  y f its Hermitian 
conjugate row  vector (yo* * - * y;),  and A is the  matrix with 
(T + 1) rows and  columns 

in which the Lagrange multipliers  are assembled in  the  Toeplitz 
form. 

With this  kind of information,  the MAXENT distribution is, 
therefore, multivariate Gaussian. Note  that  in  this  derivation, 
which differs from  that of Burg, we did not assume any 
“Gaussian random process”; the MAXENT principle  con- 
structed  the Gaussian form  for us, as the  distribution  that 
could be realized by Nature  in  the  Greatest  Number of  Ways 
(GNW) while agreeing with  our  autocovariance  data. Hence- 
forth,  for brevity, we call this  the GNW criterion.  The  status 
of Gaussian distributions  in  this field calls for  further  comment 
to be given elsewhere. 

The  partition  function (20) is given by 

1 
log z = - - 2 log gj + (const) (29) 

where gi are the eigenvalues of A. If we define  the  polynomial 

2 i=o 

g ( z )  E hkZk 
m 

(30) 
k=-m 

then  from  Toeplitz  theory,  for T >> m the eigenvalues go  into 

gj = g ( z j ) ,  0 Q j Q T (3  1) 

where zj are the  roots of z = 1 ; i.e., 
T+1 

zi = exp [2nij/(T+ 1) l .  (32) 

In  fact,  for  a  “circular”  time series, Y T + ~  = yo ,  A is a circulant 
matrix  and (3 1)  is  exact  for  finite T, a  fact  that will prove 
essential in  understanding  the “line-splitting” phenomenon. 

As T -+ 00, then,  from (29) and (3 11, log Z goes asymptotically 
into  an integral  over the unit circle in  the z-plane 

The general MAXENT formalism then  determines  the Ak from 
A ;  = - a  log Z / a h k ,  or 

At this point we note  an  interesting  property  of  the MAXENT 
formalism. Suppose we wish to  extrapolate  the autocovariance 
R k  beyond  the  data,  for k > m. The  estimate R k  which mini- 
mizes the  expected  square of the  error is the  expectation R k  = 
E ( R k )  taken over the  distribution (26). But  these Gaussian 
integrals  are elementary  and lead us to  the same  analytical 
expression (34). 

Equation (34) is therefore valid for all k ,  but  it has a differ- 
ent meaning in  different ranges. When k is in the  “information- 
gathering”  region ( -m < k Q m ) ,  it  represents  the  constraints 
R L   = R h  determining  the Lagrange multipliers hk.  When J k J  > 
m it represents the predicted MAXENT extrapolation of the 
covariance function: R ;  = i?k. 

But a  further generalization is then obvious: if we have data 
on any information  set I ;  i.e., we are given R ;  for k E I ,  then 
define 

whereupon (34) will be valid for all k,  with  the meaning 

(3 5 )  

R” = 
data R ; ,  

k E I  } (36) 
{Prediction &, otherwise. 

There is a Lagrange multiplier for each item of data we have, 
and the same formula (34) gives the  optimal  interpolation of 
missing data as well as the  optimal  extrapolation  beyond  the 
data-“optimal” by the GNW criterion. 

We have noted  before [7 ,  eq. D541 that  this convenient 
double meaning of our  constraint  equations  holds  quite gen- 
erally for  perturbation expansions of MAXENT solutions. Full 
MAXENT is a highly nonlinear algorithm; however, in first 
order of perturbation  about  a  “reference”  solution PO, changes 
in predictions become  linear functions  of changes in  the  data 
(including introduction  of new kinds of data  not in PO). One 
consequence of this double meaning is that  the  theory of the 
Wiener prediction filter is contained  in  the linear approxima- 
tion to MAXENT (extrapolating  the  function itself instead of 
its autocovariance). 

When space-time variations are considered, this  result is ex- 
tended to  include  the  standard Callen-Green-Kubo theory of 
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response functions  and  transport coefficients (diffusion, elec- 
trical  and thermal  conductivity, etc.) of Irreversible  Statistical 
Mechanics. All  of the  static  transport  theory summarized in 
the  treatise of Zubarev [ 151 is a  consequence of this  phenome- 
non, in the case where constraints are  confined to  conserved 
quantities. Had Zubarev used more general kinds of input  data, 
this  same double meaning would have generated the algorithm 
for more  general  predictions, such as ultrasonic dispersion  and 
attenuation [ 71,  [ 81 , 

We interject  these  remarks to stress that  the  double meaning 
found  in  (34) is a very  general  and important  property of the 
MAXENT method.  The  same principle that Burg used to ex- 
trapolate  the  autocovariance  beyond  the  data, also. generates 
virtually all of presently known Irreversible Statistical 
Mechanics. 

Once the Xk are determined  from  (34),  the MAXENT predic- 
tion  for  any  property of the  time series follows from  the dis- 
tribution  (29). If  we wish only to predict  the  power  spectrum 
P ( f ) ,  the result is trivial, for  this is  given by autocovariance 

m 

P ( f )  = R k  eXp (+i2nfk), I f 1  Q 3. (37) 
k=-m 

But then  (34) is just  the inversion of this  Fourier series, and 
we have, by inspection, P ( f )  = l/g; the  predicted  spectrum is 

This formula, first derived by Burg [ 11, is one of the most 
beautiful  analytical results in statistics.  Note  some of its  prop- 
erties; by the MAXENT principle it is the  “smoothest”  (by  the 
Burg s log  P ( f )  dfcriterion)  spectrum  consistent with the 
data; it is therefore “fail-safe” in  the sense that  the MAXENT 
predictor  (38)  cannot show any details for which there is no 
evidence in the  data. 

It is interesting to  note  the  manner in  which (38) strives 
constantly for all the  uniformity  that  the  data will allow.  Con- 
sider two problems: 

Problem (I):  We have data D = {RAR;  * * * R ; } .  Then  in 
general, (38) has  nine  poles  inside the  unit circle of thez-plane, 
and it is potentially capable of representing nine  sharp peaks  in 
P(f) in the interval (- 3 < f < 3). 

Problem (II): Same except  that  the  particular  datum RL 
is missing, and so must be estimated as Rs by interpolation 
from  the  other  data using (34). 

Now if the  estimate f i s  in problem (11) is the  same as the 
datum R ;  in problem  (I),  then knowing RS does  not give us 
any information  that we did not have already  in the  other  data. 
The Lagrange multiplier X 5  is then  zero in both problems, 
and it contributes  nothing to  the  structure of the  spectrum 
(38). 

As any  datum becomes “more nearly irrelevant”  in the  con- 
text of the  other  data,  its Lagrange multiplier  tends  to  zero, 
contributing less and less to  the  structure of the  spectrum. 
The  amount of detail  in the MAXENT spectrum is determined, 
not by the  number  of  data  points we have, but by the “effec- 
tive number of logically independent pieces of information” 
contained  in them, 

This is, again, a general property of the MAXENT formalism 
[ 6 I ; it is never necessary, when setting up a MAXENT problem, 
to ascertain whether  the  different pieces of information used 
are independent.  Any  redundant  information will drop  out 
automatically-for  in any variational problem, adding a  redun- 
dant  constraint  cannot change the  solution. 

Consider  now Problem (III): Same as (IIAexcept that RA, 
Ri are missing and must  be estimated as 28, R9 by  extrapola- 
tion  from {RA * * * R ; } .  Again, if the  data RL, R ;  are redun- 
dant  in  the sense that  they agree with  the estimates & , $9, 
that  we would have made  without  them,  the Lagrange multi- 
pliers he, Xg will be zero-but  now  there can be at most seven 
poles within  the  unit circle. The  number of poles in  (38) is 
equal to  the  maximum lag for which we have relevant data; 
redundant  data  do  not  count. 

The Lagrange multipliers hk in the MAXENT formalism have 
therefore  a  deep meaning: Xk is the  “potential” of the  datum 
R;, that measures how  important  a  constraint  it represents. 
Redundant  data are  at  zero potential and are  therefore “invi- 
sible” in the MAXENT distribution  and  the  predictions  that 
come  from  them.  A highly relevant datum RI is one  without 
which our  predictions would  be  very different;  then  its Xj is 
large and  its presence greatly lowers the  entropy S(A’)  of (23). 

In  (38)  the  spurious sidelobes of  any  method  that  extrapo- 
lates R k  to zero beyond  the  data are  eliminated.  Any  distribu- 
tion  that gave Rk = 0 beyond  the  data would require many 
additional  constraints  beyond  those  in  (27),  and would have 
an entropy far  below that of (27).  Therefore,  by  the  entropy 
concentration  theorem, to use  it would amount  to ignoring 
the vast majority of all possible spectra consistent  with our 
data, in  favor of a negligibly small subclass of them.  The par- 
ticular subclasses picked out by the various B-T lag windows 
happen to  be ones in  which  sidelobes of various amplitudes 
are present, separated  from  the  true spectral  lines by odd 
multiples of [ 2( T +  l)]  -’ . The millions of other subclasses 
of comparable size (each of which is just as plausible in  the 
light of the  data) would exhibit millions of other  spurious 
features-ramps,  plateaus,  sidelobes  with every conceivable 
spacing law, etc. 

Unless further  systematic  constraints are operating, of which 
we were not  told in the  statement  of  the  problem,  the great 
majority of the  true  spectra would be close to MAXENT pre- 
diction, because the great majority of all possible spectra 
have that  property. Conversely, if  the MAXENT prediction 
turns  out  to be significantly  wrong, then we have statistically 
significant  evidence for  the existence of a  systematic effect 
pushing us into  one of those subclasses; and  a clue to its  nature. 

Pursuing this idea  leads us into  the significance tests men- 
tioned in Section I1 above. Given frequency  data VI - - * fn} 
and any  hypothesis  about which systematic  effects are present, 
calculate its  maximum  entropy  (23)  conditional  on  our  data, 
and compare to  the  entropy (1) of  the  data.  A large discrep- 
ancy is evidence against the  hypothesis, since from  the  entropy 
concentration  theorem, if the  hypothesis were true  the  data 
should have shown  a higher entropy. Although the  entropy 
test uses almost the same philosophy  and even the same chi- 
squared tables as the original test of Karl Pearson, there is no 
need to  compute all the squares of the residuals  and their 
weighted sum  for each hypothesis.  That  information is con- 
tained already  in the maximized entropy S(AL) in  (23), whose 
factors must  in any event be calculated fn fitting  the  hypothesis 
to  the  data (i.e.,  in achieving E ( A k )  = A k ) .  To test  any number 
of hypotheses in tge light of our  data, we need only  compare 
their  entropies S(kik)  with  the  entropy of the  data. 

In dice  tossing, any  imperfection  in  the die represents such a 
systematic  influence  tending to make  the frequencies nonuni- 
form. An analysis of  the  famous dice data of Rudolph Wolf 
by the  entropy  test, revealing two  strong  imperfections and 
barely significant  evidence for  a  third very weak one, is  given 
in [9 ] .  

Also eliminated in (38) is the possibility of a negative esti- 
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mate; if the  data are the sampled  autocovariance of a possible 
time series, (38) cannot  become negative. Yet (38) can also 
exhibit sharp lines  with arbitrarily high resolution  when  the 
data  do  contain evidence for  them. 

Finally, (38) even yields the  correct  “Lorentzian” analytical 
form of the resonance  curve of a physical damped oscillator. 
At first glance, this seems  almost magical-more than  we  had 
any right t o  expect  from a  mere  statistical analysis that did not 
go into  the physics of the damping process. 

But the very beauty of this result-coupled with  the conve- 
nient Levinson-Burg numerical  algorithm to evaluate the &’s- 
may tempt  one to use it in problems  different  from  the  one 
for which it was derived. We stress  again;  a method that is 
optimal  in  one class of problems can  be  dangerously misleading 
in  another. At this  point, we enter  into  the  confusion of the 
current  literature. 

W. WHEN DOES IT APPLY? 
In  the derivation just given, we have been  led to the  solution 

a)  the  data consist of the  exact values of 
(38) for  one very specific problem, namely one  in which 

b) T>>m,  because (38) is only  the  asymptotic  form of 
(2% (A3). 

If condition a) is not  met,  then  our  state of knowledge is 
different  from  that  portrayed by (27),  (29), and  the whole 
problem  must  be  reconsidered from  the beginning. If condi- 
tion  a) is met  but b) is not,  then (38) may not be  (in  general 
will not be) the  correct MAXENT spectral  estimate  that comes 
from (29), and  the  problem must be reconsidered from  that 
point. 

There is a  need for  some creative computer programming 
here. We indicate briefly the exact  calculation that  should,  in 
principle, be done  when  condition a) is met  but b) is not. 
Then  the MAXENT distribution will always have the  Toeplitz 
form (27),  (28); but  the hk should  be determined  from (A3) 
which now reads, using (20),  (25) 

This is, in  complex notation R k  = R$, a set of (2m + 1) simul- 
taneous  equations  for (2m + 1)  unknowns;  or if we revert to 
red  notation R k   = R - k ,  (39) becomes ( m  + 1)  independent 
equations  for (m + 1)  unknowns. 

Now we 2eed to extrapolate R k  beyond  the  data, to get 
* * * R T } .  But the  same  double meaning holds also for 

the  constraint  equations (39), if we use the  trick explained 
above. The  Toeplitz  matrix (28) has nonzero  potentials 
only up  to a  maximum lag of I k I < m because we were given 
data  only  that far. 

Now imagine Problem (ZV): we are given as data all the 
R ;  for ( - T <  k < T ) ;  but * * * R k }  hapRened to bz  re- 
dundant, equal to  the MAXENT extrapolation {R ,+ l  * * * R T } .  
Then all the Rk are present in  the general MAXENT distribu- 
tion (26) and all rows and columns of A are  occupied by h’s. 
But {Rm+1 . . R T }  are invisible because they are at zero 
potential: Am+l = .  * . = h~ = 0. Looking at  the  problem  this 
way, it is clear that (39) holds  for all k in ( - T <  k < T ) ,  with 
the derivatives evaluated at hk = 0 for (m + 1 < k < T ) .  

The  exact predicted MAXENT spectrum is then 

and the essence of the  computer program is to find  the deter- 
minant of an  arbitrary  finitdimensional  Toeplitz  matrix. 

One  might think  that a l l  this could  be  done  analytically;  but 
to the best of the writer’s knowledge, this  has  not  yet been 
accomplished. For analytical properties  of  Toeplitz matrices 
we seem to have little  beyond  the  theorems of Szego, which 
concern  asymptotic  properties as T + 0 0 ;  just  the case that 
(40) seeks to avoid. 

There is, as already noted,  one case where the analytical 
solution is easily carried beyond (401, leading to an explana- 
tion of the “line-splitting” phenomenon.  It is described in 
the following  section. 

A  general-purpose computer program  capable of carrying out 
the calculations (39), (40) would have many useful applications, 
not  only in spectrum analysis but in statistical  mechanics and 
various  problems at experimental physics and engineering. 
Note  that if the one-dimensional array Cyi} could be  extended 
to  two dimensions G;‘k} the algorithm would be  general 
enough to include  a  new form of image reconstruction,  and 
also vector-valued time series with every conceivable kind of 
intra- and inter-vector  correlations. 

However, the above solutions  apply to only a small part of 
the real problems confronting us. The  state of knowledge 
presupposed is rather  unusual; we know a  few exact values of 
the autocovariance R k ,  but  no values of the  actual times series 
y t .  One  can think  of cases (some  kind of automatic processing 
of the raw time series before  data  become available to us, as in 
measurement of optical  coherence  by  interferometry) where 
this is indeed the  situation;  but  in most cases of geophysical 
or economic time series, our raw data  are  the  actual values 
bo * - * y m }  of a short sequence,  with or  without appreciable 
noise. The autocovariance is not  then something given to us 
in the  statement of the  problem,  but‘rather R k  must itself be 
inferred from  the raw data. 

These cases call for a different analytical treatment  than 
that given above. It would be  a  kind of ad hoc patchwork to 
make  approximate  estimates of Rk from  the  data;  and  then 
use them in the MAXENT solution as if they were exact  (in- 
deed, how is one to choose  the  “information  set” Z on which 
to  make these  estimates?). 

The MAXENT estimator (38) stands  ready to  give us arbi- 
trarily high resolution if the  data  contain evidence for very 
sharp  structure in P(n. But it is able to do  this  only because 
we have assured it that  the values of R ;  in (36) are  exact; as 
the zeroes of g(z) approach  the  unit circle, their  exact posi- 
tions  become  more  and  more critical,  and the  data R ;  need 
to  be  more  and  more  accurate if the result is to be trusted. In 
short, (38) is a precision, high-performance machine;  but like 
other  such machines it is specialized and can deliver that high 
performance only when fed  very-highquality fuel. 

When our information is different  from  that presupposed 
above, then in  some cases a  near-optimal solution might still 
be found by  patching up  the above equations,  but we really 
need to reconsider the  entire  formulation of the  problem  from 
the beginning. Some examples of  MAXENT solutions  appro- 
priate to  other kinds of information will be given elsewhere. 

Basically, the problem is openended because there is no 
end to  the variety of different kinds of information we might 
have in real problems. However, we expect the field to develop 
as did the  theory of analog filters; while there is no  end to the 
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variety of different kinds of filters that  one might  want,  in 
practice  a study of three  or  four well-analyzed standard solu- 
tions  (the idealized rectangular filter,  the Chebyshev  filter, 
etc.)  provides the design engineer with  the  understanding  he 
needs to deal adequately  with virtually all real problems. In 
this sense, the Burg solution may, in  time, be seen as the first 
of a small collection of basic MAXENT solutions  that cover 
the field adequately  for practical  purposes. 

VIII. LINE SPLITTING 
Consider  a  circular time series, for which yo = y ~ + ~ ,  y1 = 

y ~ + ~ ,  etc. All Y k  are  now defined  modulo (T+ 11, and  our 
data consist of {RA * * * R i }  as in (241, but  with  the  upper 
limits T instead of T- k .  However, the  number (m + 1) of 
possible independent pieces of data is now  reduced  by the 
circularity of the process; there is no longer any  distinction 
between a correlation over a lag less than half way around  the 
circle and more  than half way around. More precisely, because 
yi = yj+T+1, we have necessarily not  only R k  = R!k, but also 

R k   = R ; + l - k ,  1 Q k Q  m (41) 

and so the  maximum possible m is T/2 or (T + 1)/2, whichever 
is an integer. 

The  form (27) of the MAXENT distribution still holds,  but 
A is now a  circulant matrix,  the  “circularity” bringing in new 
elements  in the  northeast  and  southwest  comers, {X, = X-, , 
X T - ~  = X-2, etc.}. Its eigenvalues are given by (3 l),  (32). 

Equation (38) determining (x0 * * x,) then reduces to 

a  discrete version of (34). But because of  the circularity we 
have: a) the power spectrum need be  defined only  at (T  + 1) 
discrete frequencies 

f i =  T+1‘ O < j [ m o d ( T t   l ) ]  < T  (43) 

and b) only (T  + 1) consecutive values of Rk are different, so 
m 

(44) 

and any  other (T + 1) consecutive values would yield the same 
sum. Then, because of orthogonality of zf = exp [2nijk/ 
(T + l ) ]  on the  unit circle, using (42) in (44) yields  simply 

which is identical with (38). 
This identity of the  asymptotic  solution  to  the linear time 

series problem  and  the  exact  solution  for  the circular time 
series problem, reveals to us the cause of the  “linesplitting” 
phenomenon. If our  computer is programmed to evaluate 
the Burg solution (38) which presupposes that  the  data 
{RA * - R h }  are from  an  arbitrarily long time series, but we 
feed it data  obtained  from  only a finite  run bo - * - y ~ } ,  then 
the  computer can return to us only  an  approximate  solution 
to  the Burg problem-but the  approximate  solution  to  that 
problem  happens also to be the  exact  solution  to a different 
problem, that of the circular time series. 

Therefore, if the autocovariance data R ;  are  obtained  from a 
finite  sample b o  * y ~ }  and there is a  sinusoidal component 

in Y t  that  does not go  through  an integer number of cycles  in 
the sampled  interval (0 Q t Q T), then (38) is the  optimal esti- 
mate  of  the  spectrum of a process that is circular  in time  but 
has  a  phase jump  at regular intervals (T  + 1). Of course,  a  sine 
wave whose phase jumps  suddenly by 10 degrees every 50 
cycles does  not have a single line  spectrum;  it is more compli- 
cated with  two  strong lines close to the “nominal” frequency 
and the  computer program, not knowing any  better, will duti- 
fully report  those  two lines  back to us. 

From  this  hint, we can simulate the line  splitting  very easily. 
The  phenomenon is simplest  mathematically in  the  continuous 
case. The  functiony(t) = cos ( V I  t I + 4) has  a  nominal frequency 
V ,  but with  a phase jump of 24  at t = 0. If it persists for an 
interval T, its  spectrum is proportional  to 

I Y(w)12 = I L: y(r)  cos Of dt  1 (46) 

l a  
(47) 

and in the vicinity of 0 = Y this varies like 

s i n ( a + $ ) - s i n @  

where a E ( v  - w )  T/2. Without  the phase jump  this would be 
the conventional  Dirichlet sin function,  but  the phase 
jump gives a  skewed spectrum  with  two main  peaks. In  the 
case 4 = n/4, the  spectrum peaks occur  at frequencies w = v + 
6.8/T, w = v - 2.4/T. However, they have different  heights, 
in such a way that  the  center of gravity of the  amplitude  func- 
tion 1 Y(w)( is still  at w = Y. Computer  plots of the  function 
(47) for various values of 4 reproduce  quite nicely the various 
shapes of line-split spectra  that have been reported previously 

A  person  who tries to use the  solution (38) without  under- 
standing  in  what  problem it is appropriate, might easily find 
himself in just the  situation  noted  in  the  Introduction; reject- 
ing a method  that is giving the  correct,  optimal  solution  to a 
problem on  the  grounds  that  it is not  the  solution  to a  differ- 
ent problem. 

The difficulties we face in trying to define “What is the 
Problem?” are not  confined to spectral analysis. As we have 
noted recently [ 71, for 200 years applications of probability 
theory have been plagued by the seeming impossibility of 
communicating to  another person exactly what  problem is 
being solved. Dating back at least to Laplace,  almost every 
writer on  probability  theory has had  the experience of giving 
the  correct  solution  to a problem,  only to have it rejected 
because it is not  the  solution to some  different problem. And 
indeed,  an old joke  among  mathematicians  runs, “I have found 
a beautiful  solution,  but I have not  yet  found  the problem,’’ 

We predict, rather  confidently,  that  the line-splitting diffi- 
culty will go away if workers will reprogram their  computers 
to get the X’s from (39). 

Like any  other  mathematical machine, MAXENT has avail- 
able  to it only the  information  that  we have put  into it. The 
solution (38) does  not  estimate  the  spectrum of some hypo- 
thetical  infinitely  long  time series that exists only in somebody’s 
imagination; it has  no way of knowing  what you  or I may be 
imagining. It is estimating the  spectrum of the specific real 
time series bo - * y ~ }  that generated the  data {RA * * R L } .  

If we believe that  this is only  the beginning of  an arbitrarily 
long and  stationary  time series Y* = ( Y O  * * * y ~ } ,  N>> T and 
we want to predict the  spectrum of Y * ,  that  additional infor- 
mation must be put  into  our  probability model.  This also leads 

[ 2 1 ,   [ l o ] .  
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to a solvable problem;  but it is a  different problem  than  the 
one solved by (38). However, a  kind of probability  model  that 
may be  appropriate is suggested by the MAXENT solution. 

IX. RELATION TO AUTOREGRESSIVE MODELS 
The MAXENT spectrum (38) is of the same  analytical form 

as that resulting from  an autoregressive (AR) model of order 
m, driven by white noise. Because of this,  some have dismissed 
the whole MAXENT principle as nothing  but AR, thereby 
missing some  points  that we think  important  for present  under- 
standing, and crucial for  future  theoretical progress. 

Note first that  the  mathematics of AR models is ubiquitous 
in this  field; a power spectrum determines  a  covariance  func- 
tion, which in  turn  determines a Wiener prediction Titer, whose 
coefficients can always  be interpreted as the coefficients in an 
AR model. Thus whenever we study  the power spectra of  dis- 
crete  time series, it is inevitable that we shall produce  mathe- 
matical  relations that could have been interpreted in terms of 
an AR model. 

But this very ubiquitousness  shows that merely invoking an 
AR model is not a method  for solving a spectrum  estimation 
problem, but  only an alternative way of formulating  the prob- 
lem. Instead of asking “What is the power spectrum?” it is 
mathematically  equivalent to ask, “What are  the AR coeffi- 
cients?” Whatever is stated  in  one language, can be stated 
as well in the  other. 

So when van den Bos [ 131 announced his discovery that  the 
MAXENT estimate (38) is equivalent t o  estimating AR coeffi- 
cients, he might have announced  far  more;  not  only MAXENT, 
but  any  spectrum  estimation  method whatsoever, can with 
equal  justice  be interpreted as solving an  AR problem. 

Curiously, the MAXENT principle has been  criticized several 
times on  the  grounds  that it fails to determine  the  AR order. 
Equation (38) seems to  point  to  just  the  opposite  conclusion; 
indeed, it is, to  the best of the writer’s knowledge, the  only 
theoretical  relation  that does determine a definite AR order  for 
us. It tells us that given data D, the  optimal  spectrum esti- 
mate corresponds to  an AR model whose order is the maxi- 
mum lag for which we have relevant  data. 

van den Bos expressed concern  that  the  number of poles 
generated  by MAXENT could  be too small and  thought it 
might be “more  adequate” to use other  methods  for  fitting 
AR or ARMA models to the  data, “since these  approaches 
provide in addition  tests  for  the  order of the model.”  These 
and other  such  comments  in  the  literature show that  the 
MAXENT method is in need of some  fundamental clarification. 

It  appears to us that  the MAXENT order is eminently reason- 
able;  surely,  whatever method we use, if we have data {R;} 
only up  to a  maximum lag of 6, these data (even if noiseless, 
as we have supposed thus  far) can  provide no evidence for  any 
AR coefficients beyond lag 6.  

It is the essence of the above entropy  concentration  theorem 
that,  to assume the  existence of correlations for which there is 
no evidence in  the  data, is tantamount  to ignoring arbitrarily 
the great majority of the possible time series consistent with 
our  data,  and  concentrating on  some small and  unrepresenta- 
tive subclass of them. Any method which did so would,  far 
from being “more  adequate”  than MAXENT, be subject to 
criticism on  just  those grounds. 

As noted above, al l  sorts of anomalies can be  present in esti- 
mates that imply nonzero AR coefficients beyond  the  data, 
the most familiar example being the  spurious sidelobes of the 
Blackman-Tukey method. 

If our  data are  noisy, we have even less grounds  for assuming 
AR structure  beyond  the  data; indeed we then have grounds 
for  doubting some of the  structure  that  the  data  do indicate. 

But van den Bos also expressed the  opposite  fear  that MAX- 
ENT might give us too  many poles “that were not  actually 
present  in the process” and  thus generate spurious detail. 
Closer examination of the MAXENT method would have 
allayed such fears. As a general argument, the variational 
principle that generates it ensures that  the MAXENT estimator 
(38), properly  applied, cannot  show  spurious detail.  But it is 
also important to understand  the mechanism by which (38) 
accomplishes this. 

It does  not  appear  to us meaningful to say that a  real  world 
time series is autoregressive of order 6 but  not of order 7, as if 
this were an “objective  physical property” of the  time series. 
However, it may be that  the coefficients beyond lag 6 are so 
small that  they  make a negligible contribution to the predic- 
tability of the series. 

If we have data to lag 15 which give evidence for  this,  then 
as discussed above the  data {R; - * R ~ s }  will be  nearly redun- 
dant  and  the Lagrange multipliers {x, * * h1s) will be negligi- 
bly small. If h1s is not  strictly  zero  there will still be 15 poles 
inside the  unit circle; but nine of them will be  collected  very 
near the origin where they  do  not  contribute  to  the  structure 
of the  spectrum estimate. It is by this mechanism that MAX- 
ENT protects us against spurious details. 

Therefore, if by  the  “order of the  model” we mean  the num- 
ber of poles which are  far  enough  from  the origin to make an 
appreciable contribution to   the predictability of the  time series, 
then MAXENT provides a “test”  for  the  order of the model, 
that is optimal  for noiseless data:  take  data  until  they  start 
becoming redundant,  and  note at what lag this occurs. 

However, as stressed above, the MAXENT principle is more 
general than AR. Had  we been given, in (25), different  data 
than  the covariances Rk, the canonical distribution (26) would 
have had a different analytical form  than  the almost-AR sam- 
pling distribution (27). If the  data referred to  specific  times, 
the MAXENT distribution would represent  a nonstationary 
process. 

X. CURRENT AD HOCKERIES 
An often-expressed goal is to estimate  the  spectrum of a 

process bo . * y ~ }  that is known to be stationary,  although 
we have data  from  only a small part of it (and  here we leave it 
for  the reader to imagine how, in the real world, one could 
ever acquire the knowledge that a process, although unobserved, 
is nevertheless stationary).  Then we face  the  problem  of  how 
to  put  this  additional  information  (that  the process is station- 
ary over a  longer  interval than  the  data)  into  our  probability 
model.  One way of doing this, which if not  optimal is at least 
a popular  and useful ad hoc device, is simply to re-interpret 
the MAXENT distribution (27) as  a sampling distribution with 
unknown parameters hk to be estimated  from whatever data 
we have. 

Now if our  data consist of the values bo * - ym}, then as 
discussed above they can give no evidence about  any AR co- 
efficients beyond lag rn, and so it seems  reasonable to estimate 
at most only {X, * . * Am}, setting  the remaining X’s equal to 
zero as in the  Toeplitz  matrix (28). If the X’s were known 
exactly,  then  in  the limit T --f 00 this knowledge  would over- 
whelm any finite amount of data, and our  spectrum  estimate 
would still be given by (38); this is not obvious, but  requires 
some  derivation to show. 
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At this  point,  another  popular ad hockery is to estimate  the 
power spectrum by (38), in which the A’s are replaced by 
“estimates” of the A’s. 

Note  the  subtle logical distinction here:  in MAXENT, the 
A’s had  no previous existence, but were Lagrange multipliers 
created out of the  data  by  the process of entropy maximiza- 
tion;  they were not  estimated,  but defined, by  the  constraint 
equation  (A3).  The resulting MAXENT distribution is not a 
sampling distribution,  but a  predictive distribution. Now we 
are reinterpreting  the  mathematics;  (27) is regarded  as  a sam- 
pling distribution with  parameters hik that were assumed to 
exist before acquiring the  data. Presumably, therefore,  they 
are considered to have some  “objective” physical meaning; so 
they  are now to be estimated  rather  than defined. 

If we accept  this parametric  interpretation,  then  the ad 
hockery just  mentioned will lead us to a spectral  estimate  that 
would be optimal if the X’s were known  to be exact values ob- 
tained from data on  the  entire  time series. When we have only 
approximate estimates of the X’s, the results have an  additional 
uncertainty  that is not easy to estimate because the  positions 
of the poles depend  on  the  data in  a  complicated  way. 

Clearly, if some poles approach  the rim of the  unit circle, 
putting sharply  detailed structure  into  the  estimated  spectrum, 
the problem of “choosing the AR order’’ becomes  a  serious 
one.  But it is serious, not as some have stated,  for  the MAX- 
ENT principle  itself, but  for  this ad hockery with which the 
MAXENT principle is now being mutilated. If we estimate too 
few AR coefficients, the result  lacks detail; if we estimate  too 
many it will show  spurious detail. So still another ad hockery, 
such as the FPE criterion, must  be invoked;  and we have de- 
parted rather far from a  neat, theoretically justifiable method. 

According to  the principles of probability  theory, however, 
this uncertainty  ought  to be allowed for in  a quite  different 
way;  one should  calculate the  joint  posterior  distribution of 
the X’s and average the  spectrum  estimate (38) over this dis- 
tribution. This  in  effect  “hedges our  bets” by smearing over 
the likely range of positions of the poles. 

The analytical theory of this full Bayesian solution  has  not, 
to  the best of the writer’s knowledge,  been  developed, although 
it  ought to be. Without this  theory, we cannot judge how close 
these ad hoc methods are to optimal, even if  we believe the 
model (27).  Furthermore,  there is not  just  one analytical 
theory to  be developed, but several different  ones correspond- 
ing to different  kinds of data, different  kinds of physical 
phenomena,  and  different objectives. However, some  features 
can be anticipated  from  other Bayesian solutions as noted 
below. 

XI. BAYESIAN IMAGE RECONSTRUCTION 

To  sum  up what has been found  thus far, the  combinatorial 
basis for MAXENT is nothing  but  an  application of the prin- 
ciple that was stated clearly  in the Ars Conjectandi of Jacob 
Bernoulli (1713) as his definition of probability,  and used 
repeatedly by  Laplace; it reached its present mathematical 
form in the  work of Boltzmann  (1877). With the rise of the 
frequency  definition of probability  (Venn,  von Mises, Fisher) 
this principle was lost to statistics, with  the consequence that 
the presently taught  “orthodox”  methods are able to deal  with 
only a part of the real problems of inference.  But the part 
they ignore (prior  information) is crucial for  many  current 
statistical  problems,  including irreversible thermodynamics, 
image reconstruction,  and  spectral analysis. 

MAXENT utilizes our  prior  information  about  the multi- 

plicity factors  (AS) of different  distributions.  Distributions 
of higher entropy are more likely, because Nature can  generate 
them  in  more ways; and MAXENT is simply  taking that  fact 
into  account. 

Indeed, we need only  the  crudest  form of Bernoulli’s princi- 
ple. Suppose we are trying to decide between  two  hypotheses 
A and B ,  but  our  data D are equally consistent  with  either: 
p(DIA) = p(D  IB). Then  orthodox statistical theory has no 
criterion for choosing between them. Yet if our prior  informa- 
tion tells us that  for every way in which A could be true,  there 
are  a  million ways in which B could be true [Le., their  multipli- 
cities satisfy W(B)/W(A) = l o6 ] ,  then  the  “art of conjecture’’ 
as Bernoulli calls it, will surely lead us to choose  rather  con- 
fidently. In the last analysis, this is all that MAXENT amounts 
to,  and  the  entropy  concentration  theorem is just a quantita- 
tive refinement of the reasoning. In current examples of 
MAXENT image reconstruction,  the  multiplicity  ratios of two 
possible scenes  are  generally much larger than 1 0” and  there is 
no  question which one we should  prefer. 

However, MAXENT fails to  take noise into  account, a factor 
that  orthodox  methods  do deal with usefully  and  sometimes 
even optimally. So they  represent, in  a sense, opposite reason- 
ing formats;  orthodox  methods  apply in cases where we have 
a  sampling distribution (i.e., noise) of known properties, but 
no  prior  information  about multiplicities; while MAXENT is 
for cases where we have known multiplicities but  no noise. 

Neither method is appropriate  in  problems where we have 
both noise and prior information,  although  there have been 
unceasing attempts  to use them in such problems,  with the 
predictably  unsatisfactory  results. Many important real prob- 
lems, in geophysics, astronomy, and economics,  are of this 
type; and  only  a ful l  Bayesian solution is adequate to deal  with 
them. 

In the analogous but  theoretically simpler problem of image 
reconstruction, a start  on  the full Bayesian solution has been 
made  by Gull and Daniell [ 4 ] ,  They  find, as one would expect, 
that taking the  uncertainty  due  to noise into  account leads 
one to modify the MAXENT solution, moving to a point 
higher up on  the  “entropy hill”  corresponding to a smoother 
scene. In  other words; the predicted scene has  a higher entropy 
than would be possible if the  data were noiseless, imposing  a 
“hard”  constraint  on  the possible solutions. 

The  nature of the  solution can  be seen by the following 
“hand-waving” argument; a similar result  must hold also in 
spectrum analysis. 

To  incorporate noise, one represents the  data D = { d l  * * 

d m }  by  a modification of (2) above 
n 

where ei are the  traditional noise terms. If ei - N(0,  ai) inde- 
pendently, define the  quadratic  form 

Then given the  prior  information I and  data  D,  any scene 
( f 1  - * * f , )  of  entropy H(f1 - * * f , )  has  a posterior probability 
proportional to 

AscenelD, I) a exp [NH(scene) - Q(scene)] (50) 

in which both  the prior probability  (multiplicity  factor) W - 
exp (NH) of (AS) and  the likelihood exp ( - e )  are  present. In 
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the  limit of zero  noise, the  mode of this  distribution  goes  into 
the MAXENT solution (A4), and if all scenes  have the same 
entropy  the  mode goes into  the maximum-likelihood estimate; 
thus  both  the MAXENT and  orthodox  solutions  are  contained 
in the full  Bayesian solution as special cases. 

The  maximization is unique and  has  a  simple  geometrical 
meaning. The conceivable  scenes  are  constrained to  a  convex 
set (S: fi 2 0, I: fi = 1,  1 < i < n}, whose  vertices  are  the 
points fi = 1. By well-known  properties of entropy, on S the 
subset { s h  : ~ ( f ~  f,) 2 h )  is strictly  convex.  Also Mfi - 
f,) vanishes on  the  hyperplane  (HP) of  dimension k = n - m ,  
whose equation is Af= d ;  and Q(f1 - * - f,) is essentially the 
square  of the distance  from HP. The  set (S,: Q(fl - f,) 2 
q }  is convex,  its  boundary  forming,  for R > 1,  an elliptic hyper- 
cylinder  whose  “axis” is HP. As h and q vary, Sh and S, each 
form  a nested  sequence  of  convex sets. 

Maximization of NH - Q will then lead us to  a  solution  point 
of  tangency  of  a  set S h  and  a  set S,. As the mean-square  noise 
increases from  zero to  infinity,  the  solution  point moves from 
the  pure MAXENT solution to  the uniform grey  scene fi = n-l 
of absolute  maximum  entropy  log R. 

Higher entropy means  a smoother  reconstructed  scene; in- 
tuitively,  some of the detail  in the data,  which we would  have 
to  interpret as real .if we knew there was no noise,  is  reinter- 
preted as more  probably  due to  noise  and is ignored. As the 
noise  increases, our  reconstructions  become  smoother  and 
smoother.  The Bayesian  algorithm  thus  returns  the  smoothest 
scene  compatible  with the  information  fed  into  it.  It is still 
“fail-safe” in  the sense that  the  reconstruction  cannot  show 
any  detail  for  which  there is no evidence in  the  data. 

But this geometrical picture shows that  the Bayesian solution 
can  be  reinterpreted as a  pure MAXENT solution  for  different 
constraints. We need only Lagrange’s seemingly trivial obser- 
vation  that in a  variational  problem,  imposing  a  new  constraint 
does not change the  solution if the old  solution  already satis- 
fied that  constraint;  it  only  reduces  the class of variations 
being  considered. 

The Bayesian solution  point P = (f1 * * fn)  maximizes NH - 
Q with  respect to  arbitrary va$atiorg {Sfi} on S. Suppose 
that  at P we  find the value Q(f1 * * f,) = Qo. Then  the solu- 
tion  point P a  fortiori maximizes NH - Q with  respect to  the 
smaller class of  variations that hold Q fixed at Qo. Thus  it 
maximizes H subject to  the  constraint Q = Qo. This  property, 
the modus  operandi of  Lagrange  multipliers, is used  here in  the 
opposite  direction to  show  that  the  unconditional Bayesian 
maximum  may  be  interpreted  also as a  constrained  maximum. 

Therefore it appears  that, if one  had  a  pure MAXENT com- 
puter program  already  running,  it  could  be  used  also to  gener- 
ate full Bayes  solution  by  feeding  it  “preadjusted”  data  which 
amounts to  fixing Q at  a  nonzero value to  allow for noise. In- 
deed,  this is just  what  Gull  and  Daniell [4]  did in a  beautiful 
early  example  of MAXENT in  radio  astronomy. 

A h  

XII. PERIODOGRAMS AND LAG WINDOWS 
Historically, spectrum  estimation  started  in the last century 

with the Schuster  periodogram.  Nobody  seemed to  like it, 
and the proposal of Blackman  and Tukey  (1958) to  use lag 
windows was an easily implemented,  empirical  approach to  
correct  its  shortcomings. 

Yet in defense  of the periodogram one  could  note  that  it is, 
by  definition, the exact  power spectrum of the  one real-world 
time series that  actually exists before us, in  the  form of our  data. 
Why then  should we be dissatisfied with  it?  Different  answers 
to  this  imply  different  “corrections” to  the periodogram. 

Probably the most  common  reason  for  dissatisfaction, al- 

though  not  always  articulated, is that we do  not believe all the 
fine  detail  in the periodogram.  But this must  mean that we do 
not  want  the  spectrum of our  data; we want the  spectrum of 
something else. Until  we  specify  exactly  what  that  “something 
else” is, we are  in the standard  quandary of  “What is the 
problem?”  and  there  can  be  no  analytical  theory of optimal 
estimation,  only  empirical  guesswork. 

It appears to  the writer that  one may  want t o  depart  from 
the periodogram in  a  variety  of  different  directions,  for  a 
variety  of  different reasons, but  these have not been  defined 
clearly  enough to  provide any  definite  criterion  of  optimality 
by  which  various  algorithms  could  be  judged.  Nevertheless, 
we  can  perceive two  broadly  different  philosophies  about  the 
undefined  problem: 

a) We believe that  a  repetition of the measurements  would 
yield  a  different set of data (xi - * * x&} and  a  periodogram 
P’ in which the fine  details  would  be  entirely  different. We 
want t o  remove  details that differ  erratically  from  one  data 
set t o  another,  and to  retain  only  features  that  are  common 
to  all data sets. In  other words,  we think the  data  are  noisy, 
and  we want to  reduce the variability of our estimates  from 
one  data  set to  another. Of course, if we have only  one  data 
set,  it  cannot  tell us which features  are  common t o  all data 
sets. But it is clear that some  kind  of  smoothing is needed; 
and  introduction of a  lag  window is a  computationally simple 
way of  accomplishing this. 

b) We view our  data as incomplete,  rather  than  noisy.  The 
fine details in the periodogram therefore signify, not variability 
from noise, but  artifacts caused by  our  Fourier-transforming 
only  a  short run of the real-time series. Again, the remedy is 
some  kind  of  smoothing-but  its  purpose is to  eliminate  these 
artifacts  by  taking  account of prior  information we  have about 
the possible  spectra that  could have  generated  our  data.  Intro- 
ducing  a  lag  window is the last thing  we  should wish to   do;  
instead of further compressing our already too short run of 
data,  we  need to  do  the opposite,  and  find  themost reasonable 
extrapolation of the  time series beyond  our  data. 

It is disconcerting  that each of these  two philosophies,  which 
advise us to  do  opposite  things,  could be  construed as a real- 
istic description of the same actual physical  situation! 

In  judging  whether  lag  windows  are appropriate we cannot 
escape the crucial  role  of  prior information. If we knew in 
advance that  our  spectrum  has  only  two  sharp  lines  and we 
wanted to estimate  their  positions,  we  could  learn to ignore 
sidelobes  and  would  want  whatever  presentation gave the high- 
est resolution.  A  lag  window  would  only  decrease the accuracy 
of our estimates.  But in  trying to  interpret  a  spectrum  about 
which nothing is known  in  advance,  spurious  features  such as 
sidelobes  are so intolerable that  in  the past one was WiUing 
to  sacrifice half the resolution  in  order to  keep  them  down. 
But the lag  windows that did this were not a  final  solution, 
only  a  temporary  expedient giving symptomatic relief without 
going after  the real cause  of the disease. 

The  major  advance of  Burg [ 1 ] was to  see  clearly that  the 
cause  of the disease  lay in  the  unwarranted and  almost  surely 
wrong extrapolation of R k  to  zero  beyond the data. The 
MAXENT extrapolation  not  only  got rid of the sidelobes, for 
noiseless data  one now  had  much  higher  resolution. 

In the noiseless case, Burg’s criticism  of  windows was clear 
and  unanswerable. It seems  now  generally  conceded that lag 
windows  are not  appropriate  in  that  case;  and we have con- 
ceded, as noted above, that  the presence of noise  makes pure 
MAXENT inappropriate.  But  does the presence  of  noise  make 
lag windows any  more  appropriatef Is the cogency  of Burg’s 
argument  affected  by  noise? 
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Surely, whether noise is or is not  present, all our  instincts 
must tell us how unreasonable it is t o  suppose  that  in a real 
time series the autocovariance drops  abruptly  to zero just be- 
yond  the  point  at which we made our last  measurement. Note, 
for example,  what would have to happen  in  the coefficients 
Xk of (27)  to bring this  about.  Supposz we have data {RA * - - 
R h }  from which MAXENT predicts Rm+1 > 0. Suddenly, a 
negative correlation X,+1 would have to appear reaching across 
all the span of our  data, of just  the right  magnitude to cancel 
out fim+l. Then  more new coefficients X m + 3 ,  , . . would 
have to put  in  an  appearance, each precisely determined by 
the previous  ones, so as to keep Rm+2 = Rm+3 = * - * = 0. 
Every new X would further  lower  the  entropy of (27) taking 
us down  into smaller and smaller subclasses of the  spectra 
allowed by the  data. 

On  the  other  hand,  from  the analogous image reconstruction 
solution (50) it seems clear that allowing for noise must take 
us to distributions  (27) of higher entropy,  and  therefore even 
smoother  extrapolations of R k .  Starting  from  the MAXENT 
solution, which is optimal in the absence of noise, making 
proper allowance for noise should take us not  toward lag win- 
dow solutions,  but away from  them. 

This  writer  has not been able to envisage any  situation in 
which there would be  a theoretical  justification  for using lag 
windows in  spectrum  estimation,  although  it is clear that  they 
are often useful as a temporary expedient-good  enough for 
the  purpose  at  hand,  and easy to implement. However, the 
ambiguities of “What is the  problem?” are still very  great. 
Advocates of windows may be  able to  point  out  to  us a class 
of well-defined problems-perhaps with  some particular kind 
of prior information  about  the spectrum-in which window 
methods have a demonstrable  optimality  property. 

XIII. CONCLUSION 
The  methods of spectral analysis now  in use, having con- 

quered the  (resolution versus sidelobes) problem,  are  routinely 
extracting  information  from data  in  a way that would not 
have been possible before  the major breakthrough accomplished 
by Burg [ 11.  However, present  methods  are still not  quite 
optimal,  always involving some ad hoc  patchwork as noted 
above. 

In particular, the  problems of “choosing the AR order”  and 
of “getting a variance estimate” are still dealt  with by  a  variety 
of ad hoc devices, and decisions between  them are usually based 
on comparing computer simulations. Yet one is convinced 
that a  fully  developed  analytical theory of spectrum analysis 
would provide  unequivocal answers to  such  questions,  out of 
the principles of probability  theory,  with  no need for  any 
ad hockery. 

Thus having digested the advance of 1967, practice has again 
outrun  theory, and the analytical theory of spectrum estima- 
tion needs to be developed much  further before we can know 
how close present methods are to  the best that  could ever be 
hoped  for,  In this  paper we have not  attempted  to present 
such a theory,  but have tried to achieve the preliminary  con- 
ceptual  understanding  without which further  theoretical 
development  could not proceed. 

APPENDIX I 
To summarize the MAXENT algorithm,  define  the  partition 

function 

Z(X1 . * X , )  = exp(- f x ~ A ~ ~ ) .  (AI)  
i=i j -1 

Then 

Hmax = log Z + Xi dj 
m 

j=l 
(A21 

in which the Lagrange multipliers (Xi) are  found  from 

a  set of m simultaneous  equations  for m  unknowns. The fre- 
quency  distribution which has  this maximum entropy is then 

Other  distributions (f;) allowed by the  constraints  (2) will 
have various entropies less than H m a .  

APPENDIX II 
In N trials of a random  experiment,  the  ith result  occurs 

Ni = N f i  times, 1 < i < n. Out of the n N  conceivable out- 
comes, the  number which yield a particular set of frequencies vi} is the multiplicity factor 

and as N + 00 we have by the Stirling approximation 

N-’ log W + H(f1 * * * fn) (A61 

the  entropy  function  (1). Given two  sets  of frequencies vi) 
and Vi}, the  ratio  (number of ways fi can  be  realized)/(num- 
ber of ways f/ can be realized) is asymptotically 

The conceivable frequencies - * fn} may  be regarded as 
Cartesian coordinates of a point P in an n-dimensional space, 
restricted to {S :  0 <fi, Eft = l),  the  (n - 1)-dimensional con- 
vex set  noted above. On S, the  entropy  (1) varies continuously, 
taking on all values in (0 < H(P) < log n) as P moves from a 
vertex to  the center. 

But  now we obtain  information  that imposes the m linearly 
independent  constraints  (2), which define an (n - m)-dimen- 
sional hyperplane M. P is now  confined to  the  intersection 
S’ = M n S, a closed set  comprising  a bounded  portion of the 
hyperplane M, of dimensionality  k = n - m - 1. 

On S ’ ,  the  entropy  attains a  maximum Hmax <log n at a 
unique  point of S’. For  the set { S x :  P E S ,  H(P) 2 x )  is strictly 
convex;  entropy maximization with  constraints linear  in cf i )  
thus  amounts  to finding the value of x = X,, for which S’ is 
a supporting  tangent plane to S,. In S’ we may define new 
coordinates {x1 * x k )  as appropriate h e a r  functions of 

* - fn} such  that  the new origin is at  the maximum-en- 
tropy  point, and there is a distance r =   EX;)'^ such  that 
near the origin  a  power series expansion  yields 

H ( P ) = H , , - a r 2  + * * e ,  a > 0 .  (A81 

We then have a  volume  element in S’ proportional to r dr. 
The  domain of  all possible frequency  distributions - * - fn) 
which satisfy the  constraints  and whose entropy is in the range 
(3) is a k-sphere of radius R ,  given by aR2  = A H .  

In N trials, this  sphere  contains a fraction F of all possible 
outcomes in class C. From (A7), (A8)  this is given asymptoti- 

k-1 
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cally by 

where 

But, setting NaR2 = NAH = (1  /2) x’ , this is just  the cumulative 
chi-squared distribution with k degrees of freedom,  in conven- 
tional notation  the  relation  between AH and F is given by (4). 

In our applications we are generally concerned with numer- 
ical values for large N A H ,  beyond  the range of tables. The 
chi-squared distribution F(NAH)  may be expressed analytically 
as 

X 

F(x) = tse-‘ dr (A1 1) 
S! 

where s = (k/2) - 1. For large x = N A H ,  this yields the  asymp 
totic expansion 

1 - F(x) - (s!)-’ xSe-X [ 1 + S X - ~  + S(S - l)x-’ + - * * I .  (A12) 

When s is an integer (k even) (A12)  terminates  and is exact. 
Most of the numerical  results cited  in  the  text have been ob- 
tained from  (A12). 
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