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Data analysis

The maximum entropy method

Sfrom John Skilling .
MAXIMUM entropy is a remarkably power-
ful and generat technique of data analysis:
it can be used to sharpen up out-of-focus
nhotographs (as in Fig. 1), to make maps of
the radio sky, to generate images from

medical scanners, to calculate spectra, to |

reconstruct electryn densities in a crystal
and even to determine the positions of fuel
rods in a nuclear reactor cooled with liquid

"sodium. It claims to be applicable

whenever one needs to estimate a single

vector of proportions p = (2, Pyse-es Py) |

from seriously incomplete data, which
could be fitted equally well by many dif-
ferent vectors. It claims to ignore what the
proportions represent, which is why it can
" be applied to so many different inference
problems. Maximum entropy always
selects the simplest possible result, contain-
ing the bare minimum of structure needed
to fit the data. Spurious detail is reduced as.
far as possible, which doubtless accounts
for the practical success of the method. -
The principle is always the same: one
maximizes the entropy § = - X, p; log p;
subject to whatever constraints are impos-
_ed by the data. The theoretical basis of the:
method has often been less clear than the
practical results however. Now papers by
Shore and Johnson ({EEE Trans. Inform.
Theory YT-26, 26; 1980 and IT-29, 942;
1983) and by Tikochinsky, Tishby and
Levine (Phys. Rev. Lett. 52, 1357; 1984)
are making the justification for the max-
imum entropy method bothclear and com-~
peiling. . - i
" Historically, the use of maximum en-
tropy in data analysis has often been

.~ justified by supposing that the proportions.

were quantized, so that.p;=n/N. If N
quanta were placed “at random’ into M
available locations, the relative frequency-
of sets of occupation numbers » would be
degeneracy N1/ [T n!, which is equivalent:

Fig.2 For definition of §, j, M, Nand p;;, seetext.

to exp (NS), at least if Nis large. Thus max-
imum entropy would be the same as max-
imum degeneracy, which could in turn be
identified with maximum probability.
Partly because of the dubious status of N
and the quantization, this derivation has
never been entirely convincing to scientists
at large. An alternative justification has
been to eschew quantization and identify S
directly with (minus) the Shannon infor-
mation content of p, considered as a vector
of probabilities. One can then talk about
minimizing the configurational informa-
tion of p; but once again the rationale has

_not proved universally convincing.

The new analyses reach a deeper level
that bypasses the earlier derivations, and
show that maximum entropy is the only
consistent selection procedure. Let us start
with Tikochinsky etal., and with a diagram
(Fig.2), in which p; represents the pro-
bability of outcome i when performing ex-
periment j. Tikochinsky et al. consider
‘reproducible’ experiments in which p;; is
independent of j, and in which incomplete
data are acquired in the form of linear com-

. binations <A4> = L, A;p;. Because the

data are incomplete (fewer than M com-

Fig.1 What maximum entropy techniques can do for car-spotiers, including the police.

binations), the values of <4> do not fully
determine the values of p. But if we must
select just one single result, how should we
go about it? Suppose the experiment is
repeated N times. We are at liberty to treat
each experiment independently. In this
case, our selection algorithm (whatever it
might be) will choose the same proportions
p; for each experiment j, and these could be
combined to give an overall distribution P;
for the outcomes i after the N repetitions.
We are also at liberty to treat the whole as
one large experiment, in which case our
selection algorithm will immediately pro-
duce an overall distribution Q,. Tikochin-
sky et al. point out that we must surely re-
quire P, = Q, if data from reproducible ex-
periments are to be combined consistently.

"Repeating or averaging an experiment
does not change its outcome, and it should
not change the selected result either. In ten
short equations, Tikochinskye¢al. proceed
to prove that the consistency requirements
is satisfied if, and only if, the selection
algorithm is maximum entropy. In a
brilliantly simple way, entropy emerges as
an elementary consequence of consistent
reasoning.

The consistency approach can be taken
even further. Tikochinsky etal, couch their
analysis in terms of probability distri-
butions, but it often seems a little artificial
to have to identify a set of physical propor-
tions with a set of probabilities of outcomes
of a random experiment. Proportions and
probabilities are, of course, isomorphic,

but why should we need to introduce the

idea of randomness at ali? And why should
we need to restrict ourselves to linear data?
The answer to both questions is that we
need not.

Let us return to Fig.2, but let p; now

‘represent the proportion of the total

observed quantity assigned to cell 4, jof the
MXN array (X, p;; = 1) : we could be con-
sidering a two-dimensional digitized pic-
ture. Suppose that the data are some ar-
bitrary functions U(u) and V(v) of the
marginals 4, =X, p;; and v; =X, p,; . We are
at liberty to ignore the *north-south’
v-structure, and use our selection algo-
rithm to choose an ‘east~west” distribution
u; which fits the data U. Similarly, we can
select a north-south distribution v; which
fits the data V, without reference to U.
Finally, we are at liberty to use ali the data,
U and V together, to produce immediately
an overall distribution p;;. We must surely
require p; =u,v; if data from independent
experiments are to be combined consistent-
ly. North-south data must not interfere
with east-west structure, and vice versa.
This will be the case if, and only if, the
selection algorithm is maximum entropy.
Again, entropy emerges as an elementary
consequence of consistent reasoning.

This is the derivation of entropy which
we at Cambridge now prefer (see our
rigorously informal presentation in In-
direct Imaging ed. Roberts, J.A., Cam-
bridge University Press; 1984, a more
mathematical account of which has been
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submitted to Acta crystallogr. A). We ob-
tained our derivation from Shore and
Johnson’s papers, in which the notion of
independent dimensions is refined to a re-
quirement of system independence, and
the whole ireatment is given a proper ax-
jomatic foundation. Shore and Johnson
give four axioms — uniqueness, in-
variance, system independence and subset
independence -~ which must be satisfied by
any coansistent selection algorithm. In
careful and formal work that is remarkably
similar to an axiomatic derivation of Shan-
non information, Shore and Johnson
derive the entropy formula, generalized to

= - T p,logp;/m;) to allow for a possible
prior model m. Although they describe p as
a probabiljty distribution, this is un-
necessary; their work applies equally well
to any distribution of proportions, and the
technical words ‘probability’ and ‘infor-
mation’ need never appear.

These ideas justify the fundamental

~~laims made for maximum entropy in data

analysis, and it is clear that we need not
quantify our preference for the maximum
entropy selection by anything other than
the numerical value of S. It is sufficient to
know that we must use maximum entropy
— or lay ourselves open to the charge of in-
consistency. Let’sget on withiit. -

John Skilling is in the Department of Applied
Mathematics and Theoretical Physics, Universi-
ty of Cambridge, Cambridge CB3 9EW.
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Early evolution of leaves

from J.B. Richardson

THE origin and evolution of leaves was a
major event in land plant evolution and
must have affected all other life on land.
Much remains to be learnt, however, of
when they first appeared and how they
evolved. Fossils described on page 785 of
this issue by Gensel! confirm what had
aiready been suspected from compression
fossils from the Gaspé Peninsula: by the
end of the Lower Devonian, vascular plant
evolution was quite advanced with com-
plex forms present. The presence of divid-
ed non-laminate leaves at the end of the
Lower Devonian is already documented?
but Gensel' describes changes in anatomy
in a lateral branch system suggestive of the
early evolution of a megaphyll — a
laminated leaf with a complex pattern of
venation. ‘

Did leaves arise as Zimmermann sug-
gests in his telome theory?, through evolu-
tionary overtopping, planation and webb-
ing? A telome is the most distal dichotomy
of a plant. Overtopping describes what oc-
curs if one branch of the dichotomy
develops more than the other. The over-
topped branches would diminish in size,
eventually tranforming the equal di-

T -

100 ye;ré_ ago

Some forty years ago Dr. Joule raised the

’ _—-Question whether a body that is magnetised

ndergoes any changes in its temperature; but
the question has not yet received a definite
solution, the rise of temperature which
accompanies magnetisation being ascribed by
some to induction currents, and not directly to
magnelism. While recognising the influence of
the former, Mr. Borgman has tried to show that
there is also a change of temperature due to the
magnetism and demagnetisation, and that the
amount of heat thus disengaged is proportionate
to the squares of the temporary magnetism. M,
Bachmetieff, having made, at the University of
Zurich, an extensive series of experiments, the
first part of which is now published in the
Journal of the Russian Chemical Society (vol.
xvi. fasc. 3), arrives at the conclusion that
magnetism, by itself, produces variations of
temperature in magnetised bodies, and that this
‘“‘magnetic heat” is equal to the product of the
magnetic moment by the magnetising force
multiplied by a constant; itincreases also, within
a certain limit, with the frequency of the
interruptions of the magnetising current, and
increases still more when the direction of the
current is alternately changed. Its amount is not
equal throughout the length of an iron cylinder,
reaching its maximum about its middle and
decreasing towards its ends. Its cause must be
searched for in purely mechanical forces.

RATHER a strange occurence came recently
before my notice, and thinking perhaps you
might care to insert it in your columns, I send
you the facts of the circumstance. A few days
since, towards evening, | killed a snake just close
behind my house; it measured about a yard and
a half in length, was one of the most deadly of
the numerous kinds of snakes found in Java,
and bears the name of *‘QOelar belang.”’ On
examining it later I found what I thought to be
the tail of another small snake protruding from
its mouth, but on pulling it out 1 was greatly
surprised to discover that it was really a snake of
the same species, and of almost the same length.
There was certainly not more than three inches’
difference in the length of the two snakes, and at
the time I killed the outside snake only about an
inch and a half or two inches of the tail of the one
he had swallowed protruded from his mouth.
The natives here say that the two snakes must
have been fighting, the victor afterwards
swallowing his opponent. I should be pleased to
know whether such an instance has ever before
been brought before your notice, or whetheritis
reaily an uncommon case.

Soemedang, Java.

M. MONTGIGNY has recently published a
pampbhlet on the influence of the atmosphere in
the apparition of colours seen in the scintiliation
of stars. He has previously noticed that thereisa
great predominance of blue in the scintillating
colour when rain is approaching, and he is now
so convinced of the accuracy of this forecast that
it is included among others in the Bulletin
Meétéorologique published by the Observatory
of Brussels.

From Nature 30, 3 July 1884.

chotomies into a main stem with lateral
branches. Planation describes the change
from a three-dimensional arrangement in-
to a single plane of neighbouring telomes.
Webbing, the joining of tissues between the
lateral branches of the planar telomes,
would result in the familiar lamina (leaf-
like structure) with dichotomous venation.

This is what Zimmerman proposed but
how is the theory testable? One of the
restraints on evolutionary hypothesis is the
geological record. Do these morphological
features appear in the geological succession
in the order demanded by the theory? The
answer is both yes and no. Simple
dichotomously-branched axes have been
recorded in the mid-Silurian (Wenlock)4,
while by the late Silurian, rhyniopsids, with
a similar appearance, were common but
not diverse. Overtopping was present in the
early Devonian (Lower Gedinnian)®. At
that time there was considerable diversity
of the rhyniopsids, and Zosterophyils,
distinguishable from the rhyniopsids on -
the basis of lateral sporangia, were
presenté. Later, during the Siegenian, the
zosterophylls diversified” and the
trimerophytes, such as Dawsoniles, ap-
peared. Later still, in the Lower Emsian of
Belgium, a similar flora along with several
Psilophyton spp. was present® and work by
Andrews indicates a high diversity of plants
at that time (see inrer alia ref.9).
Trimerophytes in the Emsian exemplify
overtopping and reduction of laterals; as
Stewart!0 states ‘‘Trimerophytopsida ex-’
hibits almost every branching pattern to be
found in megaphyllous vascular plants’’.
Thus, as re-emphasized by Gensel’s paper,
Zimmermann’s leaf-forming processes,
apart from planation and possibly webb-
ing, had happened by the late Lower Devo-
nian and much of the geological record
supports the telome theory on the origin of
megaphylls.

Zimmermann derived a great variety of
leaves and leaf-like structures, including
microphyllous ‘leaves’ of the lycopsida, -
from a rhyniopsid-like ancestor. Bower’s
enation theory'! is an alternative proposal
for deriving microphylls — small leaves
with a single central vein. In the telome
theory, the microphylis arise by reduction
of bunches (trusses) of telomes. Bower’s
theory is that bumps (enations) emerged
from the surface of the stems. Asthese ena-
tions extended (in the evolutionary sense)
they developed vascular tissue, first at the
base of the enation (as in Asteroxylon) and
then throughout the enation, as in
Baragwanathia, which thus became a true
microphyll. According to the telome
theory this series would be reversed: re-
duced vascularized microphylls would pre-
cede unvascularized outgrowths. Which
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(within errors) to those found in the fossil
record. On closer examination we found
that most of the signal was coming from
the 11 largest craters, those with a diameter
>10km. One would expect comets in a
shower to be larger than the background
comets if, for example, the comets from
the inner cloud were more massive than
those from the outer regions, as might be
expected from an accretion model of
comet formation. Of the 11 large craters,
one is clearly not associated with the peri-
odicity, and as many as two others may
be chance coincidences. Thus, the
evidence indicates that about 9+3 of the
13 craters with precise ages originated
from the periodic showers. (The uncer-
tainty estimate includes both systematic
and Poisson errors.) Stated another way,
we conclude that 70+ 25% of the craters
were formed during showers.

Weissman claims that the total number
of comets hitting the Earth from showers
is substantially greater than the number
hitting in the time between showers—this
is not necessarily true in our model, and
the impact data indicate that the numbers
may be roughly equal. Perhaps Weiss-
man’s confusion comes from a poorly
worded statement in our original paper’
that the number of comets that arrive in
a single shower “may be as much as one
or two orders of magnitude greater than
the number that arrive between showers”.
In this statement we were referring to the
effects of the companion star alone, and
were not including comets whose infall is
triggered by random passing stars. Weiss-
man states near the end of his letter: “‘there
do not appear to be many random events
mixed with the periodic signal™; as stated
above, we believe that 30+25% of the
impact craters (principally those with
diameters <10km) may be random in
arrival times.

Weissman says that the probability of a
large comet (with a 10 km nucleus) hitting

" is small, and that such impacts are likely

to occur every 500 Myr, a period ‘‘con-
siderably longer than is observed”. Only
one such large impact has been proven in
the last 250 Myr—the one at the end of
the Cretaceous. The crater for this impact,
if it still exists, should be 100-200 km
across. (If the crater is on the sea floor it
would not have been found.) All the other
extinctions during this period were smal-
ler, with associated craters 10-100 km
across. Weissman claims there should be
one large impact in 500 Myr; the data
show one in 250 Myr. Although we do not
necessarily accept Weissman’s number (he
does not give a derivation) we find no
significant discrepancy with the data.

If the orbit of the companion star were
once much closer to the Sun, as is
necessary in our model, then Weissman
objects that the showers would have been
more intense in the past. This is true, but
18 not an objection. In fact, there is clear
evidence that bombardment in the remote
past was once much greater than in the

MATTERS ARISING
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last 250 Myr. The ‘late heavy bombard-
ment’ of the Moon (when most of the lunar
craters were formed) ended 3.9x10°yr
ago, conceivably when the companion star
was scattered to a larger orbit. Weissman
correctly states that an ancient close-in
orbit would have severely depleted the
Oort comet cloud, implying that there was
originally an ‘immense cloud mass’. As the
mass of this early cloud could still have
been much less than the mass of the com-
panion star, we can see no valid objection.
If the companion star exists, then we cer-
tainly will have to change our models of
the dynamics of the early Solar System.
But inconsistency with the models is not
the same as inconsistency with the data
on which those models were based. We
know of no data inconsistent with our
model of a solar companion star, and we
know of no alternative model consistent
with the measured period and phase of
the impacts.

RICHARD A. MULLER*

PiET HUTY

MARC DaAvisi

WALTER ALVAREZ§
* Department of Physics and Lawrence
Berkeley Laboratory, University of
California, Berkeley,
California 94720, USA
t Institute for Advanced Study, Princeton,
New Jersey 08540, USA
1 Department of Physics and Astronomy,
University of California, Berkeley,
California 94720, USA
§ Department of Geology and Geophysics,
University of California, Berkeley,
California 94720, USA
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WHITMIRE AND JACKSON REPLY—The
contribution of shower comets to the mean
cratering rate need only be comparable to
the (assumed) steady-state random contri-
bution to produce a strong signal in the
Fourier spectrum of dated craters. The
number of terrestrial impacts resulting
from a shower of 2 X 10° comets, brighter
than H,,=11 and with perihelia <1 AU,
is given by the product of (2 x 10° comets)
and (4 perihelia passages per comet) and
(2 X107 impacts per perihelion passage),
which is equal to 16 impacts. According
to Weissman', a long period comet, bright-
er than H,,=11, has a mass =5x10"g
and produces a crater =20 km in diameter.
The mean cratering rate, for craters
220 km, over the last 300 Myr is® 0.35
(£0.13) 10~ km~2yr~', which corre-
sponds to ~50 impacts of comets, brighter
than H,,=11, per 28 Myr. Thus the
shower contribution to the mean cratering
rate is less than the total rate and compar-
able to the mean background rate.
According to Wetherill and
Shoemaker’, a random 10-km asteroid is

expected to impact on the Earth about
every 50 Myr. The absence of any random
extinction events®, and the evidence that
major extinctions occur over intervals of
~1 Myr, both suggest that the primary
extinction mechanism may be associated
with the enhanced impact rate (=30 times
background) during a shower, rather than
with a single catastrophic impact,
although such an event should also occur
occasionally.

The stability of the companion’s present
orbit towards stellar perturbations and the
galactic tides has recently been investi-
gated by Hut® and Hills®. These results
indicate that the orbital period should ran-
dom-walk away by 10-20% over a 250-
Myr interval, a result not obviously incom-
patible with the cratering and extinction
data. The evolution of the companion
from a tighter orbit’, and the associated
cratering rates, remain to be investigated
in detail.

Sepkoski and Raup® have :__ently
extended their original analysis and have
further restricted the uncertainty in the
extinction period. They find the period to
be 26.2+ 1 Myr and conclude that this is
incompatible with the 33 +3-Myr interval
between the Sun’s galactic plane crossings.

DANIEL P. WHITMIRE

Department of Physics,
University of Southwestern, Louisiana,
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Louisiana 70504, USA

ALBERT A. JACKSON IV
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The maximum entropy method
for data analysis

IN data analysis it is very satisfying when
a useful technique, which has arisen in a
more or less ad hoc manner, finds respecta-
bility as a manifestation of some formal
theory. Skilling' invokes this argument for
using the maximum entropy method for
data analysis. Experience that the pro-
cedure often seems to work quite well is
strengthened by reference to recent theo-
retical work. Skilling’s conclusion is that
maximum entropy is the only regulariz-
ation method that should be used for a
very wide range of data analysis. I suggest
that this claim is unjustified on both prag-
matic and theoretical grounds.

Let us confine our attention to one
specific application, the enhancement of
images as illustrated in Fig. 1 of Skilling’s
paper. What seems to me the major advan-
tage of the maximum entropy method over
many, but not all, other regularization




procedures, is the practical one that the
resulting image, in being non-negative,
automatically represents a valid solution.
This results from the presence of log p; in
the formula for entropy. With other pro-
cedures, the values obtained for some p;
might be unrealistically negative. Even
then, however, the complete solution
could well be quite adequate in many
applications and could well be attained
with comparatively little computation.

In most applications of regularization,
the regularization functional, exemplified
in this method by entropy, S, incorporates
some prior belief about the local smooth-
ness of the true image. For example, sup-
pose the pixels are ordered so that p, and
p; are likely to be similar if i and j are
close together; then one might consider,
as an alternative to S, a criterion such as
~Y(log p;—log pi+1)*. At a higher level,
one will know, a priori, that Fig. 1 is a
smudged photograph of a car. The entropy
functional does not permit representation
of spatial ideas of this type. Certainly the
cross entropy S = — Y p; log (p;/ m;) allows
for some acknowledgement of a prior
model m but leaves the question of how
to obtain m in any given application.
There is the ad hoc suggestion of using
the data to produce a preliminary m, but
this would require using the data twice,
first to find m and then to carry out the
regularization. This is pragmatically rea-
sonable, if not inevitable, but cannot be
regarded as being formally respectable.

My principal point, however, is to dis-
pute the main thrust of Skilling’s article,
that the maximum entropy method for
data analysis, as used in the production
of Fig. 1, stands in splendid isolation, on
fundamental grounds. This statement is
based on the axiomatic work of Shore and
Johnson? and of Tikochinsky et al®. They
show that the choice of a probability distri-
bution required to fit certain linear con-
straints has to be made on the basis of
maximum entropy if certain axioms have
to be satisfied. Typically, the effective con-
straints in the image-processing problems
are highly nonlinear, and are expressed
by the intensities themselves, not their pro-
portions. It is not obvious that the mathe-
matics of Shore and Johnson carry over
to such a problem, and I cannot accept
that their axioms, particularly those of
subclass and system independence, are
relevant to the regularization context.
Tikochinsky et al, in their discussion of
reproducible experiments, specifically
require the p, to be probabilities; the
assumption of linear constraints is vital,
and even their definition of reproducible
experiments does not correspond with the
interpretation given by Skilling.

Thus, the maximum entropy method for
data analysis is a useful tool, with some
practical advantages and disadvantages
over other regularization procedures. It is
mildly interesting that there are links with
the formal work on the principle of
maximum entropy but the parallel simply
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has not been shown to be exact enough to
disallow flexibility in choosing a pro-
cedure to clarify Fig. 1 of ref. 1. As ‘con-
sistency’, as defined by Shore and
Johnson, seems irrelevant in this context,
we need not fear the charge of incon-
sistency by rejecting entropy.
D. M. TITTERINGTON
Department of Statistics,
University of Glasgow,
Glasgow G12 8QW, UK
1. Skilling, J. Nature 309, 748-749 (1984).
2. Shore, J. E. & Johnson, R. W. IEEE Trans. Inf. Theory
IT-26, 26-37 (1980); TT-29, 942-943 (1983).
3. Tikochinsky, Y., Tishby, N. Z. & Levine, R. D. Phys. Rev.
Lert. 82, 1357-1360 (1984).
SKILLING REPLIES—I find the arguments
for using maximum entropy to be deeply
compelling. In fact, I am unable to
improve on Titterington’s own words: “the
maximum entropy method ... stands in
splendid isolation, on fundamental
grounds”. Quite so. However, he takes me
to task for not going beyond the descrip-
tion of an image as a set of prob-
abilities/proportions  to  incorporate
“some prior belief about the local smooth-
ness of the true image”. In this he has
raised a most important point: clearly, the
simple entropy formula S=-Yp; log
(p;/ m;) does not include any such belief;
just as clearly, maximum entropy is losing
power by ignoring this, provided of course
that it is realistic to expect smoothness, or
spikiness, or cars, or whatever in one’s
images.

1 hold that these more complicated situ-
ations should ideally be handled by
extending a technique which is basically
correct rather than by invoking ad hoc
alternatives. As Titterington’s preference
for smoothness tends to zero, I would like
his formulae to reduce to the simple
entropy form which is the compelling sol-
ution to that problem. This is because the
regularization function, which expresses
my preference for different shapes of
image, should be independent of the par-
ticular form of the data to be measured.
Logically, my preferences precede the
data, so that I should use the same func-
tion whether I have convolution data (as
in the car example) or marginai data (as
in the theoretical discussion).

Fortunately, maximum entropy can
include such preferences in an easy and
natural way. The trick is to develop the
identification of p with the image. The
simplest identification is to let i be a single

“index ranging over the cells of the image,

and p; the corresponding proportion of
flux. However, we can also let i be a com-
posite index ranging over pairs of cells,
and p, the corresponding product of fluxes
(itself a proportion). The model- m; can
now incorporate pair correlations between
cells as well as simple position-dependent
information. If we take i to be a highly
composite index, the model can encode
correspondingly subtle details of prior
knowledge., The arguments for using
maximum entropy still hold, and we have
been exploring this development. True, I

do not (yet?) know how to encode
‘smoothness’ in an absolute as opposed to
ad hoc fashion. Nevertheless, 1 hope I
have answered constructively Tittering-
ton’s first major comment.

Concerning the relevance of Shore and
Johnson's axioms', I do not think that the
distinction between linear and nonlinear
constraints is important here. The form of
the experimental constraints is quite sep-
arate from the form of one’s prior belief
about the observed image, as coded in the
regularization formula. Shore and
Johnson explicitly state that their mathe-
matics include nonlinear constraints. They
use the technical trick of replacing a (con-
vex) noniinear constraint by that set of
linear inequality constraints which defines
the hull of the nonlinear constraint.
Tikochinsky et al® do not state this, having
had physical applications in mind, but
clearly the same trick can be used.

If the experimental constraints include
dimensional informauon on intensities,
the maximum entropy image will be
accompanied by a dimensional number
describing its normalization. Defining the
regularization in terms of proportions
rather than intensities merely requires the
resulting image to have the same shape
whether the data reter to microwatts or
megawatts. The point about the subclass
and system independence axioms is not
that they hold for an arbitrary collection
of data (such as a blurred photograph),
but that they are compelling for particular
collections (such as marginals). If one par-
ticular type of data forces me to use
entropy, then I will consistently use
entropy for other types also.

I admit that the use of entropy in data
analysis imposes an interpretative gloss on
the Shore and Johnson' and Tikochinsky
et al? papers, but 1 was writing a News
and Views article, and I believe that these
authors themselves approve of the appli-
cation. We have to do something in data
analysis: I am prepared to use probabilis-
tic results to help to find sets of propor-
tions. Probabilities—not that we need
them anyway—and proportions are
isomorphic: probabilities are just propor-
tions in a sample space, and to each set
of proportions there corresponds a proba-
bility distribution. Finally, I return to Tit-
terington’s remarks defending flexibility
of choice. Maximum entropy using the
composite  (multi-cell)  identification
allows great flexibility in choosing the ana-
lytical procedure, but it also gives a
framework within which choices can be
related quantitatively to specific types of
prior knowledge and discussed in a logical
as opposed to a pragmatic fashion.

JOHN SKILLING
Department of Appliec Mathematics
and Theoretical Physics,
University of Cambridge,
Cambridge CB3 9EW, UK

1. Shore, J. E. & Johnson, R. W. IEEE Trans. Inf. Theory
IT-26, 26-37 (1980); IT-29, 942-943 (1983).

2. Tikochinsky, Y., Tishby, N. Z. & Levine, R. D. Phys. Rev.
Lent. 82, 1357-1360 (1984).




