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Supplemental Materials for Students 

 

Step 1b:  Structure Factor of a Double Uniform Helix 

First, the structure factor for one uniform helix should be calculated.  To do this, divide up 

one twist of the helix into N discrete scattering elements, each having an identical form factor F.   

Figure S1.1 shows a top-down view of the positions of the N scattering elements.  Use this 

information to construct the displacement vectors  in cylindrical coordinates (express K in 

cylindrical coordinates as well) and insert this information into Eq. (4). 
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Fig. S1.1  A top view of on complete twist of the single 
helix composed of N scattering elements. 

Now consider splitting up the uniform helix into progressively finer divisions, thereby letting  

 but at the same time with  such that .  The summation you just derived 

can then be expressed as an integral over 

∞→N 0→F 1→FN

θ .  After using the definition of Bessel functions, you 

will get the desired expression for ( )zKm KKS ,,θρ .  

For the addition of the second helix, use Rosalind Franklin’s and Raymond Gosling’s 

information that the second helix is displaced in the z-direction by d
8
3

=δ  and include these 

additional N scattering elements in the summation.  The zn values and nθ  values of this second 

set of scattering elements are related to the first set by: 

dzz nn 8
3

+=′    nn θθ =′      with  10 −→= Nn   (S1.1) 

Then do the same as before with ∞→N  and  such that  and the desired 

expression for the structure factor for the double uniform helix will be obtained. 

0→F 1→FN
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Step 2:  The reciprocal lattice for an array of infinite continuous planes with spacing  c

The calculation of the interference function for a lattice of points along the z-axis with spacing 

 is straightforward but a few hints about the calculation of the structure factor for an infinite 

plane might be useful.  It is best to start with Eq. (3) dealing with a continuous distribution of 

scattering elements but because the shape is an infinite plane oriented in the x-y plane, the 

volume integral turns into an area integral with an areal density  

c

σ  in place of the volume 

density ρ  of scattering elements resulting in the following expression: 

( ) ( )∫ ⋅=
plane

dAiFS dKK expσ     (S1.2) 

where .  Keeping in mind the definition of Dirac-Delta functions, the above integral 

should be easy to calculate. If you get any infinite values, just assume because of physical 

reasons that the integral stays finite; in reality the number of x-ray scattering elements are finite 

in number and the incident x-ray intensity is finite, hence the diffracted x-ray intensity, which is 

proportional to , must remain finite. 

yyxx ˆˆ +=d

( )KS

 

Step 3:  Constructing the Complete Reciprocal Space Structure Using the Convolution Theorem:  

The Cochran-Crick-Vand Theorem. 

The only hint that can be given for this step without giving away the answer is to use the 

reciprocal space lattice of the lattice of planes (representing the z-coordinates of the phosphates) 

for ( )KG ~  and the reciprocal space lattice of the double uniform helix (representing the x and y 

coordinates of the phosphates) for ( )KKF ~− . 
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Supplemental Materials for Instructors 

 

Interference Function for a 1D Array of Points 

 
  The interference function for a lattice of points with spacing  is: d
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where zKyKxK zyx ˆˆˆ ++=K ,   are the translation vectors in reciprocal space and 

coordinate space respectively with 

zdm ˆ=T

integer=m .  Also, φ  is a phase term that cancels when 

evaluating the intensity of the scattered X-ray beams.  It is seen that for the intensity of diffracted 

X-ray beams to be nonzero,  has to be the following: zK

 m
d

K z
π2

=              integer=m                      (S2.2) 

There are no restrictions on  and . Thus, it is seen that the reciprocal lattice of a lattice of 

points is a series of planes along the 

xK yK

z  axis with spacing dπ2 . 

 

Step 1b:  Structure Factor of a Double Uniform Helix 

 
As was stated in the Supplemental Materials for Students, you first need to calculate the 

structure factor for a single uniform helix.  For the single uniform helix, first consider splitting 

up one twist of the helix it up into N scattering elements, each having an identical form factor F, 
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and later letting  and  such that  and changing the summation to an 

integral.  For one twist being composed of N scattering elements, it is seen from Fig. S1.1 that z 

and 

∞→N 0→F 1→FN

θ  vary linearly with n according to the following equations: 

   n
N
dzn =   and       n

Nn
πθ 2

=           with  10 −→= Nn        (S2.3) 

In the summation for the structure factor Eq. (4), it is the dot product  that needs to be 

evaluated.  Using cylindrical coordinates, we have: 

ndK ⋅

    ( ) zKK zK ˆˆ += θρρK        (S2.4) 

    ( ) zzrr nnn ˆˆ += θd        (S2.5) 
 

  ( ) ( ) ( ) nzKnnznKn zKrKzKrrK +−=+⋅=⋅ θθθθρ ρρ cosˆˆdK     (S2.6) 

where nθ  is the azimuthal angle of the nth scattering element and Kθ is the azimuthal angle of K.  

The equation for the structure factor then is: 

 ( ) ( )( )( )∑∑
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Using Eq. (6) for Kz, the equation that was derived for zn , and using the relationship between 

 (which is equal to 1) and n∆ θ∆  that Eq.  (S2.3) provides, Eq. (S2.7) can be expressed as in a 

different form:  

 ( ) ( ) ( )( )( )∑ ∆−+−=⎟
⎠
⎞

⎜
⎝
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Letting  and  with , we can change the summation given by Eq. (S2.8) 

into the following integral: 

∞→N 0→F 1→FN
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where Kθθθ −=
~ .  Using the fact that ( )2exp πii =  and the definition of Bessel functions, the 

desired expression for the structure factor of a single uniform helix can be obtained: 
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d
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To add in the second helix oriented in the way specified by Franklin and Gosling, start with 

the summation Eq. (S2.7) describing the structure factor for one helix of N scattering elements 

and add in another set of N scattering elements with the following nz′  and nθ ′  dependencies: 

dn
N
dzn 8

3
+=′       and       n

Nnn
πθθ 2

==′   with     10 −→= Nn  (S2.11) 

 
The structure factor for the double helix of 2N scattering elements oriented is then: 
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As before, changing the summation index from n to θ , letting ∞→N  and  with 

, and using the definition of Bessel functions results in the equation:  

0→F
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Step 2:  The reciprocal lattice for an array of infinite continuous planes with spacing  
 

c

  For the interference function for a periodic array of points with spacing c, the exact same 

calculation as was done for Step 1a is performed but with a spacing  instead of .  It is seen 

that for the X-ray diffracted intensity to be nonzero,  has to be the following: 

c d

zK
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 m
c

K z
π2

=              integer=m                               (S2.14) 

The calculation of the interference function places no restrictions on  and .  Restrictions 

on  and  will be a result of the structure factor for the infinite plane. 

xK yK

xK yK

  For the structure factor of an infinite plane oriented in the x-y plane, start with Eq. (3) but 

use the real density σ  in place of the volume density ρ  of scattering elements resulting in the 

following: 
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where .  The integrals within the brackets are recognized as delta functions: yyxx ˆˆ +=d

( x
xiK Kdxe x πδ2=∫

∞

∞−

) )          and                           (S2.16) ( y
yiK Kdye y πδ2=∫

∞

∞−

In reality, these integrals will remain finite but will be nonzero only when  and  are both 

equal to zero.   

xK yK

Finally combining these two results above, the reciprocal lattice of a lattice of infinite planes 

is a set of points with K vectors: 

zm
c

ˆ2π
=K     integer=m    (S2.17) 

 

Step 3:  The Complete Reciprocal Space Lattice Using the Convolution Theorem 

 
In the convolution integral (Eq. (11)), use the reciprocal space lattice of the lattice of planes 

(representing the z-coordinates of the phosphates) for ( )KG ~  and the reciprocal space lattice of 
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the double uniform helix (representing the x and y coordinates of the phosphates) for ( )KKF ~− .  

Assuming that there are P  phosphates per twist (i.e., Pdc = ), ( )KG ~  is: 
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Because the set of  values in Eq. (S2.14) is a subset of the  values given by Eq. (S2.2), 

no new points in reciprocal space are produced with  values other than those given by Eq. 

(S2.2).  Equation (11) now becomes a summation:   

zK zK

zK

( ) ( )∫
∞

∞−

−=⎟
⎠
⎞

⎜
⎝
⎛ =Ω KdKKFKGm

d
KrK zK

~~~2,, πθρ         

           ( ) ( ) ( ) ( )∑
∞

−∞=
− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+=

n
KPnm PnmirKJPnmi

2
exp

4
3exp1 πθπ

ρ     (S2.19) 

As stated in Section 2, the result you get for ( )KΩ  will be oscillatory about the  axis (i.e., 

as a function of 

zK

Kθ ) but these oscillations will not be observed because in the experiment, the 

DNA strands may be rotating or you have many DNA strands with random orientations.  What is 

desired is the absolute magnitude of ( ) 2KΩ  averaged over πθ 20 ≤≤ K .  This quantity is easy 

to calculate: 
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Now to show the important relations given by Eq. (14) and (15) we have: 
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where in the second to the last step, the standard technique of redefining the summation index 

was done.  Now for Eq. (15) we have: 
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It is easy to see why the fifth layer line will be slightly stronger than other layer lines because 

two terms with  will occur in the summation and the cosine terms in front of these two fifth 

order Bessel functions are close to 1.   Using the same analysis, it is easy to see why the forth 

and sixth layer lines are weak. 

2
5J

Figure S2.1 shows ( ) 2
2, dmKrK zavg πρ =Ω 50 → for =m .   Table S2.1 lists the values 

 and  that produce the first and second local maximum for ( ) max1st
m

rK ρ ( ) max2nd
m

rK ρ

( ) 2
2, dmKrK zavg πρ =Ω  respectively for each .  Table S2.1 also lists the theoretical 

comparison ratios 

m

( ) ( ) max1
1

max1 st
m

st
m

rKrK
=ρρ  that will be compared with the experimentally 

obtained values. 
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Fig. S2.1  The reciprocal space lattice layers averaged over πθ 20→=K as a 
function of .  It is seen that the fourth layer line is weak and missing the 
first peak and that the fifth layer line is strong. 

ρrK
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Table S2.1.   values, and local maxima  zK ( )max
m

rK ρ  of 

( )dmKK zavg πρ 2, =Ω 50 → for =m  are given. 

 
m 

Peak 1 
( )max

m
rK ρ  

Peak 2 
( )max

m
rK ρ  

Comparison 
Ratios  

( ) ( )max
1

max
ρρ rKrK

m
 

0 0 3.8 0 
1 1.8 5.3 1 
2 3.0 6.8 1.67 
3 4.2 8.0 2.33 
4 Missing 7.5 Missing 
5 6.4 10.5 3.56 

 

Step 5:  Comparison of Theory and Experiment 
 

Even though the diffraction pattern is a bit unclear in Fig. 3, we can distinguish four sets of 

diffraction peaks besides the undiffracted beam at different  and  values.  We have the 

following data for the diffraction peaks labeled .  Expanding the figure to a full page and 

measuring the  and  values yields the values listed in Table S2.2.  The camera constant that 

is used depends on the degree that the X-ray diffraction photograph is expanded; if you zoom in 

on the photograph by a factor of two, the camera constant has to be increased by a factor of two 

as well.  Let us assume we have a camera constant 

mx my

50 →

mx my

cms 5=   for the  and  values yields 

the values listed in Table S2.2.  Also, copper Kα x-rays are used that have a wavelength 1.54 Å.  

The values of  and  and Eqs. (16) - (17) allow the values 

mx my

mx my
mzK , 

m
K ρ  and 

1=mm
KK ρρ  

to be calculated and are listed in Table S2.2. The normalized values 
1ρρ KK

m
 in Table S2.1 

should match up with the normalized values in Table S2.2 in the following way: 
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1. Peak 0 is the undiffracted beam and corresponds to 
0=mzK . 

2. Peak 1 corresponds to ( ) 12
1 d

K mz
π

==  and all following 
m

K ρ  values are normalized relative 

to 
1=m

K ρ . 

3. Peak 2 corresponds to ( ) 22
2 d

K mz
π

==  and the value 
12 ρρ KK  should be equal to 1.67. 

4. Peak 3 corresponds to ( ) 32
3 d

K mz
π

==  and the value 
13 ρρ KK  should be equal to 2.33. 

5. There appears to be a gap where Peak 4 should be and this agrees with the theoretical results 

that state that the fourth layer line is weak.  

6. Peak 5 corresponds to ( ) 52
1 d

K mz
π

==  and the value 
15 ρρ KK  should be equal to 3.56. 

 

It is seen that these measured and theoretical values largely match, therefore Properties 1-3 of 

the DNA structure are verified.   

Now using Eq. (16) and the fact that dK
mz π2

1
=

=
 to calculate  yields Å.  

Finally, using Eqs. (16) - (17) to calculate 

d 5.33=d

1=m
K ρ  and the value of ( ) max1

1
st

m
rK

=ρ  listed in Table 

S2.1 to calculate r  yields  Å.  These values are fairly close to the values given by 

Watson, Crick, Wilkins and Franklin and considering that we do not have the original X-ray 

diffraction photograph, the level of agreement is acceptable. 

3.11=r
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Peak xm ym 
mzK  

m
K ρ  

1
ρρ KK

m
 

0 0 0 0 0 0 

1 0.195 0.230 0.187 0.159 1 

2 0.335 0.455 0.369 0.273 1.72 

3 0.520 0.715 0.575 0.423 2.66 

4 Missing 

5 0.800 1.190 0.933 0.647 4.07 

Table S2.2.  Diffraction pattern values  and and 
other important values.  We are assuming 

mx my
cms 5=  
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