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Supplemental Materials for Students

Step 1b: Structure Factor of a Double Uniform Helix

First, the structure factor for one uniform helix should be calculated. To do this, divide up
one twist of the helix into N discrete scattering elements, each having an identical form factor F.
Figure S1.1 shows a top-down view of the positions of the N scattering elements. Use this

information to construct the displacement vectors d; in cylindrical coordinates (express K in

cylindrical coordinates as well) and insert this information into Eq. (4).
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Fig. SI1.1 A top view of on complete twist of the single
helix composed of N scattering elements.

Now consider splitting up the uniform helix into progressively finer divisions, thereby letting

N — oo but at the same time with F — 0 such that N F — 1. The summation you just derived
can then be expressed as an integral over 8. After using the definition of Bessel functions, you

will get the desired expression for S (K 220K, )

For the addition of the second helix, use Rosalind Franklin’s and Raymond Gosling’s
information that the second helix is displaced in the z-direction by 6 = %d and include these
additional N scattering elements in the summation. The z, values and 6, values of this second
set of scattering elements are related to the first set by:

with n=0—> N -1 (S1.1)

n
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Then do the same as before with N — oo and F — 0 such that N F — 1 and the desired

expression for the structure factor for the double uniform helix will be obtained.



Step 2: The reciprocal lattice for an array of infinite continuous planes with spacing ¢

The calculation of the interference function for a lattice of points along the z-axis with spacing
c is straightforward but a few hints about the calculation of the structure factor for an infinite
plane might be useful. It is best to start with Eq. (3) dealing with a continuous distribution of
scattering elements but because the shape is an infinite plane oriented in the Xx-y plane, the
volume integral turns into an area integral with an areal density o in place of the volume

density p of scattering elements resulting in the following expression:

S(K)= [Foexp(iK-d)dA (S1.2)

plane
where d = xX+ Yy . Keeping in mind the definition of Dirac-Delta functions, the above integral

should be easy to calculate. If you get any infinite values, just assume because of physical
reasons that the integral stays finite; in reality the number of x-ray scattering elements are finite
in number and the incident x-ray intensity is finite, hence the diffracted x-ray intensity, which is

proportional to S(K ), must remain finite.

Step 3: Constructing the Complete Reciprocal Space Structure Using the Convolution Theorem:

The Cochran-Crick-Vand Theorem.

The only hint that can be given for this step without giving away the answer is to use the

reciprocal space lattice of the lattice of planes (representing the z-coordinates of the phosphates)

for G(K) and the reciprocal space lattice of the double uniform helix (representing the X and y

coordinates of the phosphates) for F(K — K).
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Interference Function for a 1D Array of Points

The interference function for a lattice of points with spacing d is:

0 N-1
1(K)=">exp(iK-T)= lim > expliK,dm)
m=0 -® m=0

Sin(Kz Nj . 2r .
=g‘imexp(iKZ(N—1)d/2)—= gN if KZ=Flnteger

(S2.1)
sin[K j 0 otherwise
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where K=K, X+K y+K,Z, T=md2Z are the translation vectors in reciprocal space and

coordinate space respectively with m = integer. Also, ¢ is a phase term that cancels when
evaluating the intensity of the scattered X-ray beams. It is seen that for the intensity of diffracted

X-ray beams to be nonzero, K, has to be the following:

27 .
K, = g m m = integer (S2.2)
There are no restrictions on K, and K, . Thus, it is seen that the reciprocal lattice of a lattice of

points is a series of planes along the z axis with spacing 2 7/d .

Step 1b: Structure Factor of a Double Uniform Helix

As was stated in the Supplemental Materials for Students, you first need to calculate the
structure factor for a single uniform helix. For the single uniform helix, first consider splitting

up one twist of the helix it up into N scattering elements, each having an identical form factor F,



and later letting N — o and F — 0 such that N F — 1 and changing the summation to an
integral. For one twist being composed of N scattering elements, it is seen from Fig. S1.1 that z

and @ vary linearly with n according to the following equations:

zn:%n and 9n=2W”n with n=0—> N -1 (S2.3)

In the summation for the structure factor Eq. (4), it is the dot product K -d, that needs to be

evaluated. Using cylindrical coordinates, we have:

K=K, A0)+K,2 (S2.4)
d,=rf(6,)+z,2 (S2.5)
K-d, =rK, 56, ) 7(6,)+K,z, =rK cos(6, -6, )+ K,z, (S2.6)

where 6, is the azimuthal angle of the n" scattering element and 6, 1s the azimuthal angle of K.

The equation for the structure factor then is:

N-1

2 s . :
Sm(Kp,QK,KZ = ij =Y Fexp(iK-d,)=> Fexpli(rk , cos(d, -6, )+ K,z,))  (S2.7)

n=0 n=
Using Eq. (6) for K;, the equation that was derived for z,, and using the relationship between

An (which is equal to 1) and A& that Eq. (S2.3) provides, Eq. (S2.7) can be expressed as in a

different form:
Sul K00, K, =27 m | = NE expligem)> expli(rk , cos(6— 6, )+ (0 -6 m)rd  (52.8)
m( Mo Yo e =y —27ZPK6P » K K .

Letting N — o0 and F — 0 with N F — 1, we can change the summation given by Eq. (S2.8)

into the following integral:

Sm(Kp,GK K, = 2d—”mj = %ﬁKm)Texp(i(er cos(@ )+ ma )J4g (S2.9)



where 6 =6 — 6, . Using the fact that i = exp(i 7/2) and the definition of Bessel functions, the

desired expression for the structure factor of a single uniform helix can be obtained:

2 .
Sm(KP,QK,KZ =Tﬂm) - Jm(er)eXpKIm(ﬁK—k%)j (52.10)

To add in the second helix oriented in the way specified by Franklin and Gosling, start with
the summation Eq. (S2.7) describing the structure factor for one helix of N scattering elements

and add in another set of N scattering elements with the following z; and &’ dependencies:

;=%n+§d and 9,;=en=%”n with n=0->N-1 (S2.11)

z

The structure factor for the double helix of 2N scattering elements oriented is then:

§m = EF exp(i(er cos(6?n — 0, )+ Kzzn))+ NiiF CXP({"K;J COS(9n -0y )+ Kztzn +§dDJ

n= n=0

- [1 + exp(i %” mD E F expli(rk , cos(6, — 6, )+ 6,m)) (S2.12)

n=0
As before, changing the summation index from nto 4, letting N — o0 and F — 0 with

N F — 1, and using the definition of Bessel functions results in the equation:

~ 2 .3 i
Sm(Kp,eK K, = Tﬁm) = [1 + exp(l%mj ij (er)eXp[lm(0K+%jj (S2.13)

Step 2: The reciprocal lattice for an array of infinite continuous planes with spacing c

For the interference function for a periodic array of points with spacing c, the exact same
calculation as was done for Step 1a is performed but with a spacing ¢ instead of d . It is seen

that for the X-ray diffracted intensity to be nonzero, K, has to be the following:



=—m m = integer (S2.14)

The calculation of the interference function places no restrictions on K, and K . Restrictions
on K, and K will be a result of the structure factor for the infinite plane.

For the structure factor of an infinite plane oriented in the X-y plane, start with Eq. (3) but

use the real density o in place of the volume density p of scattering elements resulting in the

following:

plane plane plane

s(K)= IFaexp(iK-d)dA:Fa( _[exp(iKXX)dXI Iexp(iKyy)dyJ (S2.15)

where d = xX + yy. The integrals within the brackets are recognized as delta functions:
[ edx = 275(K, ) and [ e"dy = 275(K ) (S2.16)

In reality, these integrals will remain finite but will be nonzero only when K, and K, are both

equal to zero.
Finally combining these two results above, the reciprocal lattice of a lattice of infinite planes

is a set of points with K vectors:

K=—m1 m = integer (S2.17)

Step 3: The Complete Reciprocal Space Lattice Using the Convolution Theorem

In the convolution integral (Eq. (11)), use the reciprocal space lattice of the lattice of planes

(representing the z-coordinates of the phosphates) for G(IZ) and the reciprocal space lattice of



the double uniform helix (representing the X and y coordinates of the phosphates) for F(K — IZ)
Assuming that there are P phosphates per twist (i.e., c=d/P), G(IZ) is:

. 2 2 27
): ¢N if KZ—T”—(d/P)n_TPn n = integer (52.18)

G(K
0  otherwise

Because the set of K, values in Eq. (S2.14) is a subset of the K, values given by Eq. (S2.2),
no new points in reciprocal space are produced with K, values other than those given by Eq.

(S2.2). Equation (11) now becomes a summation:

Q[er,eK,KZ =2d—”mj= _TG(IZ)F(K ~ KK

0 . 3 .
= (1 + exp(lf(m - Pn)j J3<mpn>(er)eXp(l(m - Pn)(ﬁﬁgn (S2.19)
N=—o0

As stated in Section 2, the result you get for Q(K) will be oscillatory about the K, axis (i.e.,

as a function of 6, ) but these oscillations will not be observed because in the experiment, the

DNA strands may be rotating or you have many DNA strands with random orientations. What is
desired is the absolute magnitude of |Q(K]2 averaged over 0 <6, <27z . This quantity is easy

to calculate:

w 1% o 2z
‘Q(er,KZ ——mj :Z!;Q(rKP,HK,KZ :?mJQ*(erewKz :?mjdeK
= RY/4
=4 Z cos’ (? (m - Pn)j.] fm_pn)(er) (S2.20)
N=—o0

Now to show the important relations given by Eq. (14) and (15) we have:

2, (K. K, =272(-m)/d] =4 i cosz(%[(— m - Pn)jJ ()



o0

=4 cod (P i,

=4 Z cos ( (m- P”))J(zm—Pn)(er)

2
=0, (K, K, =22m/d (S2.21)
where in the second to the last step, the standard technique of redefining the summation index

was done. Now for Eq. (15) we have:

9

[, (K. K, =22(m+P)/d) =4 i 2(3” m+P)—Pn)jJ(2(m+P)Pn)(er)

=10, (K, K, =22m/d )’ (S2.22)
It is easy to see why the fifth layer line will be slightly stronger than other layer lines because
two terms with J. will occur in the summation and the cosine terms in front of these two fifth
order Bessel functions are close to 1. Using the same analysis, it is easy to see why the forth
and sixth layer lines are weak.

Figure S2.1 shows ‘Qavg rK,,K, =27 m/d}2 for m=0—5. Table S2.1 lists the values

(rK )m ™ and (rK )2nd ™ that produce the first and second local maximum for

‘Qav K, ,K,=2zm/d ]2 respectively for each m. Table S2.1 also lists the theoretical

9

comparison ratios (rK )m e / (rK )m ™ that will be compared with the experimentally

obtained values.
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Fig. S2.1 The reciprocal space lattice layers averaged over 8, =0 — 2z as a
function of rK . It is seen that the fourth layer line is weak and missing the

first peak and that the fifth layer line is strong.
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Table S2.1. K, values, and local maxima (rK p):ax of

‘Qavg(Kp,KZ :27zm/d1 for m=0— 5 are given.

Peak 1 Peak 2 Comparison
m (rK i )::ax (rK i ):ﬁx Ratios
(rKP )m /(rKP )1
0 0 3.8 0
1 1.8 53 1
2 3.0 6.8 1.67
3 4.2 8.0 2.33
4 Missing 7.5 Missing
5 6.4 10.5 3.56

Step 5: Comparison of Theory and Experiment

Even though the diffraction pattern is a bit unclear in Fig. 3, we can distinguish four sets of
diffraction peaks besides the undiffracted beam at different X and y,, values. We have the
following data for the diffraction peaks labeled 0 — 5. Expanding the figure to a full page and
measuring the X and Yy, values yields the values listed in Table S2.2. The camera constant that
is used depends on the degree that the X-ray diffraction photograph is expanded; if you zoom in
on the photograph by a factor of two, the camera constant has to be increased by a factor of two
as well. Let us assume we have a camera constant S=5 cm for the X, and Yy,, values yields
the values listed in Table S2.2. Also, copper Ka x-rays are used that have a wavelength 1.54 A.

The values of X, and Yy, and Egs. (16) - (17) allow the values |KZ K

and [K, |, /1K, |

m’ P‘m m=1

to be calculated and are listed in Table S2.2. The normalized values ‘K P‘m / ‘K . ‘1 in Table S2.1

should match up with the normalized values in Table S2.2 in the following way:

11



1. Peak 0 is the undiffracted beam and corresponds to |KZ |m= o

2
2. Peak 1 corresponds to (K, )m:I = Tﬁl and all following ‘K P‘m values are normalized relative
to ‘K ol
2r

m=

3. Peak 2 corresponds to (K,) _, = 72 and the value ‘KPL/‘KP‘I should be equal to 1.67.

4. Peak 3 corresponds to (K, )

m

, =2(le and the value ‘KpL/‘KpL should be equal to 2.33.

5. There appears to be a gap where Peak 4 should be and this agrees with the theoretical results

that state that the fourth layer line is weak.

6. Peak 5 corresponds to (K, )

m=l1

= 2d_7z5 and the value ‘Kp‘s/‘Kp‘l should be equal to 3.56.

It is seen that these measured and theoretical values largely match, therefore Properties 1-3 of

the DNA structure are verified.

Now using Eq. (16) and the fact that |Kz|m:] =27/d to calculate d yields d =33.5A.

Finally, using Egs. (16) - (17) to calculate ‘K p‘m:] and the value of (rK , )m " listed in Table

S2.1 to calculate r yields r =11.3 A. These values are fairly close to the values given by
Watson, Crick, Wilkins and Franklin and considering that we do not have the original X-ray

diffraction photograph, the level of agreement is acceptable.

12



Table S2.2. Diffraction pattern values X, and Yy, and

other important values. We are assuming S =5 cm

Peak Xm Ym |KZ|m ‘Kp‘m ‘Kp‘m/‘KP‘l
0 0 0 0 0 0

1 0.195 | 0.230 | 0.187 0.159 1

2 0.335 | 0.455 | 0.369 0.273 1.72

3 0.520 | 0.715 | 0.575 0.423 2.66

4 Missing

5 0.800 | 1.190 | 0.933 0.647 4.07
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