Linee di trasmissione

Edoardo Milotti

Corso di Fondamenti Fisici di Tecnologia Moderna

A.A. 2020-21

Map of the 1858 trans-Atlantic cable route

Great Eastern at Heart's Content

Il cronometro di John Harrison

Un cavo coassiale RG58/CU, con conduttori in rame stagnato, isolato con polietilene (PET) e con guaina esterna in polivinilcloruro (PVC) nero.

Cavo coassiale RG59 doppio

Cavo coassiale RG59 miniatura

Cavo coassiale RG59B/U

Cavo coassiale RG59B/U LSF

Cavo coassiale RG62 miniatura

			$p = \frac{a}{d}$ $q = \frac{a}{D}$	Formulas for a < b							
Capacitance C, farads/meter	$\frac{2\pi\epsilon}{\ln\left(\frac{r_0}{r_i}\right)}$	$\frac{re}{\cosh^{-1}\left(\frac{s}{d}\right)}$		e b a							
External inductance L, henrys/meter	$\frac{\mu}{2\pi}\ln\left(\frac{r_0}{r_i}\right)$	$\frac{\mu}{\pi}\cosh^{-1}\left(\frac{s}{d}\right)$		# <mark>a</mark>							
Conductance G, siemens/meter	$\frac{2\pi\sigma}{\ln\left(\frac{r_0}{r_i}\right)} = \frac{2\pi\omega\epsilon''}{\ln\left(\frac{r_0}{r_i}\right)}$	$\frac{\pi\sigma}{\cosh^{-1}\left(\frac{\vartheta}{d}\right)} = \frac{\pi\omega\epsilon''}{\cosh^{-1}\left(\frac{\vartheta}{d}\right)}$		$\frac{a}{a} = \frac{\omega e''b}{a}$							
Resistance R, ohms/meter	$\frac{R_s}{2\pi} \left(\frac{1}{r_0} + \frac{1}{r_i} \right)$	$\frac{2R_s}{\pi d} \left[\frac{s/d}{\sqrt{(s/d)^2 - 1}} \right]$	$\frac{2R_{a1}}{rd} \left[1 + \frac{1+2p^2}{4p^4} (1-4q^2) \right] \\ + \frac{8R_{a1}}{rD} q^2 \left[1 + q^2 - \frac{1+4p^2}{8p^4} \right]$	2 <i>R</i> .							
Internal inductance L _i , henrys/meter (for high frequency)	$\stackrel{R}{\smile}$										
Characteristic impedance at high frequency Z ₀ , chms	$\frac{\eta}{2\pi}\ln\left(\frac{r_0}{r_i}\right)$	$\frac{\eta}{\pi} \cosh^{-1}\left(\frac{s}{d}\right)$	$\frac{\frac{\eta}{\pi} \left\{ \ln \left[2p \left(\frac{1-q^2}{1+q^2} \right) \right] - \frac{1+4p^2}{16p^4} \left(1-4q^2 \right) \right\}$	7 <u>6</u>							
Z ₀ for air dielectric	$60\ln\left(\frac{r_0}{r_i}\right)$	$120 \cosh^{-1}\left(\frac{s}{d}\right) \simeq 120 \ln\left(\frac{2s}{d}\right)$ if $s/d \gg 1$	$\frac{120\left\{\ln\left[2p\frac{(1-q^3)}{(1+q^3)}\right]\right.}{-\frac{1+4p^3}{16p^4}(1-4q^3)\right\}}$	$120\pi \frac{6}{b}$							
Attenuation due to conductor α_c	4	\leftarrow $\frac{R}{2Z_0}$ \rightarrow									
Attenuation due to dielec- tric as	4	$\longleftarrow \qquad \qquad$									
Total attenuation dB/meter	4	<									
Phase constant for low-loss lines β	4	$\longleftrightarrow \qquad \qquad$									

All units above are mks. $\epsilon = \epsilon' - j\epsilon'' = \text{permittivity, farads/meter}$ $\mu \neq \text{permeability, henrys/meter}$ $\overline{\gamma} = \sqrt{\mu / \epsilon} \text{ ohms}$

 $e'' = \log factor of dielectric = \sigma \cdot / \omega$

 R_{*} = skin effect surface resistivity of conductor, ohms

 $\lambda =$ wavelength in dielectric

Formulas for shielded pair obtained from Green, Leibe, and Curtis, Bell System Tech. Journ., 15, pp. 248-284 (April 1936).

for the dielectric

1. The UHF connector can still be purchased from some manufacturers today.

3. The BNC connector is often found in test instruments.

1. The SMA connector is one of the most common connector types used for RF/microwave applications.

1mm	110 GHz						20	
1.85mm	67 GHz							Ö 🎽
MINI SMP • V	60 GHz							ည် 🖸
2.4mm	50 GHz						tio	
GPO • OSMP • OS-50P	40 GHz						Suc	$\overline{\mathbf{o}}$
2.92mm • K • SMP	40 GHz						77	
SSMA	38 GHz						laxi	
3.5mm-P	34 GHz						uer	ŭ ŭ
OSSP	28 GHz						ncy	5 1
SMA-P • 3.5mm	26.5 GHz							0 –
OSP	22 GHz							유 🖸
N-P • TNC-P • ZMA-P	18 GHz							
SMA • APC-7 • 7mm • QMA	18 GHz						sua	ି 🔁
SSMB • ZMA	12.4 GHz						G	
C • SC • N • TNC	11 GHz						Jag	
1.0/2.3 • SMC	10 GHz						Ð	
GR874	9 GHz							
MCX-75 • UMCX • 7/16 • OSMT	6 GHz							
MMCX • OSX • PCX • MCX	6 GHz							
HN • SMB • FAKRA	4 GHz							C
BNC • SMB-75 • MINI SMB-75	4 GHz							
F	3 GHz							
MINI UHF	2.4 GHz							Z
10-32	2 GHz							
N-75	1.5 GHz							
LC • 1.6/5.6	1 GHz							
BNC-75 • TNC-75	1 GHz							
UHF	300 MHz							
TWINAX - FME	200 MHz							
BNC TWINAX	100 MHz							
					_			
					п			
ITU BANDS EU, NATO, US EC	M BANDS	⊳	σ	0 0 m	≣o_⊥– ⊂	$\overline{x} = \overline{z}$		
SPECTRUM IEEE ALLOCATIO	N BANDS	Ŧ	É G			⊼	n n	
4 5	6	7	8	9	10	11	3	12
VLF LF	MF	HF	VHF	UHF	SHF	EHF		THF-FIR
α α α τ τ τ 2 2 2 3 6 9 1 5 6 2 2 2 3 6 9 1	15 18 15		9 12 16 12 12 12 12 12 12 12 12 12 12 12 12 12	210 12 12 90		22322255	224 24 27	300 270 120 120 210
							2000C	
		AHZ AHZ AHZ AHZ AHZ	NHZ NHZ NHZ NHZ NHZ NHZ NHZ					
$\begin{array}{c} 1222222222222222222222222222222222222$	$\frac{10}{20}$	5 5 5	1.4 1.4 1.50 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	12 14 14 20 33	10^{-10}	11. 12. 12. 12. 12. 12. 12. 12. 12. 12.	4 <u>1 1 0</u> 0	520
	oo√wöi⊸ŏ				0 3 7 7 7 3	$5 \rightarrow 7$ $3 - 7$	ათ <u>-</u> C	
	333333	3333333333	∃∃∃∃∃∃∃∃∃∃					
h								

references&tools

Fig. 4. Equivalent circuit of series gap in strip line (center line representation).

(1)
$$b_1 = \frac{D}{\lambda'_0} \ln\left\{\cosh\left(\frac{\pi S}{2D}\right)\right\}$$