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1 Equations of motion in a gravitational potential

The Newtonian limit of General Relativity is defined by the conditions

• all motions are slow (v ≪ c)

• gravitational fields are weak

• gravitational fields are static

From these conditions we can retrieve the usual equation of motion in a gravitational
field

d2xi

dt2
= −∂iΦ,

where Φ is the nonrelativistic gravitational potential. To this end, we note first that by
the assumption that all motions are slow

dxi

dτ
≪ c ⇒ dxi

d(cτ)
≪ 1 and

dt

dτ
≈ 1

then the only non-negligible terms in the geodesic equations are those with the Γα
00

Christoffel symbols

d2xα

dτ2
+ Γα

βγ ẋ
βẋγ = 0 ⇒ d2xα

dτ2
+ Γα

00

(
cdt

dτ

)2

≈ 0, (1)

Using the expression

Γα
βγ =

1

2
gαν

(
∂gνγ
∂xβ

+
∂gνβ
∂xγ

−
∂gβγ
∂xν

)
, (2)

and the assumption of static field, so that the time derivatives vanish, we find

Γα
00 =

1

2
gαν

(
−∂g00

∂xν

)
= −1

2
gαν

∂g00
∂xν

, (3)
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Finally, from the assumption that fields are weak, we consider the metric tensor to be
approximately equal to ηµν but for a small perturbation hµν (such that |hµν | ≪ 1):

gµν ≈ ηµν + hµν . (4)

The inverse metric tensor has a similar expression

gµν ≈ ηµν + h′µν , (5)

and by contracting it with the metric tensor we obtain

δµν = gµαg
αν ≈ (ηµα + hµα)(η

αν + h′αν) ≈ δµν + ηµαh
′αν + hµαη

αν , (6)

therefore
ηµαh

′αν = −hµαη
αν , (7)

i.e.,
h′µν = −ηµαηνβhαβ. (8)

Accordingly, from
hµν = ηµαηνβhαβ = −h′µν , (9)

we obtain the expression for the inverse metric tensor

gµν ≈ ηµν − hµν . (10)

Going back to eq. (3), we find that these definitions imply

Γα
00 ≈ −1

2
ηαν

∂h00
∂xν

, (11)

and the geodesic equation

d2xα

dτ2
+ Γα

00c
2 =

d2xα

dτ2
− c2

2
ηαν

∂h00
∂xν

≈ 0, (12)

The field is static, therefore

d2x0

dτ2
− c2

2
η0ν

∂h00
∂xν

=
d2x0

dτ2
− c2

2

∂h00
∂x0

≈ 0, (13)

i.e.,
d2t

dτ2
≈ c

2

∂h00
∂t

= 0, (14)

so that dt
dτ is constant.

Moving now to the space coordinates, we find

d2xi

dτ2
− c2

2
ηiν

∂h00
∂xν

=
d2xi

dτ2
+

c2

2

∂h00
∂xi

≈ 0, (15)

Finally, setting h00 = 2Φ/c2 we obtain

d2xi

dτ2
≈ − ∂Φ

∂xi
, (16)

which is the usual equation of motion with gravitational potential Φ.
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2 Poisson’s equation

Here, we use the classical Poisson’s equation for the gravitational field

∇2Φ = 4πGρ, (17)

where ρ is the mass density, to determine the value of the Einstein’s constant κ. To
this end we assume once again that the metric tensor is approximately equal to the
Minkowski tensor with the addition of a small perturbation |hµν | ≪ 1):

gµν ≈ ηµν − hµν . (18)

Using the alternate form of Einstein’s field equations

Rµν = κ

(
Tµν − 1

2
gµνT

)
, (19)

with Tµν = ρUµUν , we find

Rµν ≈ κ

(
ρUµUν − 1

2
(ηµν − hµν)ρc2

)
. (20)

Since the only non-zero component of the stress-energy tensor is T 00, we focus on
the case µ = ν = 0. Moreover, at low speed Uµ ≈ (c,v), therefore

R00 ≈ κ

(
ρc2 − 1

2
ρc2

)
=

1

2
ρc2κ (21)

From the explicit expression of the Ricci tensor

Rµν = ∂αΓ
α
µν − ∂µΓ

α
αν + Γα

ασΓ
σ
µν − Γα

µσΓ
σ
αν , (22)

we obtain
R00 = ∂αΓ

α
00 − ∂0Γ

α
α0 + Γα

ασΓ
σ
00 − Γα

0σΓ
σ
α0 ≈ ∂αΓ

α
00 − ∂0Γ

α
α0, (23)

where the final approximation comes from the consideration that the connection coef-
ficients must be small in this case and we get rid of second-order terms. Moreover, we
assume a static field, therefore the time derivative vanishes and we find

R00 ≈ ∂αΓ
α
00. (24)

We already found that in these conditions

Γα
00 ≈ −1

2
ηαν

∂h00
∂xν

, (25)

therefore

R00 ≈ −1

2
ηαν∂α∂νh00 = −1

2
∂α∂

αh00 = −1

2

(
1

c2
∂2

∂t2
−∇2

)
h00. (26)
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From (21) and (26) we obtain the equality

1

2
ρc2κ =

1

2
∇2h00, (27)

and combining this result with h00 = 2Φ/c2, we finally find

1

2
ρc2κ =

1

c2
∇2Φ, (28)

i.e.,

∇2Φ =
1

2
ρc4κ, (29)

and comparing this with Poisson’s equation, we find

κ =
8πG

c4
, (30)

so that Einstein’s equations are

Gµν =
8πG

c4
Tµν . (31)
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