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1 Equations of motion in a gravitational potential

The Newtonian limit of General Relativity is defined by the conditions
e all motions are slow (v < ¢)
e gravitational fields are weak
e gravitational fields are static

From these conditions we can retrieve the usual equation of motion in a gravitational

field A
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where @ is the nonrelativistic gravitational potential. To this end, we note first that by
the assumption that all motions are slow
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then the only non-negligible terms in the geodesic equations are those with the I'G,
Christoffel symbols
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and the assumption of static field, so that the time derivatives vanish, we find
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Finally, from the assumption that fields are weak, we consider the metric tensor to be
approximately equal to 7),,, but for a small perturbation h,, (such that |h,,| < 1):

Guv = Ny + hMV' (4)
The inverse metric tensor has a similar expression
g =+ R (5)
and by contracting it with the metric tensor we obtain
55 = guagow ~ (n,ua + h,uoz)(nay + h,al/) ~ 55 + nuahlcw + huo/](wa (6)
therefore
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Accordingly, from
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we obtain the expression for the inverse metric tensor
g’ =t — hH, (10)

Going back to eq. , we find that these definitions imply
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and the geodesic equation
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The field is static, therefore
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so that Ccll—f_ is constant.

Moving now to the space coordinates, we find
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Finally, setting hoo = 2®/c? we obtain
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which is the usual equation of motion with gravitational potential ®.




2 Poisson’s equation

Here, we use the classical Poisson’s equation for the gravitational field
V20 = 47Gp, (17)
where p is the mass density, to determine the value of the Einstein’s constant x. To

this end we assume once again that the metric tensor is approximately equal to the
Minkowski tensor with the addition of a small perturbation |h,| < 1):

g ~ gt — b, (18)
Using the alternate form of Einstein’s field equations
R* =g (T‘“’ — ;g‘“’T) , (19)
with TH = pUH*UY, we find
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Since the only non-zero component of the stress-energy tensor is 79, we focus on
the case p = v = 0. Moreover, at low speed U* = (¢, v), therefore
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From the explicit expression of the Ricci tensor
Ry = 01, — 0,1'g, + 15,10, — T Ta, (22)
we obtain
Roo = 0aIGy — 00I'G0 + ' TG0 — ' l'a0 & 9al'Go — dol'Go, (23)

where the final approximation comes from the consideration that the connection coef-
ficients must be small in this case and we get rid of second-order terms. Moreover, we
assume a static field, therefore the time derivative vanishes and we find

We already found that in these conditions
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From and we obtain the equality
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and combining this result with hgg = 2®/c2, we finally find
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and comparing this with Poisson’s equation, we find
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so that Einstein’s equations are
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