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1 Gauge transformations

We have already met the multiple degrees of freedom associated with the freedom of
choice of the coordinate system, and here we note that small changes of the metric
tensor can be due to:

1. perturbations of space-time

2. small transformations of the coordinate system

3. both 1. and 2.

We can understand the effect of small coordinate transformations by performing a gauge
transformation, where we consider two coordinate systems which differ by a small
translation ξµ:

x′µ = xµ + ξµ; xµ = x′µ − ξµ (|ξµ| ≪ 1) (1)

so that the coordinate transformation matrices are

∂x′µ

∂xν
= δµν + ∂νξ

µ (2)

∂xµ

∂x′ν
= δµν − ∂′

νξ
µ = δµν − ∂xα

∂x′ν
∂ξµ

∂xα
= δµν − (δαν − ∂′

νξ
α)

∂ξµ

∂xα
≈ δµν − ∂νξ

µ, (3)

where we have kept terms at most linear in ξµ and its derivatives.

In particular, the metric tensor (and similar rank-2 covariant tensors) transforms as
follows:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = (δαµ − ∂µξ

α)(δβν − ∂νξ
β)gαβ (4)

≈ gµν − ∂νξ
β gµβ − ∂µξ

α gαν (5)

= gµν − ∂νξµ − ∂µξν (6)

Here, we make once again the assumptions at the basis of linearized gravity

gµν ≈ ηµν + hµν , (7)
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and
g′µν ≈ ηµν + h′µν , (8)

therefore, when expressed in terms of perturbation variables, the transformation eq. (6)
becomes

ηµν + h′µν ≈ ηµν + hµν − ∂νξµ − ∂µξν , (9)

i.e.,
h′µν ≈ hµν − ∂νξµ − ∂µξν . (10)

We find the transformation of the trace-reversed perturbation variables evaluating
first the trace of the transformed variable

h′ = ηµνh′µν = ηµνhµν − ηµν∂νξµ − ηµν∂µξν = h− 2∂µξ
µ, (11)

so that the trace-reversed perturbation variables become

h̄′µν = h′µν −
1

2
ηµνh

′ = hµν − ∂νξµ − ∂µξν −
1

2
ηµν (h− 2∂αξ

α) (12)

= h̄µν − ∂νξµ − ∂µξν + ηµν∂αξ
α. (13)

As they should, these coordinate transformations do not affect (at this order) the
Riemann tensor:

R′µ
αβγ =

1

2
ηµν

(
∂α∂βh

′
νγ − ∂β∂νh

′
αγ − ∂α∂γh

′
νβ + ∂ν∂γh

′
αβ

)
(14)

=
1

2
ηµν [∂α∂β(hνγ − ∂νξγ − ∂γξν)− ∂β∂ν(hαγ − ∂αξγ − ∂γξα)

−∂α∂γ(hνβ − ∂νξβ − ∂βξν) + ∂ν∂γ(hαβ − ∂αξβ − ∂βξα)] (15)

=
1

2
ηµν (∂α∂βhνγ − ∂β∂νhαγ − ∂α∂γhνβ + ∂ν∂γhαβ) = Rµ

αβγ (16)

We use the available degrees of freedom to choose a suitable coordinate
frame and simplify the Einstein equation for linearized gravity with trace-
reversed perturbation variables

□2h̄µν − ∂µ∂
αh̄αν − ∂ν∂

αh̄µα + ηµν∂α∂βh̄
αβ =

16πG

c4
Tµν . (17)

We see that we can fix the coordinate system in a particularly advantageous way if it is
possible to set

∂ν h̄
µν = 0 (18)

(the Lorentz gauge), then it is straightforward to see that the equation reduces to the
system

□2h̄µν =
16πG

c4
Tµν (19)

∂ν h̄
µν = 0 (20)
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1.1 Existence of the Lorentz gauge

Is there a coordinate system that actually satisfies the Lorentz condition? If it exists,
then there must be a coordinate transformation

h̄′µν = h̄µν − ∂νξµ − ∂µξν + ηµν∂αξ
α (21)

such that ∂ν h̄
′µν = 0. Indeed, from eq. (21), we find

0 = ∂ν h̄′µν = ∂ν h̄µν − ∂ν∂νξµ − ∂ν∂µξν + ηµν∂
ν∂αξ

α (22)

= ∂ν h̄µν −□2ξµ − ∂µ∂
νξν + ∂µ∂

νξν (23)

= ∂ν h̄µν −□2ξµ (24)

We end up with the equation

∂ν h̄µν = □2ξµ (25)

which is a wave equation with a source term. Linear differential equations such as this
can always be solved by functions of the form g(x) + g0(x), where g is a particular
solution which takes into account the source term on the r.h.s. of the equation, and g0
is the general solution of the associated homogeneous equation

∂ν h̄µν = 0, (26)

therefore we conclude that we can always find a suitable transformation that takes us
to a coordinate system where the Lorentz gauge holds.

2 The transverse-traceless gauge

In empty space the wave equation with the Lorentz condition

□2h̄′µν =
16πG

c4
Tµν (27)

∂ν h̄
′µν = 0 (28)

reduces to

□2h̄′µν = 0 (29)

∂ν h̄
′µν = 0 (30)

and this works for a gauge transformation 4-vector ξµ that leads to a coordinate system
that satisfies the Lorentz condition

∂ν h̄µν = □2ξµ (31)
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However with the choice of the Lorentz gauge we have not exhausted the
degrees of freedom available to us. The h̄µν symmetric tensor has 10 inde-
pendent components and Eq. (31) corresponds to 4 scalar equations. This
means that we have 6 degrees of freedom left and that there is an infinity
of ξµ that satisfy this equation. Therefore, we can assume the Lorentz gauge
and still have residual freedom to further constrain the coordinate system.

Now, we drop the prime and spell out the wave equation

□2h̄µν =
1

c2
∂2h̄µν
∂t2

−∇2h̄µν = 0 (32)

and look for solutions
h̄µν = Re[Aµν exp(ikαx

α)] (33)

Note that eq. (32) predicts the existence of waves that propagate at speed c. This
is an important prediction of GR.

These trial solutions must satisfy the following constraints:

• from the symmetry of the metric tensor: Aµν = Aνµ

• from the wave equation: kαkα = 0, i.e., the wave 4-vector is null; this condition
implies the usual dispersion relation, i.e., waves move with speed c

• from the Lorentz condition: kνA
µν = 0

Next, we consider a wave propagating in the x3 direction, so that the wave 4-vector
is

kµ = (k, 0, 0, k); kµ = (k, 0, 0,−k) (34)

(the equality k0 = k3 follows from the fact that this is a null vector), with k = ω/c.
With this choice of kµ, we find the following equality from the Lorentz condition

kAµ0 − kAµ3 = 0, (35)

i.e.,
Aµ0 = Aµ3, (36)

and the A matrix writes

[Aµν ] =


A00 A01 A02 A00

A01 A11 A12 A01

A02 A12 A22 A02

A00 A01 A02 A00

 (37)

We see that the A matrix depends on just 6 quantities, (A00, A01, A02, A11, A12, A22), in
line with what we expect from the application of the Lorentz condition (the symmetric
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tensor has 10 independent components, but the Lorentz condition implies 4 equalities,
and hence the number of independent components is reduced to 6).

Since the Lorentz gauge determines a whole class of gauge transforma-
tions, we need to further specify the coordinate transformation. We do this by choosing

ξµ = −Re[iϵµ exp(ikαx
α)], (38)

where kµ is the same as in eq. (33), therefore this is a wave-dependent gauge
transformation. This trivially satisfies the Lorentz condition, and moreover from

h̄′µν = h̄µν − ∂νξµ − ∂µξν + ηµν∂αξ
α (39)

we find
A′µν = Aµν − kνϵµ − ϵνkµ + ηµνkαϵ

α. (40)

From eq. (40) and from the values of kµ and Aµν listed above, we find

A′00 = A00 − k0ϵ0 − ϵ0k0 + η00kαϵ
α = A00 − k(ϵ0 + ϵ3) (41)

A′01 = A01 − k1ϵ0 − ϵ1k0 + η01kαϵ
α = A01 − kϵ1 (42)

A′02 = A02 − k2ϵ0 − ϵ2k0 + η02kαϵ
α = A02 − kϵ2 (43)

A′11 = A11 − k1ϵ1 − ϵ1k1 + η11kαϵ
α = A11 − k(ϵ0 − ϵ3) (44)

A′12 = A12 − k2ϵ1 − ϵ2k1 + η12kαϵ
α = A12 (45)

A′22 = A22 − k2ϵ2 − ϵ2k2 + η22kαϵ
α = A22 − k(ϵ0 − ϵ3) (46)

In this way we have added four constraints (the values of ϵµ) and we can use eqs. (41)-
(46) to reduce the independent components of A to just two. A12 remains unchanged
by the gauge transformation, and A21 = A12 by symmetry, and we can select just one
more independent value. Setting

ϵ0 = (2A00 +A11 +A22)/4k (47)

ϵ1 = A01/k (48)

ϵ2 = A02/k (49)

ϵ3 = (2A00 −A11 −A22)/4k (50)

we find the following transformed A matrix
0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 = A11


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+A12


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (51)

After defining two linear polarization matrices

ϵµν+ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ; ϵµν× =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , (52)
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we can write the generic polarization state

A′µν = A+ϵ
µν
+ +A×ϵ

µν
× (53)

Both matrices are traceless and the components in direction 3 vanishe (transverse prop-
agation), therefore this choice of the gauge is called the transverse-traceless gauge
(TT gauge). In this gauge h̄ = 0, therefore h = 0 as well and in this gauge there is
no difference between perturbation variables and trace-reversed perturbation
variables.

In linearized gravity and in the TT gauge, the formula for the connection coefficients
becomes

Γα
µν ≈ 1

2
ηαγ (∂µhγν + ∂νhγµ − ∂γhµν) (54)

=
1

2
ηαγ (kµhγν + kνhγµ − kγhµν) ; (55)

considering this expression, it is easy to see that

Γµ
00 = 0 Γµ

0ν =
1

2
∂0h

µ
ν .

Using these results, and considering a particle initially at rest, so that its initial 4-velocity
is ẋµ = (c, 0, 0, 0), the geodesic equation

d2xα

dτ2
+ Γα

µν ẋ
µẋν = 0, (56)

becomes
d2xα

dτ2
= −Γα

µν ẋ
µẋν = −Γα

00c
2 = 0. (57)

This means that the 4-velocity remains constant and equal to its initial value (particle at
rest). In other words, in the TT gauge, a spherical cloud of particles at rest has geodesics
with constant spatial coordinate: therefore, the small spacelike vectors ξµ = (0, ξ1, ξ2, ξ3)
that mark the separations between nearby particles in the cloud remain constant.

However, the spatial separation ∆x2 is not constant:

∆x2 = −gijξ
iξj = −(ηij + hij)ξ

iξj = (δij − hij)ξ
iξj = ξiξ

i − hijξ
iξj

≈
(
ξi −

1

2
hikξ

k

)(
ξi − 1

2
hikξ

k

)
(58)

The new variables ξi − 1
2h

i
kξ

k mark the correct spatial separation. Note that in the TT
gauge, there is no shift in the 3 direction (the propagation direction), again showing that
the wave is transverse.

6



When we take one of these particles, originally in (ξ1, ξ2, 0) as position marker, we
see that with a passing wave with amplitude A+ϵ

µν
+ its position is

x1 = ξ1 − A+

2
cosωt ξ1 (59)

x2 = ξ2 +
A+

2
cosωt ξ2 (60)

x3 = 0 (61)

This means that in the ξ3 = 0 plane, a ring of N equally spaced reference masses at
radius R and angular position θn = 2πn/N has separation

r2n = R2

(
1− A+

2
cosωt

)2

cos2 θn +R2

(
1 +

A+

2
cosωt

)2

sin2 θn (62)

≈ R2
[
(1−A+ cosωt) cos2 θn + (1 +A+ cosωt)2 sin2 θn

]
(63)

= R2
[
1−A+(cos

2 θn − sin2 θn) cosωt
]

(64)

= R2 (1−A+ cos 2θn cosωt) , (65)

and finally

rn ≈ R

(
1− A+

2
cos 2θn cosωt

)
. (66)

We see that the perturbation variable represents the relative deformation of the
distance between test masses (see Fig. 1); in the theory of elasticity this is called a
strain.

 
 
 
 
 
 
 
 
 
 

 
 

                              

Figure 1: Spatial deformations (blue) of a circular ring of particles (shown in red due to
the + polarization.
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