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1 The quadrupole formula

Here we reconsider the wave equation with a source term (see the handout “The transverse-
traceless gauge”):
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Formally, eq. is just like the equations for the individual electromagnetic vector
potential components A" = (¢/c, A) in the Lorentz gauge, in particular for the 0 com-
ponent (the electric potential) ¢ = cA" the equation is:
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The solution of eq. in vacuum, based on retarded potentials, is well-known
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where ry is the position of a small volume of the source, r is the position where the
field is determined, and r = |r — ro| is their distance. Since, formally, eq. (1)) can be
obtained from eq. with the substitutions p — T*" and 1/eg — 167G/c*, we see that
the solution of eq. is
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Under the following conditions:
1. source size < wavelength A\ of the wave < distance r to the source;

2. |h] < 1,



3. source is slow (all its parts move with speed < ¢);

the solution @ approximates to
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In view of the results obtained in the TT gauge, we are interested in the
space part of the metric perturbation tensor, 2/, and we proceed to evaluate
it.
Notice that applying the Lorentz condition to both sides of eq. , we find

(8, ) = m;G&,TW ~0, (8)
ie.,
9,7 = 0 )

(the Lorentz condition in linearized gravity is consistent with the local conservation of
energy), where the time part is
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and the space part is ‘ ) )
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We use these equations to prove an identity that helps evaluating the integral .

We start with
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where the integral on the lh.s. is a divergence, and thanks to Gauss’ theorem it is
equivalent to a surface integral on the boundary of the mass-energy distribution of the
source; however, at the boundary, we can assume a vanishing 7%, and the whole integral
evaluates to zero. Therefore, using this result and the small-speed approximation,
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and exchanging indexes and summing, we find
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The r.h.s. of this equation can be further transformed as follows. First, we remark that
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where the Lh.s. volume integral has an integrand which is a divergence and can be
transformed into a surface integral that vanishes as above. Therefore,
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where we used eq. in the last passage, and finally, from egs. and we find
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We can use this result and the slow-motion assumption 7% ~ pc?, where p is the
mass density, to obtain
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where the integrals are evaluated at the retarded time. The integral
QY :/ priad d3x (19)
source

is the quadrupole tensor of the mass distribution, so that the solution can also be written
in the form

R (ct,x) ~ % QU (t—r/c). (20)

This equation is the famous quadrupole formula. The first-order term in GW gener-
ation is due to the mass-energy quadrupole. There is no monopole or dipole
term.

2 No GWs from a spherically symmetric source

In the TT gauge, the strain is traceless: this shows that only the off-diagonal
terms of the quadrupole tensor contribute to the emission of gravitational
waves. However, for a radially symmetric mass distribution we can write eq. in
polar form
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where
1

n' = sinf cos ¢; n? = sinfsin ¢; n® = cosd. (22)
Therefore, all possible off-diagonal products have vanishing integral over ¢, and we
find that the only non-vanishing elements of the Q% tensor lie on the diagonal. This
means that spherically symmetric motions do not produce any gravitational
radiation.

Indeed, in a previous handout, we found that there is a very useful specialization of
the Lorentz gauge, the TT gauge, a coordinate system that is comoving with the wave
itself. In the T'T gauge, free particles remain at constant coordinate locations, although
their proper separations change. We find the amplitude of the GW in the TT gauge by
projecting the quadrupole tensor in the plane perpendicular to the direction of the wave,
and by removing the trace of the projected tensor (recall that the polarization tensors
are both traceless).

Finally, we note that the nonspherical part of the quadrupole tensor is given by the
reduced quadrupole tensor
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so that the quadrupole formula, Eq. , becomes
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Both the quadrupole tensor and the reduced quadrupole tensor are close relatives of
the classical inertia tensor which is defined by
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3 GWs radiated by a rotating dumbbell

As an application of eq. (18), consider a dumbbell, with two masses M at the end of a
massless rod of length 2R, as illustrated in figure 1l The dumbbell rotates in the (!, z2)
plane with constant angular speed w about its midpoint.

Setting the origin of the coordinate system at the midpoint of the rod, the positions

of the masses are '
z' = (R coswt, Rsinwt,0) (26)



Figure 1: Example of a “dumbbell”. In this case the stars in a binary system orbit one
around the other in a circle of radius R (figure from S. M. Carroll, Spacetime Geometry,
an Introduction to General Relativity Pearson, 2013).

and we find
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This solution represents a gravitational wave with frequency 2w. Both polarization
components are equally represented and they are 90° out of phase, so that this is a
circularly polarized gravitational wave.

It is easy to see that in the case of unequal masses M7, M, and radii Ry, Rs, the



previous result becomes
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We can use these results to find the order of magnitude of the amplitude of waves
emitted by a laboratory-size apparatus. We assume here M = 1kg, R=1m, w = 1s"1
Moreover, to satisfy the far-field approximation, r > ¢/w, then the amplitude of the
gravitational waves is

N 8G'M R*w? 8GM R%*w3

—52
ha = < e 107 (31)

which is totally undetectable with current technologies.

3.1 Binary systems

In the case of a binary star system with a large separation between stars (which the
dumbbell with vanishing-mass rod approximates) and circular orbits, we can use the
Keplerian formulas to obtain the frequency w. With masses m; and me, with orbital
radii 71 and ro, in the CM system the total momentum vanishes and we find

MITIW = MaTow (32)

ie.,
miry = mary (33)

Moreover, the masses experience a centrifugal acceleration that must be balanced by the
gravitational force, so that
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The latter formula can be rearranged to obtain
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(a form of Kepler’s third law). Therefore, the closer the stars, the higher the frequency,
and therefore the larger the metric perturbation. As a result, we expect measurable
GWs from very compact binary systems, typically formed by close pairs of
black holes or neutron stars. We shall develop these ideas further when discussing
gravitational radiation from compact binary systems.
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