The TT metric GW worksheet

Edoardo Milotti

November 23, 2023

To carry out the calculations we need to recall a few important expressions:

- Christoffel symbols

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\alpha} g_{\nu \beta}+\partial_{\beta} g_{\nu \alpha}-\partial_{\nu} g_{\alpha \beta}\right) \tag{1}
\end{equation*}
$$

- Riemann tensor

$$
\begin{equation*}
R_{\alpha \beta \gamma}^{\mu}=\partial_{\beta} \Gamma_{\alpha \gamma}^{\mu}-\partial_{\gamma} \Gamma_{\alpha \beta}^{\mu}+\Gamma_{\alpha \gamma}^{\delta} \Gamma_{\delta \beta}^{\mu}-\Gamma_{\alpha \beta}^{\delta} \Gamma_{\delta \gamma}^{\mu} \tag{2}
\end{equation*}
$$

- Ricci tensor

$$
\begin{equation*}
R_{\alpha \beta}=R_{\alpha \beta \mu}^{\mu}=\partial_{\beta} \Gamma_{\alpha \mu}^{\mu}-\partial_{\mu} \Gamma_{\alpha \beta}^{\mu}+\Gamma_{\alpha \mu}^{\delta} \Gamma_{\delta \beta}^{\mu}-\Gamma_{\alpha \beta}^{\delta} \Gamma_{\delta \mu}^{\mu} \tag{3}
\end{equation*}
$$

- metric tensor for the + polarization

$$
\left[g_{\mu \nu}\right]=\left[\eta^{\mu \nu}\right]+\left[h^{\mu \nu}\right]=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{4}\\
0 & -1+h(t, z) & 0 & 0 \\
0 & 0 & -1-h(t, z) & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- inverse metric tensor for the + polarization

$$
\left[g^{\mu \nu}\right]=\left[\eta^{\mu \nu}\right]-\left[h^{\mu \nu}\right]=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{5}\\
0 & -1-h(t, z) & 0 & 0 \\
0 & 0 & -1+h(t, z) & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Next, assuming a sinusoidal time dependence

$$
\begin{equation*}
h(t, z)=A \cos (\omega t-k z)=h_{x x}^{T T}=-h_{y y}^{T T} \tag{6}
\end{equation*}
$$

and using the Diagonal metric worksheet of T. A. Moor ${ }^{1}$ we carry out the calculations that show that for the + polarization

$$
\begin{equation*}
R_{t t}=-\frac{1}{c^{2}}\left(h \ddot{h}+\frac{\dot{h}^{2}}{2}\right) ; \quad R_{z z}=R_{t t} ; \quad R_{x x}=R_{y y}=0 \tag{7}
\end{equation*}
$$

to second order in h.

After averaging over time, we find

$$
\begin{align*}
-\left\langle h \ddot{h}+\frac{\dot{h}^{2}}{2}\right\rangle=\omega^{2} A^{2}\left\langle\cos ^{2}(\omega t-k z)-\right. & \left.\frac{1}{2} \sin ^{2}(\omega t-k z)\right\rangle \\
& =\omega^{2} A^{2}\langle\cos (2 \omega t-2 k z)\rangle+\frac{1}{2}\left\langle\dot{h}^{2}\right\rangle=\frac{1}{2}\left\langle\dot{h}^{2}\right\rangle \tag{8}
\end{align*}
$$

Finally, it is easy to see that the h-dependent part of the Ricci scalar vanishes.

[^0]
[^0]: ${ }^{1}$ We must be careful that in Moore's text he uses the $(-,+,+,+)$ signature while we use the (,,,+---$)$ signature, and units such that $c=1$. He also uses a different convention for the Ricci tensor, so that the sign is reversed with respect to our definition.

