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1 Introduction

Tensors are introduced starting from generic vector spaces and are then heavily used in
special vector spaces associated with manifolds (to be defined later). In this handout,
we discuss the properties of tensors, with much material taken from [1] ch. 4 (grayed
text), and [2] ch. 1 (blue text).

Note that in this handout we use the Einstein notation only sparsely, and still use
summations to emphasize sums.

2 Linear and multilinear functions

We consider first linear and multilinear functions in generic vector spaces.

2.1 Effect of coordinate transformations on expressions for scalar in-
variants

Consider the scalar product

s = s(v) = λ · v =
∑
n

λnv
n (1)

which is a scalar function s = s(v) of the vector v and whose representation does not
depend on the reference frame. While λ · v is an abstract representation of the scalar
product, the expression

∑
n λnv

n requires explicit coordinates computed in a specific
frame of reference. In a different frame of reference, the representation of the v vector
is a linear combination of the coordinates in the first frame:

v′i = Ai
jv

j (2)

where the coefficients {Ai
j} are a matrix representation of the linear transformation. The

inverse transformation has a similar matrix representation {A−1j
i}, such that∑

k

A−1k
iA

j
k = δji (3)
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This means that we can write the scalar product in the form

s =
∑
n

λnv
n =

∑
i,j

λiδ
i
jv

j =
∑
i,j,k

λiA
−1k

iA
k
j v

j =
∑
k

λ′
kv

′k (4)

and the scalar product remains constant if the vector of linear coefficients of the trans-
formations obeys the transformation rule

λ′
j = A−1j

iλ
i (5)

when the vector obeys the transformation law

v′j = Aj
iv

i (6)

2.2 Multilinear functions

We can extend the results of section 2.1 to multilinear functions that return a scalar as
follows:

f(x, . . . , z) = Ti,...,kx
i . . . zk (7)

(on the l.h.s, the coordinate-free representation of the function, on the r.h.s., the repre-
sentation in a given coordinate frame). Then, as in section 2.1, we find that the function
is unaffected by a coordinate change if

T ′
i,...,k = A−1j

i . . . A
−1ℓ

kTj,...,ℓ (8)

A set of numbers Ti,...,k that transforms according to the rule (8) is called a tensor.

Tensors are important in many areas of physics, ranging from topics such as general
relativity and electrodynamics to descriptions of the properties of bulk matter such as
stress (the pattern of force applied to a sample) and strain (its response to the force), or
the moment of inertia (the relation between a torsional force applied to an object and its
resultant angular acceleration). Tensors constitute a generalization of other quantities:
scalars and vectors. A scalar is quantity that remains invariant under rotations of the
coordinate system and which can be specified by the value of a single real number.
Vectors are identified as quantities that have a number of real components equal to
the dimension of the coordinate system, with the components transforming like the
coordinates of a fixed point when a coordinate system is rotated. Calling scalars tensors
of rank 0 and vectors tensors of rank 1, we identify a tensor of rank n in a d-dimensional
space as an object with the following properties:

• It has components labeled by n indices, with each index assigned values from 1
through d, and therefore having a total of dn components;

• The components transform in a specified manner under coordinate transforma-
tions.

The behavior under coordinate transformation is of central importance for tensor analysis
and conforms both with the way in which mathematicians define linear spaces and
with the physicist’s notion that physical observables must not depend on the choice
of coordinate frames.

2



3 Tensors on differentiable manifolds

Although we have not yet introduced the concept of differentiable manifold, we shall now
move to a different view of tensors, with local properties that depend on a generalization
of the concept of parameterized continuous surface. We start with an example, provided
by a spherical coordinate system used to map a sphere (see Figure 1).

8 1 Vector and tensor fields 

x=x(u,v,w), y=y(u,v,w), z = z(u,v,w), (1.1) 

and, in principle, invert these to get u, v, w in terms of x, y, z . Through 
any point P with coordinates (uo, v0 , wo) there pass three coordinate surfaces, 
given by u = u0 , v = vo, and w = w0 , which meet in coordinate curves. The 
following example serves to illustrate these ideas. 

Example 1.1.1 
For spherical coordinates we have 

x = rsinB cos¢, y = rsinB sin¢, z = rcose , (1.2) 

where the conventional ranges for the coordinates are2 

r 0' 0 ::; e ::; 7r' 0 ::; ¢ < 27r. 

The coordinate surface r = ro is a sphere of radius r0 (because x2 + y2 + z2 = 
r6), the coordinate surface e = 80 is an infinite cone with its vertex at the 
origin and its axis vertical, and the coordinate surface¢ = ¢o is a semi-infinite 
plane with the z axis as its edge. (See Fig. 1.1.) 

y 

Fig. 1.1. The coordinate surfaces and coordinate curves of spherical coordinates. 

The surfaces 8 = 80 and ¢ = ¢0 intersect to give a coordinate curve which 
is a ray (part of a line) that emanates from 0 and passes through P; the 
surfaces ¢ = ¢>0 and r = r 0 intersect to give a coordinate curve which is a 
semicircle having its endpoints on the z axis and passing through P ; and the 

2 In practice, one usually lets ¢ wrap around and take all values, so that the ¢ 
coordinate of a point is unique only up to multiples of 21r. 

Figure 1: The coordinate surfaces and coordinate curves of spherical coordinates.

Suppose then that we have an alternate coordinate system (u, v, w) that is non-
Cartesian, such as spherical coordinates (r, θ, ϕ), as in the example below. We can
express the Cartesian coordinates x, y, z in terms of (u, v, w),

x = x(u, v, w); y = y(u, v, w); z = z(u, v, w), (9)

and, in principle, invert these to get (u, v, w) in terms of x, y, z. Through any point P
with coordinates (u, v, w) there pass three coordinate surfaces, given by u = u0, v = v0,
and w = w0, which meet in coordinate curves.

For spherical coordinates we have:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (10)

where the conventional ranges for the coordinates are

r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (11)
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The coordinate surface r = r0 is a sphere of radius r0 (because x2 + y2 + z2 = r2), the
coordinate surface θ = θ0 is an infinite cone with its vertex at the origin and its axis
vertical, and the coordinate surface ϕ = ϕ0 is a semi-infinite plane with the z axis as its
edge. The surfaces θ = θ0 and ϕ = ϕ0 intersect to give a coordinate curve which is a ray
(part of a line) that emanates from 0 and passes through P ; the surfaces ϕ = ϕ0 and
r = r0 intersect to give a coordinate curve which is a semicircle having its endpoints on
the z axis and passing through P ; and the surfaces r = r0 and θ = θ0 intersect to give
a coordinate curve which is a horizontal circle passing through P with its center on the
z axis.

The three equations (9) can be combined into a single vector equation that gives the
position vector r of points in space as a function of the coordinates u, v, w that label the
points:

r = x(u, v, w)êx + y(u, v, w)êy + z(u, v, w)êz, (12)

where the ê’s define an orthonormal cartesian reference frame. Setting w equal to the
constant w0, but leaving u, v to vary, gives

r = x(u, v, w0)êx + y(u, v, w0)êy + z(u, v, w0)êz, (13)

which is a parametric equation for the coordinate surface w = w0 in which the coordi-
nates u, v play the role of parameters. Parametric equations for the other two coordinate
surfaces arise similarly. If we set v = v0 and w = w0, but let u vary, we get

r = x(u, v0, w0)êx + y(u, v,0w0)êy + z(u, v0, w0)êz, (14)

which is a parametric equation for the coordinate curve given by the intersection of
v = v0 and w = w0, in which the coordinate u acts as a parameter along the curve.
Parametric equations for the other two coordinate curves arise similarly.

If we differentiate equation (12) with respect to the parameter u then we get a
tangent vector to the coordinate curve. Since this differentiation is done holding v and
w constant (v = v0 and w = w0), it amounts to differentiating equation (12) partially
with respect to u. Similarly, by differentiating equation (12) partially with respect to
v and w, we get tangent vectors to the other two coordinate curves. Thus, the three
partial derivatives

eu =
∂r

∂u
, ev =

∂r

∂v
, ev =

∂r

∂w
(15)

when evaluated at (u0, v0, w0), give tangent vectors to the three coordinate curves that
pass through P .

The usual way forward in vector calculus is made on the assumption that the coor-
dinate system is orthogonal (which means that the coordinate surfaces intersect orthog-
onally, so that the three vectors (15) are mutually orthogonal) and involves normalizing
the vectors by dividing them by their lengths to get unit vectors. Thus

êu =
eu
|eu|

, êv =
ev
|ev|

, êw =
ew
|ew|

(16)
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and these vector can be used as a local basis. However, our way forward does not require
the coordinate system to be orthogonal, nor do we bother normalizing the tangent vectors
to make them unit vectors. So at each point P we have the natural basis (eu, ev, ew)
produced by the partial derivative sand, in general, these vectors are neither unit vectors
nor mutually orthogonal.

There is, in fact, another way in which the coordinate system (u, v, w) can be used
to construct a basis at P . This uses the normals to the coordinate surfaces rather than
the tangents to the coordinate curves. As remarked above, we can in principle invert
equations (9) to obtain u, v, w in terms of x, y, z:

u = u(x, y, z), v = v(x, y, z), w = w(x, y, z). (17)

This allows us to regard each coordinate as a scalar field and to calculate their gradients:

∇u =
∂u

∂x
êx +

∂u

∂y
êy +

∂u

∂z
êz

∇u =
∂v

∂x
êx +

∂v

∂y
êy +

∂v

∂z
êz (18)

∇u =
∂w

∂x
êx +

∂w

∂y
êy +

∂w

∂z
êz

At each point P , these gradient vectors are normal to the corresponding level surfaces
through P , which are the coordinate surfaces u = u0, v = v0, w = w0. We therefore
obtain (∇u,∇v,∇w) as an alternate basis at P . This basis is the dual of that obtained
by using the tangent vectors to the coordinate curves and, to distinguish it from the
previous one, we write its basis vectors with their suffixes as superscripts:

êu = ∇u, êv = ∇v, êw = ∇w. (19)

Placing the suffixes in this position may seem odd at first (not least because of a possible
confusion with powers), but it is part of a remarkably elegant and compact notation
that will be developed more fully later. If the coordinate system is orthogonal, then the
normals to the coordinate surfaces coincide with the tangents to the coordinate curves,
making any distinction between (êu, êv, êw) and its dual (êu, êv, êw) just a matter of
lengths, rather than the lengths and directions of the basis vectors. If the basis vectors
are normalized, then the distinction disappears altogether. Consequently, to illustrate
better the two bases that arise naturally from the coordinate system, we should use one
that is not orthogonal, rather than continue using spherical coordinates.

4 Covariant and contravariant tensors

When we consider the rotational transformation of a vector v = v1ê1 + v2ê2 + v3ê3
from the (for the moment ... ) Cartesian system defined by êi, (i = 1, 2, 3) into a
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rotated coordinate system defined by ê′i, with the same vector v then represented as
v = v′1ê

′
1 + v′2ê

′
2 + v′3ê

′
3. The two representations are related by

v′i =
∑
j

(ê′i · êj)vj (20)

We temporarily limit this discussion to Cartesian systems, and we recall that in the case
of a sphere we could define a translated reference frame such that

ê′i · êj =
∂x′i
∂xj

(21)

The r.h.s. corresponds to the application of the chain rule to convert the set vj into the
set v′i, and is valid for vj and v′i of arbitrary magnitude because both vectors depend
linearly on their components.

We note that the gradient of a scalar ϕ has in the unrotated Cartesian coordinates
the components

(∇ϕ)i =
∂ϕ

∂xi
êi

meaning that in a rotated system we would have

(∇ϕ)′i =
∂ϕ

∂x′i
=

∑
j

∂xj
∂x′i

∂ϕ

∂xj
(22)

showing that the gradient has a transformation law that differs from that of Eq. (20)
in that ∂x′i/∂xj has been replaced by ∂xj/∂x

′
i. Here we note, as the alert reader may

note from the repeated insertion of the word “Cartesian”, that the partial derivatives in
(20) and (22) are only guaranteed to be equal in Cartesian coordinate systems, and since
there is sometimes a need to use non-Cartesian systems it becomes necessary to distin-
guish these two different transformation rules. Quantities transforming according to Eq.
(20) are called contravariant vectors, while those transforming according to Eq. (22) are
termed covariant. When non-Cartesian systems may be in play, it is therefore
customary to distinguish these transformation properties by writing the in-
dex of a contravariant vector as a superscript and that of a covariant vector
as a subscript. This means, among other things, that the components of the position
vector r, which are contravariant, must now be written (x1, x2, x3). Thus, summarizing,

v′i =
∑
j

∂x′i

∂xj
vj ; for a contravariant vector {vi} (23a)

v′i =
∑
j

∂xj

∂x′i
vj ; for a covariant vector {vi} (23b)

It is useful to note that the occurrence of subscripts and superscripts is systematic; the
free (i.e., unsummed) index i occurs as a superscript on both sides of Eq. (23a), while it
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appears as a subscript on both sides of Eq. (23b), if we interpret an upper index in the
denominator as equivalent to a lower index. The summed index occurs once as upper
and once as lower (again treating an upper index in the denominator as a lower index).
A frequently used shorthand (the Einstein convention) is to omit the summation sign
in formulas like Eqs. (23a) and (23b) and to understand that when the same symbol
occurs both as an upper and a lower index in the same expression, it is to be summed.

5 Tensors of rank 2

Now we proceed to define contravariant, mixed, and covariant tensors of rank 2 by the
following equations for their components under coordinate transformations:

A′ij =
∂x′i

∂xk
∂x′j

∂xℓ
Akℓ

B′i
j =

∂x′i

∂xk
∂xℓ

∂x′j
Bk

ℓ (24)

C ′
ij =

∂xk

∂x′i
∂xℓ

∂x′j
Ckℓ

Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the
definition: 0 for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each
index (subscript or superscript) ranges over the number of dimensions of the space. The
number of indices (equal to the rank of tensor) is not limited by the dimensionality of the
space. We see that Akℓ is contravariant with respect to both indices, Ckℓ is covariant with
respect to both indices, and Bk

ℓ transforms contravariantly with respect to the index k
but covariantly with respect to the index ℓ. Once again, if we are using Cartesian
coordinates, all three forms of the tensors of second rank, contravariant, mixed, and
covariant are the same. As with the components of a vector, the transformation
laws for the components of a tensor, Eq. (24), cause its physically relevant
properties to be independent of the choice of reference frame. This is what
makes tensor analysis important in physics. The independence relative to
reference frame (invariance) is ideal for expressing and investigating universal
physical laws.

In summary, tensors are systems of components organized by one or more
indices that transform according to specific rules under a set of transforma-
tions. The number of indices is called the rank of the tensor.

6 Addition and subtraction of tensors

The addition and subtraction of tensors is defined in terms of the individual elements,
just as for vectors. For instance, for rank 2 contravariant tensors

A = B + C (25)
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means
Aij = Bij + Cij (26)

in terms of components. In general, of course, A and B must be tensors of the same
rank (of both contra- and co-variance) and in the same space.

7 Symmetry

The order in which the indices appear in our description of a tensor is important. In
general, Aij is independent of Aji , but there are some cases of special interest. If, for
all i and j,

Aij = Aji ⇒ A is symmetric. (27)

If, on the other hand,

Aij = −Aji ⇒ A is antisymmetric. (28)

Clearly, every (second-rank) tensor can be resolved into symmetric and antisymmetric
parts by the identity

Aij =
1

2

(
Aij +Aji

)
+

1

2

(
Aij −Aji

)
(29)

the first term on the right being a symmetric tensor, the second, an antisymmetric
tensor.

8 Kroneker’s delta and isotropic tensors

To illustrate some of the techniques of tensor analysis, let us show that the now-familiar
Kronecker delta, δkℓ, is really a mixed tensor of rank 2, δkℓ . The question is: Does δkℓ
transform according to Eq. (24)? This is our criterion for calling it a tensor. If δkℓ is the
mixed tensor corresponding to this notation, it must satisfy

δ′ij =
∂x′i

∂xk
∂xℓ

∂x′j
δkℓ , (30)

and indeed
∂x′i

∂xk
∂xℓ

∂x′j
δkℓ =

∂x′i

∂xk
∂xk

∂x′j
=

∂x′i

∂x′j
= δ′ij , (31)

showing that the δkℓ are indeed the components of a mixed second-rank tensor. Note that
this result is independent of the number of dimensions of our space. The Kronecker
delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore called isotropic.
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9 Contraction

When dealing with vectors, we form a scalar product by summing products of corre-
sponding components:

a · b =
∑
i

aibi. (32)

The generalization of this expression in tensor analysis is a process known as contraction.
Two indices, one covariant and the other contravariant, are set equal to each other,
and then (as implied by the summation convention) we sum over this repeated index.
For example, let us contract the second-rank mixed tensor Bij by setting i = j, then
summing over i. To see what happens, let’s look at the transformation formula that
converts B into B′:

B′i
i =

∂x′i

∂xk
∂xℓ

∂x′i
Bk

ℓ =
∂xℓ

∂xk
Bk

ℓ = δℓkB
k
ℓ = Bk

k . (33)

We see that the contracted B is invariant under transformation and is therefore a scalar;
in matrix analysis this scalar is the trace of the matrix. In general, the operation of
contraction reduces the rank of a tensor by 2.

10 Direct product

The components of two tensors (of any ranks and covariant/contravariant characters)
can be multiplied, component by component, to make an object with all the indices
of both factors. The new quantity, termed the direct product of the two tensors, can
immediately be shown to be a tensor whose rank is the sum of the ranks of the factors,
and with covariant/contravariant character that is the sum of those of the factors. For
example:

Cij
klm = Ai

kB
j
lm, F ij

kl = AiBj
kl. (34)

Note that the way we take the index groups from different tensors in the direct product
is not important, but the covariance/contravariance of the factors must be maintained
in the direct product. Note also that the direct product concept gives a meaning to
quantities such as ∇E, which is not defined within the framework of vector analysis.
However, this and other tensor-like quantities involving differential operators must be
used with caution, because their transformation rules are simple only in Cartesian co-
ordinate systems. In non-Cartesian systems, operators ∂/∂xi act also on the partial
derivatives in the transformation expressions and alter the tensor transformation rules.

11 Inverse transformation

If we have a contravariant vector ai , which must have the transformation rule

a′j =
∂x′j

∂xk
ak (35)
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the inverse transformation (which can be obtained simply by interchanging the roles of
the primed and unprimed quantities) is

aj =
∂xj

∂x′k
a′k (36)

as may also be verified as follows

∂xi

∂x′j
a′j =

∂xi

∂x′j
∂x′j

∂xk
ak =

∂xi

∂xk
ak = δika

k = ai. (37)

We see that ai is recovered. Incidentally, note that the inverse does not propagate to
individual tensor elements (

∂x′j

∂xi

)−1

̸= ∂xi

∂x′j
(38)

these derivatives have different other variables held fixed. The cancellation in Eq. (37)
only occurs because the product of derivatives is summed. In Cartesian systems, we do
have

∂xi

∂x′j
=

∂x′j

∂xi
(39)

(the transpose of a rotation matrix is equal to the inverse) both equal to the direction
cosine connecting the xi and x′j axes, but this equality does not extend to non-Cartesian
systems.

Note that the matrix elements of these transformation matrices define the Jacobian
matrices, and what we have just found is that Jacobian matrices for inverse transforma-
tions are the inverse of each other.

12 Quotient rule

If, for example, Aij and Bkl are tensors, we have already observed that their direct
product, AijBkl, is also a tensor. Here we are concerned with the inverse problem,
illustrated by equations such as

KiA
i = B,

Kj
iAj = Bi

Kj
iAjk = Bik (40)

KijklA
ij = Bkl

KijAk = Bijk

In each of these expressions A and B are known tensors of ranks indicated by the
number of indices. In each case K is an unknown quantity. We wish to establish the
transformation properties of K. The quotient rule asserts: If the equation of interest
holds in all transformed coordinate systems, then K is a tensor of the indicated rank and
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covariant/contravariant character. Part of the importance of this rule in physical theory
is that it can establish the tensor nature of quantities. For example, the equation giving
the dipole moment p induced in an anisotropic medium by an electric field E is

pi = PijE
j . (41)

Since we know that p and E are vectors, the general validity of this equation tells us
that the polarization matrix P is a tensor of rank 2.

Let’s prove the quotient rule for a typical case, which we choose to be the second of
Eqs. (40). If we apply a transformation to that equation, we have

Kj
iAj = Bi → K ′j

iA
′
j = B′

i (42)

and when we write A′ and B′ using the transformation formulas, we find

K ′j
i

∂xk

∂x′j
Ak =

∂xl

∂x′i
Bl, (43)

i.e.,
∂x′i

∂xl
∂xk

∂x′j
K ′j

iAk = Bl, (44)

Comparing this with the original expression, and taking into account the arbitrariness
of A, we find

Kk
l =

∂x′i

∂xl
∂xk

∂x′j
K ′j

i (45)

i.e.,

K ′j
i =

∂xl

∂x′i
∂x′j

∂xk
Kk

l (46)

which is the expected transformation for a mixed tensor of rank 2. Other cases may
be treated similarly. One minor pitfall should be noted: The quotient rule does not
necessarily apply if B is zero. The transformation properties of zero are indeterminate.

13 Pseudotensors and dual tensors

The topics of this section will be treated for tensors restricted for practical reasons
to Cartesian coordinate systems. This restriction is not conceptually necessary but
simplifies the discussion and makes the essential points easy to identify.

Here, we consider the effect of reflections or inversions of the coordinate system
(sometimes also called improper rotations). Restricting our attention to orthogonal
systems of Cartesian coordinates, we see that the effect of a coordinate rotation on a
fixed vector can be described by a transformation of its components according to the
formula

v′ = Sv (47)
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where S is an orthogonal matrix with determinant +1. If the coordinate transformation
includes a reflection (or inversion), the transformation matrix is still orthogonal, but
has determinant −1. While this transformation rule is obeyed by vectors describing
quantities such as position in space or velocity, it produces the wrong sign when vectors
describing angular velocity, torque, and angular momentum are subject to improper
rotations. These quantities, called axial vectors, or nowadays pseudovectors, obey the
transformation rule

v′ = det(S) Sv (pseudovector) (48)

The extension of this concept to tensors is straightforward. We consider the possi-
bility of having, at arbitrary rank, objects whose transformation is like that of tensors,
but requires an additional sign factor to adjust for the effect associated with improper
rotations. These objects are called pseudotensors, and constitute a generalization of the
objects already identified as pseudoscalars and pseudovectors.

13.1 The Levi-Civita symbol

The three-index version of the Levi-Civita symbol has the values

ϵ123 = ϵ231 = ϵ312 = +1 (49)

ϵ213 = ϵ132 = ϵ321 = −1 (50)

all other ϵijk = 0 (51)

Suppose now that we have a rank-3 pseudotensor ηijk , which in one particular Cartesian
coordinate system is equal to ϵijk. Then, letting A stand for the matrix of coefficients
{aij} in an orthogonal transformation of R3, we have in the transformed coordinate
system

η′ijk = det(A)
∑
lmn

ailajmaknϵlmn (52)

by definition of pseudotensor. All terms of the pqr sum will vanish except those where
pqr is a permutation of 123, and when pqr is such a permutation the sum will correspond
to the determinant of A except that its rows will have been permuted from 123 to ijk .
This means that the pqr sum will have the value det(A)ϵijk, and

η′ijk = [det(A)]2ϵijk = ϵijk, (53)

where the final result depends on the fact that |det(A)| = 1.

Equation (53) not only shows that ϵ is a rank-3 pseudotensor, but also that it is also
isotropic. In other words, it has the same components in all rotated Cartesian coordinate
systems, and −1 times those component values in all Cartesian systems that are reached
by improper rotations.
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13.2 Dual tensors

With any antisymmetric second-rank tensor C (in 3-D space) we may associate a
pseudovector C with components defined by

Ci =
1

2
ϵijkC

jk. (54)

In matrix form the antisymmetric C may be written

C =

 0 C12 −C31

−C12 0 C23

C31 −C23 0

 (55)

We know that Ci must transform as a vector under rotations because it was obtained
from the double contraction ϵijkC

jk, but that it is really a pseudovector because of the
pseudo nature of ϵijk . Specifically, the components of C are given by

(C1, C2, C3) = (C23, C31, C12). (56)

Note the cyclic order of the indices that comes from the cyclic order of the components
of ϵijk. We identify the pseudovector of Eq. (56) and the antisymmetric tensor of Eq.
(55) as dual tensors; they are simply different representations of the same information.
Which of the dual pair we choose to use is a matter of convenience.

Here is another example of duality. If we take three vectors A, B, and C, we may
define the direct product

V ijk = AiBjCk (57)

which is evidently a rank-3 tensor. The dual quantity

V = ϵijkV
ijk (58)

is clearly a pseudoscalar. By expansion it is seen that∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ ,
the familiar scalar triple product.
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