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1 Introduction

To begin with, we partly repeat the calculation we already did to find the strain produced
by a rotating dumbbell, and apply the formula for the total emitted power. We consider
a pair of stars with equal masses m in circular orbit about their common CM with orbital
radius r, as illustrated in figure |1| (note however, that in the main text we use m instead
of M and r instead of R). In this simple scheme, the stars rotate in the (2!, 2?) plane
with constant angular speed w.

Figure 1: A binary star system. In this case the stars in the binary system orbit one
around the other in a circle of radius R (figure from S. M. Carroll, Spacetime Geometry,
an Introduction to General Relativity Pearson, 2013).

Setting the origin of the coordinate system at the CM, the positions of the masses

are _
x' = £(r coswt, rsinwt, 0) (1)

and we find the quadrupole tensor

- cos? wt coswtsinwt 0
QY] = 2mr? | coswtsinwt sin? wt 0 (2)
0 0 0



and the reduced quadrupole tensor

- cos?wt — 1/3  coswt sinwt 0
[L9) = 2mr? | coswtsinwt sin’wt—1/3 0 (3)
0 0 -1/3
Then
. 4w’ sin 2wt —4w® cos 2wt 0
[LY] =2mr? | —4wPcos2wt —4wdsin2wt 0
0 0 0
sin2wt  —cos2wt 0
=8uwimr? | —cos2wt —sin2wt 0 (4)
0 0 0

(as an exercise, fill in all the missing details in this calculation). Therefore,
(L™ I ) = 128 m*riwS, (5)
and, finally, we find that this system emits energy as GWs at the rate

G v oo

It can be shown (do it as an exercise), that for unequal masses m; and mo, this

equation can be written in the form

32G m2m3 16
505 (ml n m2)2 (7“1 + 7“2) w

(7)
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2 Keplerian formulas for the compact binary system

We are now interested in the fate of a close pair of compact objects: as they emit energy
in the form of GWs, they do this at the expense of potential energy and they gradually
approach, speeding up to higher and higher orbital angular frequencies. The initially
smooth and stable orbit eventually becomes a frantic race until the two object coalesce

into one. This process is well illustrated by a sketch drawn several years ago by Kip
Thorne (figure [2)).

In this handout, we develop a simplified Newtonian model of the inspiral
phase, as in refs. [3] [I].
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Figure 2: Drawing by Kip Thorne that illustrates the main phases of a compact binary
coalescence (CBC). Initially the pair rotates at a nearly constant frequency, but at a
later phase the energy loss due to GW emission is large and increasing and the orbital
frequency increases faster and faster while the objects become closer and closer (inspiral
phase). This continues until the merger phase, were the objects merger into one. Finally,
the remnant object rings much like a bell with damped oscillations (ringdown phase).

We consider a non-relativistic two-body system with circular orbits about the center-
of-mass (CM). The masses are m1 and mg, with orbital radii 71 and r3. In the CM system
the total momentum vanishes, and therefore

miriw = morow (8)

ie.,
mir,y = maro (9)

The masses also experience a centrifugal acceleration that must be balanced by the



gravitational force, so that

Gmim
2 2 1me
miriw’ = maorow® = ————= 10
171 272 (11 + 12)? (10)
The latter formula can be rearranged to obtain
Gm2 Gm1
2 2
rw’ = P Trowt = ——— 11
! (7‘1 + T2)2 2 (7”1 + T2)2 ( )
and therefore o
w2 _ (m1 -+ TI’LQ) (12)

(r1 + 7’2)3

(a form of Kepler’s third law), so that we can express the sum of radii as a function of
total mass and frequency

o 1/3
T+ 1o = <(mij—; m2)> (13)

Finally, the total energy of the system is

2 92 Gml ma

1
Fiot = —myr2w? + —moraw? — ———= 14
tot 2 171 2 279 (Tl +T2) ( )

Now notice that the moment of inertia of the system about the CM is, using eq. @D,

I = mlr% + mQT% = Mor1Te +Mmirire = ('m1 + mg)Tng (15)
(m1 + ma)?
= 16
mi + ms e (16)
_ m%rﬂ‘g + m%’l‘l’l"g + 2mimarirs (17)
m1 + mo
_ mlmgr% + mlmgr% + 2mimarire (18)
mi + ms
mimsg 2
_ 19
m1+m2(rl+r2) (19)
Therefore
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3 GW strain

We found earlier (see the handout on Generation of gravitational waves) that the strain
in the TT gauge of such a binary system is

9 oy o [ cosQwt+¢) sin(2wt+¢) 0
(R (ct, )] = 4G (myry :‘ mars )w sin(2wt + ¢) —cos(2wt +¢) 0 | . (22)

where D is the distance to the system and ¢ is a phase that includes retarded time and
the integration constant of the equations of motion of the pair of masses.

Using egs. and we find

mimsa
(m1rs + mor3)w? = G*/3 2/3

(it )i/ (23)

When dealing with compact objects like black holes or neutron stars it is useful to write
the masses in units of solar mass Mg ~ 2 x 10%0 kg. Then, it turns out that the
combination

GM,
C

~5x 107N m kg~ !s? (24)

pops up quite often. Then we obtain

N 5/3 cos(2wt + ¢)  sin(2wt+¢) 0
(W (ct,r)] = % (G]\gG)) T 73 w3 | sin(2wt +¢)  —cos(2wt + @) 0
c (m1 + mQ) 0 0 0

(25)

where we use units of solar mass for the masses m; and ms.

We also note that the frequency of the emitted gravitational radiation is
twice the orbital frequency.

4 Shrinking of the orbit because of GW emission - 1

As the system emits gravitational waves its total energy decreases and the orbit shrinks.
To calculate this shrinkage we compute the instantaneous radiated power, and to this
end we replace the expression of the moment of inertia and that of its rotation frequency
to eliminate both the moment of inertia and the spatial separation between the masses
in the formula for the radiated power:

5¢5  (my + me)?/3

GW (26)



This radiated power corresponds to the rate of change of the total energy of the
binary system

2/3
ClEtot _ G / mimes w_l/g dicu (27)
dt 3 (mq +mg)l/3 dt
and equating the two expressions we find
G mimy s de (28)
5¢5  (my + mg)l/3 dt
or also . i
mimsa ¢ 5 _qiy3 dw
= — — 29
(m1 —|—m2)1/3 G5/3 96 v dt ( )

It is customary to define the “chirp mass” as follows:

3/5

(m1+m)l/5 G

96 dt

Then, using the chirp mass and the emitted frequencyﬂ [ =w/m we can write

A5 s df 3/5
_C (2 83 p-11/3 4
M= <967r / dt> (31)

This equation relates time and frequency, and is the only equation in the “GW150914
discovery paper”.

5 Further estimates

Obviously, we can also integrate the differential equation and find
256 G°/3 _ _
?ﬂs/sMs/gcT(t —to) = £, 8/3 _ f 8/3 (32)

where tg is the coalescence time and fj is the frequency at coalescence time (see below).

Therefore,
-3/8

_ 256 G°/3
ft) = [ AR ?Ws/gMB/SCT(t - to)] (33)

for t <ty (times before coalescence). Eq. can be expressed with the chirp mass in
units of solar mass as before

—3/8

5/3 5/3
f<t>=[f08/3—2§67r8/3 () (95°) (t—m)] (3)
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Figure 3: Time-frequency representation of the GW signal, as described by eq. , for
mi1 = mg = 30Mg. The coalescence time is g = 0.

Figure [3| shows an example of frequency evolution for a system with m; = my = 30M,.
The corresponding signal in the time domain is shown in figure EI (+ polarization only)
and in figure [5| (both + and x polarizations).

Neglecting the constant terms in eq. we find

256 G°/3 _
?7_‘_8/3/\45/3 - |t| ~ f 8/3 (35)
c
or also
c? 1

MS G @Bl /5PT (n )T

(36)

The maximum frequency fo in the merger can be estimated assuming that the dis-
tance between the centers of the two masses is equal to the sum of the Schwartzschild
radii (in the case of a BBH), i.e.,

2G
T e = Cﬁ(m1 + ma) (37)

where Rg = (2G/c?)m is the Schwartzschild radius for a mass m. At this separation the
frequency and the emitted power are at a maximum
G(mi+mg)  ° 1

(7"1 + 1”2)3 8G? (ml + m2)2

wh =T fF = (38)

1Recall that the emitted frequency is twice the orbital frequency.
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Figure 4: GW signal in the Newtonian approximation, for m; = my = 30Mg and phase
at coalescence ¢y = 1 radians, + polarization only. The coalescence time is {5 = 0. The
amplitude is scaled to its maximum.

or also

1 (GMx\ ' 1
= 39
fo 27T\/§< c? ) M/Mg (39)
where M = my + mq is the total mass of the system which is directly related to the
maximum frequency of the chirp.

Since ( o
5 mima
= 40
M= (10)
we can use the observed chirp mass and total mass to obtain the system of equations
mimo = M1/3M5/3 (41&)
mi+mo =M (41b)

from which we find the individual masses

M 1
mip =5k 5\/M2 — AMB/3M/3, (42)

with the “mass gap”

AM = /M2 — AMB/3 M3, (43)
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Figure 5: GW signal in the Newtonian approximation, for m; = my = 30Mg and phase
at coalescence ¢g = 1 radians, both + (blue curve) and x (orange curve) polarizations.

The coalescence time is tg = 0. The amplitude is scaled to its maximum.

The radiated power as a function of time can also be estimated

—3/8

5/3

D @MS/Sﬂt o 3/8
5 cd

o = 32G7/3 (m1m2)2 w10/3 N t75/4
55 (m + mg)?/3

(44)

(45)

6 Shrinking of the orbit because of GW emission - 2

From Kepler’s third law

s GM
Sy
where M = mq + mo and R = 71 + 1o, we find
0 __yOM AR
dt T R dt



or also
dR 2 R' dv 2 R? dw

2 2 i 48
dt ~  3GM™dt ~ 3 GM dt (48)
Recall that earlier we found
5
5/3 _ mims _ ¢ 5 gz dw 49
M (m1 + ma) /3 G5/396 dt (49)
and therefore 5/3,45/3

dt 5cb
(equivalent to the differential equation that we have already integrated above), therefore

dR _ 2 B2 96MOPGYS |y 6AMPPGTS

dt ~ 3VGM 50 55/ . (51
or also 5/3,47/6
d (R—3/2> _ 9BM°°G Wl1/3 (52)
dt 5¢5v/ M
6.1 Maximum radiated power
The maximum radiated power for a system with generic masses is
32G73 (mim2)? 1073
Prax(q) = 53
a (q) 565 (ml + m2)2/3 Wo ( )
_32G73 (mamy)? f 1 " (54)
B (my +mg)?/3 [8G? (my 4 ma)?
_C mm) ¢ ¢ ¢ ¢ (55)
T 5G (my+me)t 5G (14+¢)%  5G (1 +¢)?
where g = mg/m;.
The maximum is attained for ¢ = 1:
A1
Poax(g=1) = — — 56
(4=1)=+= — (56)
so that
¢ _p 1 57)
Pmax =16 max\4 —
(q) L (¢=1) (

Notice that in this Newtonian approximation, the maximum radiated
power does not depend on the total mass. On the contrary, the maximum
frequency does depend on the total mass.
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7 Maximum strain
Going back to equations and , we see that the strain amplitude is

4G(m17‘% + mQT%)wg _ 4G5/3 mims 23
ctD AD  (my 4+ mg)l/3 0

hmax -

(58)

where wy is the maximum orbital angular frequency . For equal masses m; = mo =
M /2 and with the substitution

Wm(mf= L ¢ L (59)
0= 0 - 8G2 (m1+m2)2 8G2 M2’

(see eq. , eq. becomes

G5/3
hmax = %ME)/B(T(JCO)Q/:S =

G5/3M5/3( 6 )1/3 M

D 8G2M? 2¢2D
_ (GMg/1 pe)(M /M) ~ _14 (M /M)
B 2¢2(D/1 pe) ~ 24> 10 (D/1 pc) (60)

where 1 pc ~ 3.0857 x 106 m. This means that a coalescence of two black holes with
1 solar mass each (M = 2My) at a distance approximately equal to that of the Virgo
galaxy cluster (about 16.5 Mpc, see [2]), would produce a maximum strain approximately
equal to 2.9 x 1072%,

Remember that like all other estimates in this handout, this result is
obtained in the context of the simplified Newtonian model.
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Appendix: naive black hole calculations

The existence of black holes was predicted long before the advent of GR, from simple
dynamical calculations.

In a gravitational field the escape velocity is defined as the threshold velocity that
allows escape to infinity, so that the initial kinetic energy is equal to the gravitational
potential energy at the starting radius:

1 o GMm

§m7) T, (61)

vy 2 (62)

When the escape velocity equals the velocity of light, nothing can escape, not even light.
This happens at the Schwarzschild radius Rg, such that

therefore

_2GM

c2

Rg , (63)

and rather surprisingly, this result coincides with the GR. calculation for the Schwarzschild
metric (non-rotating black hole).

When we express the mass in units of solar mass (Mg ~ 2 x 103%kg),

Rs

_ 2GMg(M/Ms)
- 2

. ~ 3 km x (M/Mg), (64)

so that a black hole with the mass of our Sun has a 3 km radius.
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