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1 Introduction

To begin with, we partly repeat the calculation we already did to find the strain produced
by a rotating dumbbell, and apply the formula for the total emitted power. We consider
a pair of stars with equal masses m in circular orbit about their common CM with orbital
radius r, as illustrated in figure 1 (note however, that in the main text we use m instead
of M and r instead of R). In this simple scheme, the stars rotate in the (x1, x2) plane
with constant angular speed ω.

Figure 1: A binary star system. In this case the stars in the binary system orbit one
around the other in a circle of radius R (figure from S. M. Carroll, Spacetime Geometry,
an Introduction to General Relativity Pearson, 2013).

Setting the origin of the coordinate system at the CM, the positions of the masses
are

xi = ±(r cosωt, r sinωt, 0) (1)

and we find the quadrupole tensor

[Qij ] = 2mr2

 cos2 ωt cosωt sinωt 0
cosωt sinωt sin2 ωt 0

0 0 0

 (2)
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and the reduced quadrupole tensor

[Iij ] = 2mr2

 cos2 ωt− 1/3 cosωt sinωt 0
cosωt sinωt sin2 ωt− 1/3 0

0 0 −1/3

 (3)

Then

[
...
I

ij
] = 2mr2

 4ω3 sin 2ωt −4ω3 cos 2ωt 0
−4ω3 cos 2ωt −4ω3 sin 2ωt 0

0 0 0


= 8ω3mr2

 sin 2ωt − cos 2ωt 0
− cos 2ωt − sin 2ωt 0

0 0 0

 (4)

(as an exercise, fill in all the missing details in this calculation). Therefore,〈 ...
I

mn ...
I mn

〉
= 128 m2r4ω6, (5)

and, finally, we find that this system emits energy as GWs at the rate

PGW =
G

5c5
〈 ...
I

mn ...
I mn

〉
=

128G

5c5
m2r4ω6 (6)

It can be shown (do it as an exercise), that for unequal masses m1 and m2, this
equation can be written in the form

PGW =
32G

5c5
m2

1m
2
2

(m1 +m2)2
(r1 + r2)

4ω6 (7)

2 Keplerian formulas for the compact binary system

We are now interested in the fate of a close pair of compact objects: as they emit energy
in the form of GWs, they do this at the expense of potential energy and they gradually
approach, speeding up to higher and higher orbital angular frequencies. The initially
smooth and stable orbit eventually becomes a frantic race until the two object coalesce
into one. This process is well illustrated by a sketch drawn several years ago by Kip
Thorne (figure 2).

In this handout, we develop a simplified Newtonian model of the inspiral
phase, as in refs. [3, 1].

2



4 Bernard F Schutz

hole. The radiation is dominated by the excited quasi-normal modes of the black
hole, which have strong damping: within a few cycles (a few light-crossing times)
the hole is substantially axisymmetric. This process is understood at the level
of perturbation theory of black holes and has been studied numerically, with no
surprises.

3 Why study mergers numerically?

Of these phases, the one that is least understood is the second. At the moment,
numerical studies only handle black holes that are very close to one another, near
the ISCO. Studies have been able to follow holes from such an orbit through to
merger and ringdown, but we do not yet know if the starting conditions are
physically appropriate. I will come back to this key issue below. The computer
resources needed to study this problem are substantial. Why, then, should we
be trying so hard to understand this process?

There are at least four reasons:

1. Gravitation theory. Although we have good theoretical reasons for believing
that general relativity’s description of time-independent black holes is cor-
rect, we do not know what the theory says in detail about dynamical horizons
and mergers. The process is strongly nonlinear, and it appears therefore that
numerical experiments are the only way of doing experiments in this regime.

2. Simplest dynamical problem in general relativity. Black hole mergers are in
some sense the least complicated strong-field process, since they are not com-
plicated by the need to include fluid dynamics, atomic or nuclear physics, or
magnetic fields. They do have a complication that stars do not: the singular-
ity at the center. This challenges the numerical formulation of the problem,
but it is nevertheless true that the “parameter space” of merger models will
be small compared to that of stars.

Fig. 1. The three phases of black hole merger (courtesy Kip Thorne).
Figure 2: Drawing by Kip Thorne that illustrates the main phases of a compact binary
coalescence (CBC). Initially the pair rotates at a nearly constant frequency, but at a
later phase the energy loss due to GW emission is large and increasing and the orbital
frequency increases faster and faster while the objects become closer and closer (inspiral
phase). This continues until the merger phase, were the objects merger into one. Finally,
the remnant object rings much like a bell with damped oscillations (ringdown phase).

We consider a non-relativistic two-body system with circular orbits about the center-
of-mass (CM). The masses arem1 andm2, with orbital radii r1 and r2. In the CM system
the total momentum vanishes, and therefore

m1r1ω = m2r2ω (8)

i.e.,
m1r1 = m2r2 (9)

The masses also experience a centrifugal acceleration that must be balanced by the
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gravitational force, so that

m1r1ω
2 = m2r2ω

2 =
Gm1m2

(r1 + r2)2
(10)

The latter formula can be rearranged to obtain

r1ω
2 =

Gm2

(r1 + r2)2
; r2ω

2 =
Gm1

(r1 + r2)2
(11)

and therefore

ω2 =
G(m1 +m2)

(r1 + r2)3
(12)

(a form of Kepler’s third law), so that we can express the sum of radii as a function of
total mass and frequency

r1 + r2 =

(
G(m1 +m2)

ω2

)1/3

(13)

Finally, the total energy of the system is

Etot =
1

2
m1r

2
1ω

2 +
1

2
m2r

2
2ω

2 − Gm1m2

(r1 + r2)
(14)

Now notice that the moment of inertia of the system about the CM is, using eq. (9),

I = m1r
2
1 +m2r

2
2 = m2r1r2 +m1r1r2 = (m1 +m2)r1r2 (15)

=
(m1 +m2)

2

m1 +m2
r1r2 (16)

=
m2

1r1r2 +m2
2r1r2 + 2m1m2r1r2
m1 +m2

(17)

=
m1m2r

2
2 +m1m2r

2
1 + 2m1m2r1r2

m1 +m2
(18)

=
m1m2

m1 +m2
(r1 + r2)

2 (19)

Therefore

Etot =
1

2
Iω2 − Gm1m2

(r1 + r2)
=

1

2

Gm1m2

(r1 + r2)
− Gm1m2

(r1 + r2)
= −1

2

Gm1m2

(r1 + r2)
(20)

or also

Etot = −1

2
G2/3 m1m2

(m1 +m2)1/3
ω2/3 (21)
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3 GW strain

We found earlier (see the handout on Generation of gravitational waves) that the strain
in the TT gauge of such a binary system is

[h̄ij(ct, r)] =
4G(m1r

2
1 +m2r

2
2)ω

2

c4D

 cos(2ωt+ ϕ) sin(2ωt+ ϕ) 0
sin(2ωt+ ϕ) − cos(2ωt+ ϕ) 0

0 0 0

 . (22)

where D is the distance to the system and ϕ is a phase that includes retarded time and
the integration constant of the equations of motion of the pair of masses.

Using eqs. (10) and (13) we find

(m1r
2
1 +m2r

2
2)ω

2 = G2/3 m1m2

(m1 +m2)1/3
ω2/3 (23)

When dealing with compact objects like black holes or neutron stars it is useful to write
the masses in units of solar mass M⊙ ≈ 2 × 1030 kg. Then, it turns out that the
combination

GM⊙
c3

≈ 5× 10−6N m−1kg−1s3 (24)

pops up quite often. Then we obtain

[h̄ij(ct, r)] =
4c

D

(
GM⊙
c3

)5/3 m1m2

(m1 +m2)1/3
ω2/3

 cos(2ωt+ ϕ) sin(2ωt+ ϕ) 0
sin(2ωt+ ϕ) − cos(2ωt+ ϕ) 0

0 0 0

 .

(25)
where we use units of solar mass for the masses m1 and m2.

We also note that the frequency of the emitted gravitational radiation is
twice the orbital frequency.

4 Shrinking of the orbit because of GW emission - 1

As the system emits gravitational waves its total energy decreases and the orbit shrinks.
To calculate this shrinkage we compute the instantaneous radiated power, and to this
end we replace the expression of the moment of inertia and that of its rotation frequency
to eliminate both the moment of inertia and the spatial separation between the masses
in the formula for the radiated power:

PGW =
32G7/3

5c5
(m1m2)

2

(m1 +m2)2/3
ω10/3 (26)
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This radiated power corresponds to the rate of change of the total energy of the
binary system ∣∣∣∣dEtot

dt

∣∣∣∣ = G2/3

3

m1m2

(m1 +m2)1/3
ω−1/3 dω

dt
(27)

and equating the two expressions we find

96G5/3

5c5
m1m2

(m1 +m2)1/3
= ω−11/3 dω

dt
(28)

or also
m1m2

(m1 +m2)1/3
=

c5

G5/3

5

96
ω−11/3 dω

dt
(29)

It is customary to define the “chirp mass” as follows:

M =
(m1m2)

3/5

(m1 +m2)1/5
=

c3

G

(
5

96
ω−11/3 dω

dt

)3/5

(30)

Then, using the chirp mass and the emitted frequency1 f = ω/π we can write

M =
c3

G

(
5

96
π−8/3 f−11/3 df

dt

)3/5

(31)

This equation relates time and frequency, and is the only equation in the “GW150914
discovery paper”.

5 Further estimates

Obviously, we can also integrate the differential equation and find

256

5
π8/3M5/3G

5/3

c5
(t− t0) = f

−8/3
0 − f−8/3 (32)

where t0 is the coalescence time and f0 is the frequency at coalescence time (see below).
Therefore,

f(t) =

[
f
−8/3
0 − 256

5
π8/3M5/3G

5/3

c5
(t− t0)

]−3/8

(33)

for t < t0 (times before coalescence). Eq. (33) can be expressed with the chirp mass in
units of solar mass as before

f(t) =

[
f
−8/3
0 − 256

5
π8/3

(
M
M⊙

)5/3(GM⊙
c3

)5/3

(t− t0)

]−3/8

(34)
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Figure 3: Time-frequency representation of the GW signal, as described by eq. (33), for
m1 = m2 = 30M⊙. The coalescence time is t0 = 0.

Figure 3 shows an example of frequency evolution for a system with m1 = m2 = 30M⊙.
The corresponding signal in the time domain is shown in figure 4 (+ polarization only)
and in figure 5 (both + and × polarizations).

Neglecting the constant terms in eq. (33) we find

256

5
π8/3M5/3G

5/3

c5
|t| ≈ f−8/3 (35)

or also

M ≈ c3

G

1

(256|t|/5)3/5 (πf)8/5
(36)

The maximum frequency f0 in the merger can be estimated assuming that the dis-
tance between the centers of the two masses is equal to the sum of the Schwartzschild
radii (in the case of a BBH), i.e.,

r1 + r2 =
2G

c2
(m1 +m2) (37)

where RS = (2G/c2)m is the Schwartzschild radius for a mass m. At this separation the
frequency and the emitted power are at a maximum

ω2
0 = π2f2

0 =
G(m1 +m2)

(r1 + r2)3
=

c6

8G2

1

(m1 +m2)2
(38)

1Recall that the emitted frequency is twice the orbital frequency.
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Figure 4: GW signal in the Newtonian approximation, for m1 = m2 = 30M⊙ and phase
at coalescence ϕ0 = 1 radians, + polarization only. The coalescence time is t0 = 0. The
amplitude is scaled to its maximum.

or also

f0 =
1

2π
√
2

(
GM⊙
c3

)−1 1

M/M⊙
(39)

where M = m1 + m2 is the total mass of the system which is directly related to the
maximum frequency of the chirp.

Since

M5 =
(m1m2)

3

M
(40)

we can use the observed chirp mass and total mass to obtain the system of equations

m1m2 = M1/3M5/3 (41a)

m1 +m2 = M (41b)

from which we find the individual masses

m1,2 =
M

2
± 1

2

√
M2 − 4M5/3M1/3, (42)

with the “mass gap”

∆M =
√
M2 − 4M5/3M1/3. (43)
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Figure 5: GW signal in the Newtonian approximation, for m1 = m2 = 30M⊙ and phase
at coalescence ϕ0 = 1 radians, both + (blue curve) and × (orange curve) polarizations.
The coalescence time is t0 = 0. The amplitude is scaled to its maximum.

The radiated power as a function of time can also be estimated

ω ≈ 2

(
256

5
M5/3G

5/3

c5
t

)−3/8

∼ t−3/8 (44)

PGW =
32G7/3

5c5
(m1m2)

2

(m1 +m2)2/3
ω10/3 ∼ t−5/4 (45)

6 Shrinking of the orbit because of GW emission - 2

From Kepler’s third law

ω2 =
GM

R3
(46)

where M = m1 +m2 and R = r1 + r2, we find

2ω
dω

dt
= −3

GM

R4

dR

dt
(47)
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or also
dR

dt
= −2

3

R4

GM
ω
dω

dt
= −2

3

R5/2

√
GM

dω

dt
(48)

Recall that earlier we found

M5/3 =
m1m2

(m1 +m2)1/3
=

c5

G5/3

5

96
ω−11/3 dω

dt
(49)

and therefore
dω

dt
=

96M5/3G5/3

5c5
ω11/3 (50)

(equivalent to the differential equation that we have already integrated above), therefore

dR

dt
= −2

3

R5/2

√
GM

96M5/3G5/3

5c5
ω11/3 = −64M5/3G7/6

5c5
√
M

R5/2ω11/3 (51)

or also
d

dt

(
R−3/2

)
=

96M5/3G7/6

5c5
√
M

ω11/3 (52)

6.1 Maximum radiated power

The maximum radiated power for a system with generic masses is

Pmax(q) =
32G7/3

5c5
(m1m2)

2

(m1 +m2)2/3
ω
10/3
0 (53)

=
32G7/3

5c5
(m1m2)

2

(m1 +m2)2/3

[
c6

8G2

1

(m1 +m2)2

]5/3
(54)

=
c5

5G

(m1m2)
2

(m1 +m2)4
=

c5

5G

q2

(1 + q)4
=

c5

5G

q2

(1 + q)4
(55)

where q = m2/m1.

The maximum is attained for q = 1:

Pmax(q = 1) =
c5

5G

1

16
(56)

so that

Pmax(q) = 16
q2

(1 + q)4
Pmax(q = 1) (57)

Notice that in this Newtonian approximation, the maximum radiated
power does not depend on the total mass. On the contrary, the maximum
frequency does depend on the total mass.
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7 Maximum strain

Going back to equations (22) and (23), we see that the strain amplitude is

hmax =
4G(m1r

2
1 +m2r

2
2)ω

2
0

c4D
=

4G5/3

c4D

m1m2

(m1 +m2)1/3
ω
2/3
0 (58)

where ω0 is the maximum orbital angular frequency (38). For equal masses m1 = m2 =
M/2 and with the substitution

ω2
0 = (πf0)

2 =
c6

8G2

1

(m1 +m2)2
=

c6

8G2

1

M2
, (59)

(see eq. 38), eq. (58) becomes

hmax =
G5/3

c4D
M5/3(πf0)

2/3 =
G5/3

c4D
M5/3

(
c6

8G2M2

)1/3

=
GM

2c2D

=
(GM⊙/1 pc)(M/M⊙)

2c2(D/1 pc)
≈ 2.4× 10−14 (M/M⊙)

(D/1 pc)
(60)

where 1 pc ≈ 3.0857 × 1016 m. This means that a coalescence of two black holes with
1 solar mass each (M = 2M⊙) at a distance approximately equal to that of the Virgo
galaxy cluster (about 16.5 Mpc, see [2]), would produce a maximum strain approximately
equal to 2.9× 10−21.

Remember that like all other estimates in this handout, this result is
obtained in the context of the simplified Newtonian model.
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Appendix: naive black hole calculations

The existence of black holes was predicted long before the advent of GR, from simple
dynamical calculations.

In a gravitational field the escape velocity is defined as the threshold velocity that
allows escape to infinity, so that the initial kinetic energy is equal to the gravitational
potential energy at the starting radius:

1

2
mv2 =

GMm

R
, (61)

therefore

v =

√
2GM

R
. (62)

When the escape velocity equals the velocity of light, nothing can escape, not even light.
This happens at the Schwarzschild radius RS , such that

RS =
2GM

c2
, (63)

and rather surprisingly, this result coincides with the GR calculation for the Schwarzschild
metric (non-rotating black hole).

When we express the mass in units of solar mass (M⊙ ≈ 2× 1030kg),

RS =
2GM⊙(M/M⊙)

c2
≈ 3 km× (M/M⊙), (64)

so that a black hole with the mass of our Sun has a 3 km radius.
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