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In this handout I follow the simplified explanation of the post-Newtonian approxi-
mation given by Clifford Will [1].

The approximation is based on the usual assumptions that gravitational fields are
weak and that the characteristic motions of matter are slow compared with the speed of
light. Then, we can characterize the system with a small parameter ϵ = (v/c)2. Since the
(v/c)2 ratio corresponds roughly to the ratio between the 00 component and one of the ii
components of the stress-energy tensor, this parameter has the same order of magnitude
as p/ρc2. Moreover, the parameter is also proportional to the kinetic energy divided by
the mass M and by c2; since we know from the virial theorem that the average kinetic
energy of the system is proportional to the average of the potential energy, we find that
the parameter has the same order as GM/rc2. Putting it all together,

ϵ ∼ (v/c)2 ∼ GM/rc2 ∼ p/ρc2 (1)

We found earlier that using the weak field and slow motion approximations, Einstein’s
equations can be linearized and that they become remarkably simple in the Lorentz gauge

□2h̄µν =
16πG

c4
Tµν (2)

∂ν h̄
µν = 0, (3)

that a formal solution of this system is

h̄µν(ct,x) =
4G

c4

∫
source

Tµν(ct− |x− x′|,x′)

|x− x′|
d3x′, (4)

and that the stress-energy tensor satisfies the local conservation of energy

∂νT
µν = 0. (5)

Since Tµν encodes the distribution of mass-energy, eq. (5) can be used to infer the
motion of the source from the solution (4). The pair of equations defines an iterative
scheme, where we obtain a first iterate hµν0 , we use it to determine the modified mass
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distribution and therefore the new Tµν . In turn, the new Tµν is used to compute the
next iterate hµν1 , and so on.

Since we need both velocity and acceleration to obtain a solution of the equations
of motion, we must iterate once more and obtain the iterate hµν1 to find the first order
solution (first post-Newtonian order, 1PN, where the orders correspond to powers of
ϵ). However, an evaluation of the power emitted as gravitational waves requires the
evaluation of the third derivative of the mass distribution (of the reduced quadrupole
tensor), and therefore we need one more iteration to evaluate the dissipation of energy.
As an illustration, the two-body equation of motion becomes
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=
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1
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1
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1
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1
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A3PN +

1
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A3.5PN + . . .

)
(6)

where m = m1+m2, r = x1−x2, v = v1−v2, and n̂ = (x1−x2)/r. The A terms have
complex expressions, for example

A1PN =

[
(4 + 2η)

Gm

r
− (1 + 3η)v2 +

3

2
ηṙ2

]
n̂+ (4− 2η)ṙv (7)

Quoting Clifford Will [1], The post-Newtonian approximation has been remarkably
effective as a tool for interpreting experimental tests of general relativity. This is be-
cause, in a broad class of alternative metric theories of gravity, it turns out that only
the values of a set of numerical coefficients in the post-Newtonian expression for the
spacetime metric vary from theory to theory. Thus one can encompass a wide range
of alternative theories by simply introducing arbitrary parameters in place of the nu-
merical coefficients. This idea dates back to Eddington in 1922, but the “parametrized
post-Newtonian (PPN) framework” was fully developed by Nordtvedt and by Will in the
period 1968–72. The framework contains 10 PPN parameters: γ, related to the amount
of spatial curvature generated by mass; β, related to the degree of nonlinearity in the
gravitational field; ξ, α1, α2, and α3, which determine whether the theory predicts that
local gravitational experiments could yield results that depend on the location or velocity
of the reference frame; and ζ1, ζ2, ζ3, and ζ4, which describe whether the theory has
appropriate momentum conservation laws. In general relativity, γ = 1, β = 1, and
the remaining parameters all vanish. This means that the PPN framework is very well
adapted at expressing deviations from GR.

For more details, see [1].
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